Restore previous display for sum and product signs in ASCII art mode;
[maxima.git] / share / affine / sheafa.lisp
blobc2b7bf2d5f76e05c4f756e0dfc9cf710f42b25da
1 ;;; -*- mode: lisp; package: cl-maxima; syntax: common-lisp -*-
2 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3 ;;; ;;;;;
4 ;;; Copyright (c) 1984 by William Schelter,University of Texas ;;;;;
5 ;;; All rights reserved ;;;;;
6 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
8 (in-package :maxima)
10 ;(defstruct ( bil (:type list) :named (:conc-name go-))
11 ; head
12 ; tail)
15 (defun update (ldata)
16 (cond ((< (length ldata) 6)
17 (nconc ldata (loop for i from (length ldata) below 6
18 collecting nil)))))
20 ;(defstruct (subscheme (:type list) :named )
21 ; s-var
22 ; ;; for each open of the s-var need
23 ; ;;the defining equations
24 ; ideal-sheaf)
27 ;(defstruct (open :named (:conc-name open-))
28 ; ;; a list of variables
29 ; variables
30 ; ;;a polynomial in prev variables to invert
31 ; inequality
32 ; ;;record the ordered pair of opens this came from
33 ; intersection)
35 ;(defstruct (map :named (:conc-name map-))
36 ; ;;an open
37 ; domain
38 ; ;;an open
39 ; range
40 ; ;;a list of polynomial functions( maybe the same denominator)
41 ; substitutions
42 ; denom)
44 ;(defstruct (morphism :named (:conc-name morphism-))
45 ; ;;two s-varieties
46 ; domain
47 ; range
48 ; ;;for each open in (sv-opens domain) a map to one in
49 ; ;; (sv-opens range)
50 ; list-of-maps)
52 ;;(defun sv-find-intersections (s-var &key (set-them t) &aux tem answ)
53 ;; (setq answ (loop for v in (sv-opens s-var)
54 ;; appending
55 ;; (loop for w in (sv-opens s-var)
56 ;; when (not (eql v w))
57 ;; collecting
58 ;; (setq tem (make-open))
59 ;; and
60 ;; do
61 ;; (setf (open-variables tem) (open-variables w))
62 ;; ;;ought to set the inequality here but with out the map how??
63 ;; (setf (open-inequality tem) (open-inequality v))
64 ;; (setf (open-intersection tem )(list v w)))))
65 ;; (cond (set-them (setf (sv-intersections s-var) answ)))
66 ;; answ)
67 ;(defun set_up_s_var(a-list birat-string &aux map answ amap subl subs intop )
68 ; "takes alternating list of coord inequal equations "
69 ; (setq answ (make-s-var))
70 ; (setf (sv-opens answ)
71 ; (loop for (coord inequal ident) on (cdr a-list) by #'cdddr
72 ; with op
73 ; collecting (setq op (make-open))
74 ; do (setf (open-variables op) (loop for v in (cdr coord)
75 ; collecting (car (st-rat v))))
76 ; (setf (open-inequality op) (st-rat inequal))
77 ; (setf (open-intersection op) ident)))
78 ; (loop for op1 in (sv-opens answ)
79 ; appending
80 ; (loop for op2 in (sv-opens answ)
81 ; for (coord inequal ident) on (cdr a-list) by #'cdddr
82 ; when (not (eql op1 op2))
83 ; collecting (setq intop (make-open))
84 ; and
85 ; do
86 ; (setf (open-variables intop) (open-variables op1))
87 ; (setq map ($find_birational_map (open-intersection op1)
88 ; (open-intersection op2)
89 ; birat-string
90 ; coord
91 ; ))
92 ; ;;;temporarily put it in the inequal slot
93 ; (setf (open-inequality intop) map)
94 ; (setf (open-intersection intop) (list op1 op2)))
96 ; into ints
97 ; finally (setf (sv-intersections answ) ints))
98 ; (loop for intop in (sv-intersections answ)
99 ; with op1 with op2
100 ; do (setq op1 (first (open-intersection intop)))
101 ; (show intop op1 op2)
102 ; (setq op2 (second (open-intersection intop)))
103 ; collecting (setq amap (make-map domain op1
104 ; range op2 ))
105 ; into glues
106 ; do
107 ; (setq map (open-inequality intop))
108 ; (setq subs
109 ; (loop for v in (cdr map)collecting
110 ; (third v)))
111 ; (show subs)
112 ; (setq subl (loop for v in (open-variables op1)
113 ; for vv in *vvv*
114 ; collecting (cons vv (get v 'disrep) )))
115 ; (setq subs (sublis subl subs))
116 ; (show subs)
117 ; (setq subs (mapcar 'new-rat subs))
118 ; (loop for v in subs
119 ; with denom = 1
120 ; do (setq denom (nplcm denom (denom v)))
121 ; finally (loop for v in subs collecting
122 ; (ptimes (num v)(pquotient denom
123 ; (denom v)))
124 ; into sub
125 ; finally (setf (map-substitutions amap) sub)
126 ; (show sub)
127 ; (setf (map-denom amap) denom)))
128 ; (setf (open-inequality intop)
129 ; (apply-map amap (open-inequality op1)))
130 ; finally (setf (sv-glueing answ)glues))
131 ; answ)
133 ;(defun find-map (list-maps dom rang)
134 ; (loop for ma in list-maps
135 ; when (and (eq (map-domain ma) dom)
136 ; (eq (map-range ma) rang))
137 ; do (return ma)))
139 ;(defun check-compatibility (svar)
140 ; (loop for v in (sv-intersections svar)
141 ; with rev
142 ; do (setq rev (reverse (open-intersection v)))
143 ; (loop for w in (sv-intersections svar)
144 ; when (equal (rev (open-intersection w)))
145 ; do
146 ; (loop for va in (open-variables v) with var
147 ; do
148 ; (setq var (list va 1 1))
149 ; (setq ma (find-map (sv-glueing svar)v w))
150 ; (setq rev-ma (find-map (sv-glueing svar)w v))
151 ; (setq answ (ratrquotient (apply-map rev-ma (num (apply-map ma var)))a
152 ; (apply-map rev-ma (denom (apply-map ma var)))))
153 ; (cond ((not (and (equal (num answ) var)) (denom answ) 1))
154 ; (merror "not the identity map")))))))
156 ;(defun describe-s-var (svar)
157 ; (mapcar 'describe-open (sv-opens svar))
158 ; (mapcar 'describe (sv-glueing svar))
159 ; (mapcar 'describe (sv-intersections svar)))
160 ;(setq hi
161 ;#$ sublis([a1=z1,a2=z2,a0=1],[ [x1,x2],[x1-a1/a0,x2-a2/a0],[x1,x2],[x1-a0/a1,x2-a2/a1],[x1,x2],[x1-a0/a2,x2-a1/a2]])$)
163 ;[[X1,X2],1,[X1-Z1,X2-Z2],[X1,X2],1,[X1-1/Z1,X2-Z2/Z1],[X1,X2],1,[X1-1/Z2,X2-Z1/Z2]]$
165 (defvar *xxx*
166 (let (*print-radix*)
167 (loop for i from 1 to 30 collecting (add-newvar (intern (format nil "$X~A" i))))))
169 ;(defun describe-open (open &aux tem)
170 ; (format t "~%It is ~D space coordinatized by ~A "
171 ; (length (setq tem (open-variables open))) tem)
172 ; (cond ((not (numberp (open-inequality open)))
173 ; (format t "less the locus where ")
174 ; (sh (open-inequality open))(format t "vanishes.")))
175 ; (cond ((Open-intersection open)
176 ; (format t "~%It is an intersection of ~A" (open-intersection open)))))
178 ;(defun $find_birational_map (eqn1 eqn2 birat-sstring coord2 &aux sol1 birat-vars
179 ; answ eqns)
180 ; (setq eqn1 ($numerator eqn1))
181 ; (setq eqn2 ($numerator eqn2))
182 ;; (mshow eqn1)
183 ; (setq birat-vars ($list_variables eqn1 birat-sstring))
184 ; (setq sol1 ($fast_linsolve ($expand eqn1) birat-vars))
185 ; (setq eqn2 (sublis *vforx* eqn2 ))
186 ; (setq coord2 (sublis *vforx* coord2))
187 ; (setq eqns ($sublis sol1 eqn2))
188 ;; (mshow eqns coord2)
189 ; (setq answ ($fast_Linsolve eqns coord2))
190 ; (sublis answ (sublis *xforv* answ))
191 ; answ)
193 (defun zl-pairlis (a b)
194 (loop for v in a for w in b
195 collecting (cons v w)))
197 (defvar *vvv* (loop for i from 0 for u in *xxx* collecting (intern (format nil "$VV~A" i))))
198 (defvar *vforx* (zl-pairlis *xxx* *vvv*))
199 (defvar *xforv* (zl-pairlis *vvv* *xxx*))
201 ;(defun construct-birational-glueing-data (s-var ring-data birat-string)
202 ; "ring-data is a list one for each open of equations like x0=x1*z1,x2=x1*z2
203 ; where the x0,x1,x2 are the open coordinates, and the zi are coordinates of the
204 ; function field"
205 ; (check-arg $listp ring-data "macsyma list")
206 ; (loop for int in (s-var intersections)
207 ; do (setq map
208 ; (make-map))
209 ; (int-opens (open-intersection int))
210 ; (setf (map-domain map) int)
211 ; (setf (map-range map)
212 ; (loop for w in int
213 ; with rev = (reverse
214 ; (open-intersection int))
215 ; when (equal (open-intersection w)
216 ; rev)
217 ; do (return w)))
218 ; (setf (map-substitutions)
219 ; (progn
220 ; (loop for v in (cdr ring-data)
221 ; for w in (sv-opens s-var)
222 ; when (equal w (first int-opens))
223 ; do(setq eqn1 v)
224 ; when (equal w (second int-opens))
225 ; do (setq eqn2 w))
226 ; (setq eqn2 (sublis *vforx* eqn2)
227 ; (setq answ
228 ; ($find_birational_map eqn1 eqn2 birat-string
229 ; (firstn (length eqn2) *vvv*)))
230 ; (setq substit
231 ; (loop for w in answ collecting (new-rat (third w))))
232 ; (loop for w in substit
233 ; with denom =1
234 ; do (setq denom (plcm (denom w)))
235 ; finally
236 ; (setq substit (loop for w in substit
237 ; collecting (num (rattimes w
238 ; denom))))
239 ; (setf (map-denom map) denom)
240 ; (setf (map-substitutions map) substit)))))))
242 (defvar *p3* (make-s-var))
244 ;(setf (sv-opens *p3*) (loop for i from 0 to 2
245 ; collecting (setq tem (make-open))
246 ; do
247 ; (setf (open-variables tem)
248 ; (loop for j from 0 to 2
249 ; when (not (eql j i))
250 ; collecting (car (st-rat (nth j *xxx* )))))
251 ; (setf (open-inequality tem) (st-rat (nth i *xxx*)))))
254 ;;(setf (sv-intersections *p3*
255 ;(defun apply-map (map poly &aux answ subl)
256 ; (setq subl (pairlis (open-variables (map-range map)) (map-substitutions map)))
257 ; (setq answ (psublis subl (map-denom map) poly))
258 ; (remove-common-factors answ (map-denom map)))
260 ;(defun apply-map (map poly &aux answ subl)
261 ; (setq subl (pairlis (open-variables (map-range map)) (map-substitutions map)))
262 ; (setq answ (psublis subl (map-denom map) poly))
263 ; (remove-common-factors answ (map-denom map)))
265 (defun remove-common-factors (from-poly divisor &aux answ)
266 (setq answ (pgcdcofacts from-poly divisor))
267 (if (eql 1 (car answ))
268 (second answ)
269 (remove-common-factors (second answ) (first answ))))
271 (defun strings-search (keys sstring &aux tem)
272 (loop for v in keys when (setq tem (search v sstring :test #'char-equal))
273 do (return tem)))
275 ;; will replace the genvar with more readable symbols
276 (defun replace-genvar(&rest strings &aux tem hi)
277 (loop for v in *genvar*
278 when (and (atom (setq tem (get v 'disrep)))
279 (eql (aref (string v) 0) #\G)
280 (cond (strings (strings-search strings (string tem)))
281 (t t)))
283 (setq hi (make-symbol (string-trim "$" tem)))
284 (setf (symbol-value hi) (symbol-value v))
285 (setf (symbol-plist hi) (copy-list (symbol-plist v)))
287 collecting hi into answ
288 else
289 collecting v into answ
290 finally (setq *genvar* answ)))
292 (defun describe-components (comp &aux answ)
293 (check-arg comp (and (listp comp) (eq (car comp) 'components)) "components")
294 ; (setq comp (cdr comp))
295 (loop for v in (car (cdr comp))
296 for i from 0
297 do (format t "~%Component ~A occurs on opens ~A on ldata ~A" i
298 (loop for w in v when (cdr w) collecting (car w)
299 into tem
301 collecting (cdr w) into tem2
302 finally (setq answ (list tem tem2))
303 (return (car answ)))
304 (second answ)))
305 (cond ((third comp) (format t "~%There were bad components so the above must be taken with a grain of salt. They were ~A" (third comp)))
306 (t (format t "~%There were no bad components" nil))))
310 (defun tableaux-lessp (a b)
311 (let ((stringa (string a))
312 (stringb (string b)))
313 (loop for j from 3 below (string-length a)
314 when (> (aref stringa j) (aref stringb j))
315 do (return nil)
316 finally (return t))))
318 (defun last-string (x)
319 (aref x (1- (string-length x))))
321 (defremember list-tableaux ( row-length dimension )
322 (case row-length
323 (0 nil)
324 (1 (loop for i from 1 to dimension
325 collecting (list i)))
326 (t (loop for j from 1 to dimension
327 appending
328 (loop for u in (list-tableaux (1- row-length ) dimension)
329 when (> j (car (last u)))
330 collecting (append u (list j)))))))
332 (defun $list_tableaux (length dimension)
333 (cons '(mlist) (mapcar #'(lambda (x)
334 (apply #'$concat '$ta x))
335 (list-tableaux length dimension))))
337 (defun $sub_matrix (mat rows-to-take cols-to-take &aux row)
338 (loop for ii in rows-to-take
339 do (setq row (nth ii mat))
340 collecting
341 (loop for i from 1
342 for v in (cdr row)
343 when (member i cols-to-take)
344 collecting v into new-row
345 finally (return (cons '(mlist) new-row)))
346 into matrix
347 finally (return (cons '($matrix simp) matrix))))
349 (defun $sub_matrix_columns (mat &rest cols-to-take)
350 (loop for row in (cdr mat)
351 collecting
352 (loop for i from 1
353 for v in (cdr row)
354 when (member i cols-to-take)
355 collecting v into new-row
356 finally (return (cons '(mlist) new-row)))
357 into matrix
358 finally (return (cons '($matrix simp) matrix))))
360 (defun $plucker (vector-list)
361 (check-arg vector-list '$listp "macsyma list")
362 (let ((mat (cons '($matrix) (cdr vector-list))))
363 (cons '(mlist)
364 (loop for
365 u in
366 (list-tableaux ($length vector-list) ($length (second vector-list)))
367 collecting ($determinant (apply '$sub_matrix_columns mat u))))))
369 (defun $remove_number (llist)
370 (loop for v in llist when (not (numberp v))
371 collecting v))
373 (defmacro from-case (a-list)
374 `(and (listp ,a-list) (cdr (member '$case ,a-list :test #'eq))))
376 (defvar $solution_tree '(mlist))
377 (defun $sort_solution_tree ()
378 (setq $solution_tree
379 (cons '(mlist)(sort (cdr $solution_tree)
380 #'(lambda (x y )
381 (let ((fromx (from-case x))
382 (fromy (from-case y)))
383 (cond ((null fromx) t)
386 ($monomial_alphalessp fromx
387 fromy)))))))))
388 (defmacro type? (a form &optional descrip &aux (ctrl-string "not a ~A"))
389 (cond (descrip nil)
390 (t (setq descrip form) (setq ctrl-string "Doesn't satisfy ~A")))
391 (cond ((functionp form)
392 `(cond ( (, form ,a) nil)
393 (t (merror (format nil ,ctrl-string ,descrip)))))
394 (t `(cond (,form nil)
395 (t (t (merror (format nil ,ctrl-string ,descrip))))))))
397 (defvar $nonzero_factors nil)
399 (defun $dichotomy (polynomials dich &optional add-to-tree &aux answer)
400 (check-arg polynomials $listp "macsyma list")
401 (cond ($nonzero_factors
402 (format t "~%Assuming the following factors are nonzero and cancelling")
403 (displa $nonzero_factors)
404 (setq polynomials ($Eliminate_nonzero_factors polynomials))))
405 ; (cond (add-to-tree (type? $solution_tree (and ($listp $solution_tree)
406 ; (or (null (second $solution_tree))
407 ; ($listp (second $solution_tree)))))))
409 (cond (($listp dich)(setq dich(second dich))))
410 (cond ((numberp dich)(setq dich (nth dich polynomials))))
411 (setq dich
412 (loop for v in (cdr ($list_irreducible_factors dich))
413 when (not (numberp v))
414 collecting v))
415 (format t "We have the dichotomy among..")
416 (displa (cons '(mlist) dich))
417 (loop for w on dich
418 for v in dich
419 collecting
420 (let (($nonzero_factors (append (cons '(mlist) (cdr $nonzero_factors))
421 (cdr w))))
422 ( $factor($eliminate_nonzero_factors ($simplify_relative polynomials v))))
423 into tem
424 finally (setq answer (cons '(mlist) tem)))
425 (cond (add-to-tree ($add_to_solution_tree answer)))
426 answer)
428 (defun constant-term (poly)
429 (cond ((atom poly) poly)
430 (t (constant-term
431 (let ((leng (length poly)))
432 (cond ((eql (nth (- leng 2) poly) 0)
433 (constant-term (nth (1- leng) poly) ))
434 (t 0)))))))
437 (defun gone-prepared (poly &key (inequal 1) linear-variables &aux tem)
438 (cond ((null linear-variables) (setq linear-variables
439 (degree-one-variables poly))))
440 (cond ((numberp inequal )
441 (one-prepared poly :linear-variables linear-variables))
443 (cond ((atom poly) nil)
444 (t (loop for v in linear-variables
445 when (eql (pdegree poly v) 1)
446 do (setq tem (zero-sublis poly v))
447 (cond ((may-invertp tem inequal)
448 (return v)))))))))
450 (defun degree-one-variables (poly)
451 (loop for v in (list-variables poly)
452 when (eql (pdegree poly v) 1)
453 collecting v ))
455 (defun one-prepared (poly &key linear-variables &aux tem)
456 (cond ((null linear-variables) (setq linear-variables
457 (degree-one-variables poly))))
458 (cond ((atom poly) nil)
459 ((zerop (constant-term poly)) nil)
460 (t (loop for v in linear-variables
461 when (eql (pdegree poly v) 1)
462 do (setq tem (zero-sublis poly v))
463 (cond ((numberp tem) (return v)))))))
465 ;;the following was gm-prepared by x4,x3 !!
466 ;;2*X3*X6+2*X3^2*X4-1
467 ;;(SETQ F (RERAT (QUOTE (X6 1 (X3 1 2) 0 (X4 1 (X3 2 2) 0 -1)))))
468 ;(defun gm-prepared (poly &key m (inequal 1) linear-variables &aux lins tem answ)
469 ; (cond (m
470 ; (cond ((atom poly ) nil)
471 ; ((eql 1 m)(cond ((setq tem (gone-prepared poly inequal :linear-variables linear-variables)))
472 ; (list tem))))
473 ; (t (loop for v in (list-variables poly)
474 ; when
475 ; (eql (pdegree poly v) 1)
476 ; do (setq tem (zero-sublis poly v))
477 ; (cond ((setq answ (gm-prepared tem :m (1- m) :inequal inequal))
478 ; (return (cons v answ))))))))
479 ; (t (setq lins (loop for v in (list-variables poly)
480 ; when (eql (pdegree poly v) 1)
481 ; count 1))
482 ; (loop for i from 1 to lins
483 ; when (setq answ (gm-prepared poly :m i :inequal inequal))
484 ; do (return answ))))
485 ;;;failed to check gm-prepared on this.
486 ;(des-editor badg)1/10/85 18:02:59
487 ;(AA1*AA2-AA1)*BB1*CC6+(AA1^2*AA2-AA1^2)*CC5+BB1*CC3+AA1*CC2+((AA1*AA2^2-AA1*AA2)*BB6+AA2*BB3-1)
488 ;*CC1+(AA1^2*AA2-AA1^2)*BB1*BB6+(AA1^3*AA2-AA1^3)*BB5+AA1*BB1*BB3+AA1^2*BB2-AA1*BB1
490 ;(SETQ BADG (RERAT (QUOTE (CC6 1 (BB1 1 (AA2 1 (AA1 1 1) 0 (AA1 1 -1))) 0 (CC5 1 (AA2 1 (AA1 2 1) 0 (AA1 2 -1)) 0 (CC3 1 (BB1 1 1) 0 (CC2 1 (AA1 1 1) 0 (CC1 1 (BB6 1 (AA2 2 (AA1 1 1) 1 (AA1 1 -1)) 0 (BB3 1 (AA2 1 1) 0 -1)) 0 (BB6 1 (BB1 1 (AA2 1 (AA1 2 1) 0 (AA1 2 -1))) 0 (BB5 1 (AA2 1 (AA1 3 1) 0 (AA1 3 -1)) 0 (BB3 1 (BB1 1 (AA1 1 1)) 0 (BB2 1 (AA1 2 1) 0 (BB1 1 (AA1 1 -1))))))))))))))
491 ;NIL
495 (defun gm-all-prepared (poly &key m (inequal 1) linear-variables &aux tem)
496 (cond ((null linear-variables) (setq linear-variables
497 (degree-one-variables poly))))
498 (cond (m
499 (cond ((eql m 0)(cond ((may-invertp poly inequal)(list 'ok))
500 (t nil)))
502 (loop for v in (list-variables poly)
503 when (and (member v linear-variables :test #'eq)
504 (setq tem (gm-all-prepared
505 (zero-sublis poly v)
506 :linear-variables linear-variables
507 :m (1- m)
508 :inequal inequal)))
510 appending (loop for ww in tem collecting (cons v ww))))))
511 (t (setq linear-variables (degree-one-variables poly))
512 (loop for i from 1 to (length linear-variables)
513 when (setq tem (gm-all-prepared poly
514 :linear-variables linear-variables
515 :m i
516 :inequal inequal))
517 do (return tem)))))
519 (defvar *maximum-size-for-m-prepared* 1)
521 (defun gm-prepared (poly &key m (inequal 1) linear-variables &aux lins tem answ)
522 (cond ((null linear-variables) (setq linear-variables
523 (degree-one-variables poly))))
524 (cond (m
525 (cond ((atom poly ) nil)
526 ((eql 1 m)(cond ((setq tem (gone-prepared poly :inequal inequal :linear-variables
527 linear-variables))
528 (list tem))))
529 (t (loop for v in (list-variables poly)
530 when
531 (member v linear-variables :test #'eq)
532 do (setq tem (zero-sublis poly v))
533 (cond ((setq answ (gm-prepared tem :m (1- m) :inequal inequal
534 :linear-variables linear-variables))
535 (return (cons v answ))))))))
537 (t (setq lins (loop for v in linear-variables
538 when (eql (pdegree poly v) 1)
539 count 1))
540 (loop for i from 1 to (min lins *maximum-size-for-m-prepared* )
541 when (setq answ (gm-prepared poly :m i :inequal inequal :linear-variables
542 linear-variables))
543 do (return answ)))))
546 (defun m-prepared (poly &key m linear-variables &aux tem answ)
547 (cond ((null linear-variables) (setq linear-variables
548 (degree-one-variables poly))))
549 (cond (m
550 (cond ((atom poly ) nil)
551 ((zerop (constant-term poly)) nil)
552 ((eql 1 m)(cond ((setq tem (one-prepared poly))
553 (list tem))))
554 (t (loop for v in linear-variables
555 do (setq tem (zero-sublis poly v))
556 (cond ((setq answ (m-prepared tem :m (1- m)))
557 (return (cons v answ))))))))
559 (loop for i from 1 to (length linear-variables)
560 when (setq answ (m-prepared poly :m i))
561 do (return answ)))))
563 (defun non-constant-factors (poly &optional invert &aux tem (genvar *genvar*))
564 (setq tem (npfactor poly))
565 (loop for (v deg) on tem by #'cddr
566 when (and (not (numberp v))
567 (or (null invert)(null (may-invertp v invert))))
568 collecting v
570 collecting deg))
572 (defvar *factored-list* nil)
573 (defvar *all-factors* nil)
575 (defun gen-ptimes (&rest l)
576 (cond ((null l) 1)
577 ((eql (length l) 1) (car l))
578 (t (ptimes (car l) (apply 'gen-ptimes (cdr l))))))
581 (defun find-good-dichotomy (ldata &key ( open-g 1) &aux tem list-factors answ
582 (list-polys (ldata-eqns ldata))
583 (gg (ldata-inequality ldata)))
584 (setq gg (nplcm gg open-g))
585 (cond ((member nil list-polys :test #'eq) (break 'here)))
586 (setq list-factors
587 (loop for v in list-polys
588 ;;only collect non trivial factors
589 when (> (length (setq tem (non-constant-factors v gg)))
591 collecting tem into multiple-factors
592 ;;when have a constant factor
593 when (null tem)
594 do (show tem) (setf (ldata-eqns ldata) '(1))
595 (setf (ldata-usedup ldata ) 1)
596 (return 'done-unit-ideal)
597 collecting tem into all-factors
598 collecting
599 (apply 'gen-ptimes (loop for (fac deg) on tem by #'cddr
600 ; when (not (may-invertp fac gg))
601 collecting fac))
602 into terms
604 finally
605 (cond ((not (member 1 terms))
606 (setf (ldata-eqns ldata) terms))
607 (t (setf (ldata-usedup ldata) 1)
608 (setf (ldata-eqns ldata) '(1))))
609 (setq *all-factors* all-factors)
610 (return multiple-factors)))
612 (cond ((member '(nil 1) *all-factors* :test #'equal) (break 'hii)))
613 (cond
614 ((eq list-factors 'done-unit-ideal) nil)
616 (setq *factored-list* list-factors)
617 (setq list-factors
618 (sort list-factors #'(lambda (u v)(cond ((atom u) t)
619 ((atom v) nil)
620 (t (< (length u) (length v)))))))
621 (cond
622 ((setq answ
623 ;; grabs the shortest product a^2*b^3 where a,b are variables
624 (loop for v in list-factors
625 when (loop for (fac deg) on v by #'cddr
626 when (not (or (atom fac)
627 (< (length fac) 4)))
629 (return nil)
630 finally (return t))
631 do (return v))))
633 ((setq answ (loop named kay
634 for i from 1 to (length (list-variables list-polys))
636 (loop for v in list-factors
637 when (loop for (fac deg) on v by #'cddr
638 when (not (or (atom fac)
639 (< (length fac) 4)
640 (gm-prepared fac :m i :inequal gg)))
642 (return nil)
643 finally (return t))
644 do (return-from kay v)))))
645 ;;grab the shortest one with a variable factor
646 ((setq answ
647 (loop named pat
649 v in list-factors
650 do (loop for (fac deg) on v by #'cddr
651 when (< (length fac ) 4)
652 do (return-from pat v)))))
653 ((setq answ
654 (loop named sue
656 v in list-factors
657 do (loop for (fac deg) on v by #'cddr
658 when (or (one-prepared fac)
659 (any-linearp fac
660 (ldata-inequality ldata)))
661 do (return-from sue v))))))
662 answ)))
664 (defun order-dichotomy ( dich &aux mult)
665 (setq dich (loop for (v deg) on dich by #'cddr
666 collecting v))
667 (setq mult
668 (loop for v in dich
669 collecting
670 (loop for u in *all-factors*
671 when (member v u :test #'equal)
672 count 1 )))
673 (setq dich
674 (loop for i downfrom (length *all-factors*) to 0
675 when (member i mult)
676 appending
677 (loop for v in mult
678 for u in dich
679 when (eq v i)
680 collecting u))))
684 ;;LDATA : ((F1 F2 F3 ..) G)
685 ;;LDATA MEANS HAVE FI=0 AND G NOT ZERO
686 ;;SIMPLIFICATION STRATEGY FOR A LIST OF LDATUM
687 ;;IF U^2+5*G*X IS IN THE LIST OF EQUATIONS ELIMINATE X FROM ALL OF THE EQUATIONS
688 ;;(EXCEPT ITSELF)
689 ;;IF 5+U^2*Y*X APPEARS SOLVE FOR X ELIMINATING IT FROM THE OTHERS AND SAVING THAT
690 ;;EQUATION BUT MODIFYING THE INEQUALITY BY G:LCM (G,U^2*Y)
691 ;;MUST ELIMINATE FACTORS OF G FROM THE Fi
692 ;;If 5+u^2*x+v^2*y occurs in the fi we create two ldata in place of the one ldata
693 ;; must solve for x=.. and add u^2 to the G making one ldata
694 ;; must solve for y=.. and add v^2 to the G making another ldata
695 ;;Also if 5+u*v is an fi can set G: (lcm(g, u*v) and can eliminate u
696 ;;from all equations
699 ;(defun dichotomy (list-eqns inequality)
700 ; (setq dich (find-good-dichotomy list-eqns))
701 ; (setq dich (order-dichotomy dich))
702 ; (loop for v in dich
703 ;;list of simplification types and their tests: where g is the inequal
704 ;;and f is the equation to use in the replacement.
705 ;;; f test replacement of h
706 ;;1 u^2+5*g*x (poly-linearp f x g) (gen-prem h f x)
707 ;;2 g1+u*x (gone-prepared f g) (progn (setq g (lcm g u) ) (gen-prem h f x))
708 ;;3 u1+u2*x+g*x^2 (invertible-leading-coefficient f x g) (gen-prem h f x))
710 (defun any-linearp (f g &key variables-to-exclude among-variables)
711 (cond ((null among-variables)(setq among-variables (list-variables f))))
712 (loop for v in among-variables
714 when (and (not (member v variables-to-exclude :test #'eq)) (poly-linearp f v g))
715 do (return v)))
717 (defvar *clear-above* nil)
719 (defun any-invertible-leading-coefficient
720 (f g &aux deg (varl (list-variables f)))
721 (loop for v in varl
722 when (may-invertp (list v 1 1) g)
723 do (setq varl (delete v varl :test #'equal)))
724 (loop for v in varl
725 when (and (or (null *clear-above*) (not (<= (loop for w in *clear-above*
726 when (eq (car w) v)
727 minimize (cdr w))
728 (setq deg (pdegree f v)))))
729 (may-invertp (pcoeff f (list v deg 1)) g))
730 do (return v)))
732 (defun invertible-leading-coefficient (poly var inequal)
733 (may-invertp (pcoeff poly (list var (pdegree poly var) 1)) inequal))
735 (defun plength-order (u v)
736 (cond ((atom u) t)
737 ((atom v) nil)
738 (t (< (length u) (length v)))))
740 ;(defun replace-functions (list-to-replace f var &aux tem)
741 ; (loop for h in list-to-replace
742 ; when (not (eql f h))
743 ; when (not (pzerop (setq tem
744 ; (square-free (gen-prem h f var)))))
745 ; collecting
746 ; tem))
748 ;(defun replace-functions (list-to-replace f var &AUX original &aux tem)
749 ; (loop for h in list-to-replace
750 ; when (not (eql f h))
751 ; when (not (pzerop (setq tem
752 ; (gen-prem h f var))))
753 ; when (not (eq h tem))
754 ; collecting (square-free tem)
755 ; else collecting h))
757 (defun replace-functions (list-to-replace f var &key general-leading-cof (invertible-g 1) &aux c-reqd remaind tem)
758 (cond ((null general-leading-cof)
759 (loop for h in list-to-replace
760 when (not (eql f h))
761 when (not (pzerop (setq tem
762 (gen-prem h f var))))
763 when (not (eq h tem))
764 collecting (square-free tem)
765 else collecting h))
767 (loop for h in list-to-replace
768 when (eq f h) do (setq h nil)
769 when h
771 (multiple-value
772 (remaind c-reqd)
773 (gen-prem h f var))
774 when h
775 when (eq h remaind) collecting h
776 else collecting (square-free remaind)
777 ;;collect h if the c-reqd is not a unit.
778 when h
779 when (not (may-invertp c-reqd invertible-g))
780 collecting h))))
782 (defun any-gm-prepared (poly gg)
783 (gm-prepared poly :inequal gg))
785 (defvar *inside-simplify-svar-ldata* nil)
786 (defvar *stop-simplify* nil)
790 (defun check-for-gm-prepared (list-eqns gg &aux tem)
791 (loop for eqn in list-eqns
792 when (and (not (any-linearp eqn gg))
793 (setq tem (gm-prepared eqn :inequal gg)))
794 do (setq *stop-simplify* (list eqn (length tem)))
795 (return 'done))
796 *stop-simplify*)
798 ;;if we have a gm-prepared poly then we can simplify the
799 ;;ldata by moving to m+1 opens where we are able to eliminate
800 ;;variables:
801 ;;eg.if x*u+g=0 is an equation in ldata then we can assume u is
802 ;;generically nonzero so we can on the open set u not zero solve
803 ;;for x=-g/u. The u=0 locus does not meet the x*u+g=0 locus so as far
804 ;;as calculation of components goes, we need not keep track.
805 ;;If however we wish to make a change of coordinates and look at some
806 ;;other data then we must cover ourselves with two open sets:
807 ;;u not zero and x*u+g not zero.
808 ;;criterion for f going in used-up should be that there is
809 ;;no possibility of using f any more. This will be the case
810 ;;for example if there is a variable in f and no other polynomials in the ldata
811 ;;have that variable occurring. This happens after a linear is used eg. Otherwise
812 ;;there is the possibility of dividing one by the other or taking a resultant.
814 ;;note the possibility of x1+x2+x3*x4 = 0 being an equation. It
815 ;;might be that the replacement of x1 in the other equations is preferable
816 ;;to the replacement of x2 or vice versa.eg in the following x7 replacement is better
817 ;;since it leads to splitting into two components.
818 ;;2*X6*X7-2*X6^2+X4*X5
819 ;;X7-X6-X1*X5
821 (defmacro check-containments (ldata lis-ldat &optional gg)
822 `(cond (error-check-containments
823 (check-component-containment ,ldata ,lis-ldat ,gg))))
824 (Defun Ldata-Simplifications (ldata &key (open-g 1) error-check-containments
825 recursive-p
826 &aux tem *clear-above* simplif answ unused stop-simplify
827 used-up var (changed t) orig-ldata)
828 (declare (special *in-linear-dich*))
829 (check-arg ldata (eq (car ldata) 'ldata) "not an ldata")
830 (setq orig-ldata ldata)
831 (setq ldata (copy-list ldata))
833 (let ((fns (ldata-eqns ldata))
834 (gg (ldata-inequality ldata)))
835 (setq gg (nplcm open-g gg))
836 ;;note that using this gg we may produce I1 with I ^P I1R[gg-1] but
837 ;;unless I1 is prime we will not have I ^P I1
838 (setq fns (loop for f in fns
839 when (not (and (numberp f) (zerop f)))
840 do (setq tem (square-free (remove-common-factors f gg)))
842 when (numberp tem) do (setf (ldata-usedup ldata) 1)
843 (return (setq fns '(1)))
844 else
845 collecting tem))
846 (setq used-up (subseq fns 0 (ldata-usedup ldata)))
847 (setq fns (nthcdr (ldata-usedup ldata) fns))
848 (setq fns (sort (copy-list fns) 'plength-order))
849 (setq vars (list-variables fns))
850 (loop while changed
851 do (setq changed nil)
852 (loop named sue for test in '(any-linearp
853 any-invertible-leading-coefficient
854 ; any-irreducible
858 (loop for f in fns
859 when (setq var (funcall test f gg))
861 ; (cond ((eq test 'any-irreducible)
863 ; (setq f var) (setq var (find-variable-with-simple-lc
864 ; f 1 1))
865 ; (sh f) (show var)))
866 (setq fns
867 (replace-functions fns f var))
868 (setq used-up (replace-functions used-up f var))
869 (cond ((or (eq test 'any-linearp)
870 (variable-doesnt-occur var fns used-up))
871 (push f used-up)
873 ;;put f last so that the lower degree ones will come first.
874 (t (setq fns (nconc fns (list f)))))
876 (cond ((eq test 'any-invertible-leading-coefficient)
877 (push (cons var (pdegree f var)) *clear-above*)
878 (show *clear-above*)))
880 (setq changed t)
881 (return-from sue))))
883 ;;if contain number 'done else try to fix leading cofs
884 (check-containments orig-ldata (list(make-ldata :eqns (zl-UNION fns used-up)
885 :inequality (ldata-inequality
886 orig-ldata))))
888 (cond ((loop for f in (setq unused (zl-union (delete 0 fns)))
889 when (numberp f) do (setq used-up '(1) unused nil)
890 (return 'done)))
892 ; nil))
893 (setq simplif
894 ; unused)
895 (simp-lead unused :open-g gg))
896 (cond ((eq simplif 'try-dichotomy) nil)
897 (t (setq unused (zl-UNION simplif))))))
898 (setf (ldata-inequality ldata) gg)
899 (setf (ldata-eqns ldata)
900 (setq fns (append used-up unused)))
901 (setf (ldata-usedup ldata) (length used-up))
902 ;;the following may make *stop-simplify* and ask to refine.
903 ;;this check is done in MAKE-DICHOTOMY (check-for-gm-prepared unused open-g)
904 (setq stop-simplify *stop-simplify*)
905 (check-containments orig-ldata (list ldata) (ldata-inequality ldata))
906 (cond ((null *stop-simplify*) (setq answ (MAKE-DICHOTOMY ldata :open-g open-g)))
907 (t (setq answ (list ldata))))
908 ;;should make this so it won't check for redundant ldata more than once.
909 (cond ((> (length answ ) 1)
910 (setq answ (delete-redundant-ldata answ :gg open-g)))))
912 (check-containments orig-ldata answ)
913 (cond ((and (null *stop-simplify*)
914 ;;this makes the divide dichotomy only apply after no more prod. dichot.
915 (eql (length answ) 1))
916 (setq answ
917 (divide-dichotomy (car answ) :open-g open-g))))
918 (check-containments orig-ldata answ)
919 ; (cond ((not (equal (length answ) 1)) (mshow answ)))
920 (cond ((and (null *stop-simplify*)
921 (eql (length answ) 1))
922 (setq answ (try-factor-irreducible-ldata (car answ) open-g))))
923 (cond ((and (null *stop-simplify*) (not recursive-p)
925 (let ((*in-linear-dich* t))
926 (setq answ
927 (loop for ld in answ
928 appending (linear-dichotomy ld :open-g open-g )))))))
929 ; (cond ((and (null *stop-simplify*)(not (variable-boundp *in-linear-dich*))
930 ; (not recursive-p)
931 ; (eql (length answ) 1))
932 ; (let ((*in-linear-dich* t))
933 ; (setq answ (linear-dichotomy (car answ) :open-g open-g )))))
934 ; (format t "~%Verifying the ~A component contain the original" (length answ))
935 ; (check-components-contain-original ldata answ)
936 (check-containments orig-ldata answ)
937 ; (cond ((null recursive-p)
938 ; (setq answ (loop for v in answ
939 ; appending
940 ; (jacobian-dichotomy ldata :open-g open-g)))))
941 (setq answ (delete-redundant-ldata answ :gg open-g))
942 (check-containments orig-ldata answ)
943 answ)
946 (defun any-irreducible (f gg &aux fac)
947 (setq fac (non-constant-factors f gg))
948 (cond ((> (length fac) 2)nil)
949 (t (car fac))))
951 (defun leading-cof (poly var &aux (deg (pdegree poly var)))
952 (cond ((zerop deg) 0)
953 (t (pcoeff poly (list var (pdegree poly var) 1)))))
955 (defun find-variable-with-simple-lc (f fns gg)
956 fns gg
957 (let ((varl (list-variables f)))
958 (loop for v in varl collecting (pcomplexity (leading-cof f v)) into tem
959 finally(return (nth (find-position-in-list (apply 'min tem) tem)
960 varl)))))
962 (defun ldata-unused (ld)
963 (nthcdr (ldata-usedup ld)(ldata-eqns ld)))
964 (defvar *refine-opens* t)
966 ;;not sure about the *refine-opens* = nil mode working.
967 #+old
968 (defun MAKE-DICHOTOMY (ldata &key (open-g 1)&aux int-open-g all-facs stop-simplify eqns-modv ld answ gg dich tem lin-dich)
969 "If stop-simplify is true then it only works if have linear dichotomy. It returns
970 a list of ldata "
971 (cond (*stop-simplify* (merror "how did *stop-simplify* get here")))
972 ;;(setq *stop-simplify* nil)
973 (setq dich (find-good-dichotomy ldata))
974 (setq all-facs *all-factors*)
975 (setq dich (order-dichotomy dich))
976 (show dich)
977 (setq gg (nplcm open-g (ldata-inequality ldata)))
978 (cond ((null *refine-opens*) (setq int-open-g gg) )
979 (t (setq int-open-g open-g)))
980 (setq lin-dich
981 (loop for v in dich when (not (any-linearp v gg)) do (return nil)
982 finally (return (and dich t))))
983 (show lin-dich)
984 ;; I think the gm-prepared business should all be done after.
985 ;; this may not be true. The simplifications from finding a gm-prepared
986 ;; and performing the elimination of variables might be necessary.
987 (cond ((null lin-dich)
988 (check-for-gm-prepared (ldata-eqns ldata) int-open-g)
989 (show *stop-simplify*)))
990 (setq stop-simplify *stop-simplify*)
991 (cond ((and (null *refine-opens*) *stop-simplify* )
992 (multiple-value-bind
993 (lds ggs) (ldata-refinement ldata (car *stop-simplify*)
994 (second *stop-simplify*) :inequality
995 int-open-g)
996 (setq *stop-simplify* nil)
997 ;;this does not take into account the fact we should be contracting
998 ;;the ideal back to the current open..
999 (setq answ (loop for ld in lds
1000 for ggi in ggs
1001 do (setq tem (ldata-simplifications
1003 :open-g (sftimes int-open-g ggi)
1004 :recursive-p t))
1005 appending
1006 (loop for v in tem do
1007 (zl-copy-structure v ldata- open-inequality
1008 (sftimes ggi (ldata-open-inequality
1009 v))))))))
1011 ; (setq answ (ldata-refinement ldata (car *stop-simplify*)
1012 ; (second *stop-simplify*) :inequality int-open-g))
1013 ;; (mshow answ) (format t "**Is the refinement ")
1014 ; (setq *stop-simplify* nil)
1015 ; (setq answ (loop for v in answ
1016 ; appending (ldata-simplifications v :open-g open-g :recursive-p t)))
1018 ;;priority 1 Linear-dichotomy
1019 ;; 2 gm-prepared equation
1020 ;; 3 any dichotomy
1021 ;;proceed with dich if dich is linear or if found no gm-prepared
1022 ((or lin-dich (null *stop-simplify*))
1023 (cond (dich
1024 (loop for v in dich
1025 with so-far = 1
1026 appending
1027 (progn
1028 (setq eqns-modv
1029 (loop for facs in all-facs
1030 when (not (member v facs :test #'equal))
1031 collecting
1032 (apply #'gen-ptimes (loop for ter in facs by #'cddr
1033 when (not
1034 (may-invertp
1035 ter so-far))
1036 collecting ter))))
1037 (cond ((member nil eqns-modv :test #'eq) (merror "nil should not be here")))
1038 (cond ((eq v nil) (merror "nil should not be here")))
1039 (setq ld (make-ldata))
1040 (setf (ldata-eqns ld) (cons v eqns-modv))
1041 (setf (ldata-inequality ld)(nplcm gg so-far))
1042 (setf so-far (nplcm so-far v))
1043 (cond ((Null *stop-simplify*)
1044 (LDATA-SIMPLIFICATIONS ld :open-g open-g
1045 :recursive-p t))
1046 (t (list ld))))
1047 into list-of-ld
1048 finally
1049 (cond ((null list-of-ld)
1050 (setq answ (list (make-ldata :eqns '(1) :inequality 1))))
1051 (t (setq answ list-of-ld)))))
1052 (t (setq answ (list ldata))))))
1054 (cond ((null answ) (setq answ (list ldata))))
1055 ;; (cond ((null answ) (setq answ (list (make-ldata :eqns '(1) :inequality 1)))))
1056 ; (setq answ (delete-redundant-ldata answ)))
1057 answ)
1058 ;;not sure about the *refine-opens* = nil mode working.
1059 (defun MAKE-DICHOTOMY (ldata &key (open-g 1)&aux int-open-g all-facs stop-simplify eqns-modv ld answ gg dich lin-dich)
1060 "If stop-simplify is true then it only works if have linear dichotomy. It returns
1061 a list of ldata "
1062 (cond (*stop-simplify* (merror "how did *stop-simplify* get here")))
1063 ;;(setq *stop-simplify* nil)
1064 (setq dich (find-good-dichotomy ldata))
1065 (setq all-facs *all-factors*)
1066 (setq dich (order-dichotomy dich))
1067 (show dich)
1068 (setq gg (nplcm open-g (ldata-inequality ldata)))
1069 (cond ((null *refine-opens*) (setq int-open-g gg) )
1070 (t (setq int-open-g open-g)))
1071 (setq lin-dich
1072 (loop for v in dich when (not (any-linearp v gg)) do (return nil)
1073 finally (return (and dich t))))
1074 (show lin-dich)
1075 ;; I think the gm-prepared business should all be done after.
1076 ;; this may not be true. The simplifications from finding a gm-prepared
1077 ;; and performing the elimination of variables might be necessary.
1078 (cond ((null lin-dich)
1079 (check-for-gm-prepared (ldata-eqns ldata) int-open-g)
1080 (show *stop-simplify*)))
1081 (setq stop-simplify *stop-simplify*)
1082 (cond ((and (null *refine-opens*) *stop-simplify* )
1083 (multiple-value-bind
1084 (lds ggs) (ldata-refinement ldata (car *stop-simplify*)
1085 (second *stop-simplify*) :inequality
1086 int-open-g)
1087 (setq *stop-simplify* nil)
1088 ;;this does not take into account the fact we should be contracting
1089 ;;the ideal back to the current open..
1090 (setq answ (loop for ld in lds
1091 for ggi in ggs
1092 appending (ldata-simplifications
1094 :open-g (sftimes int-open-g ggi)
1095 :recursive-p t))))
1097 ; (setq answ (ldata-refinement ldata (car *stop-simplify*)
1098 ; (second *stop-simplify*) :inequality int-open-g))
1099 ;; (mshow answ) (format t "**Is the refinement ")
1100 ; (setq *stop-simplify* nil)
1101 ; (setq answ (loop for v in answ
1102 ; appending (ldata-simplifications v :open-g open-g :recursive-p t)))
1104 ;;priority 1 Linear-dichotomy
1105 ;; 2 gm-prepared equation
1106 ;; 3 any dichotomy
1107 ;;proceed with dich if dich is linear or if found no gm-prepared
1108 ((or lin-dich (null *stop-simplify*))
1109 (cond (dich
1110 (loop for v in dich
1111 with so-far = 1
1112 appending
1113 (progn
1114 (setq eqns-modv
1115 (loop for facs in all-facs
1116 when (not (member v facs :test #'equal))
1117 collecting
1118 (apply 'gen-ptimes (loop for ter in facs by #'cddr
1119 when (not
1120 (may-invertp
1121 ter so-far))
1122 collecting ter))))
1123 (cond ((member nil eqns-modv :test #'eq) (merror "nil should not be here")))
1124 (cond ((eq v nil) (merror "nil should not be here")))
1125 (setq ld (make-ldata))
1126 (setf (ldata-eqns ld) (cons v eqns-modv))
1127 (setf (ldata-inequality ld)(nplcm gg so-far))
1128 (setf so-far (nplcm so-far v))
1129 (cond ((Null *stop-simplify*)
1130 (LDATA-SIMPLIFICATIONS ld :open-g open-g
1131 :recursive-p t))
1132 (t (list ld))))
1133 into list-of-ld
1134 do (mshow list-of-ld)
1135 finally
1136 (cond ((null list-of-ld)
1137 (setq answ (list (make-ldata :eqns '(1) :inequality 1))))
1138 (t (setq answ list-of-ld)))))
1139 (t (setq answ (list ldata))))))
1141 (cond ((null answ) (setq answ (list ldata))))
1142 ;; (cond ((null answ) (setq answ (list (make-ldata :eqns '(1) :inequality 1)))))
1143 ; (setq answ (delete-redundant-ldata answ)))
1144 answ)
1145 (defun order-variables-by-occurence (list-eqns &aux var-lists all-vars)
1146 (setq var-lists
1147 (loop for v in list-eqns
1148 collecting (list-variables v) ))
1149 (setq all-vars (apply #'zl-UNION var-lists))
1150 (loop for v in all-vars
1151 collecting v
1152 collecting
1153 (loop for lis in var-lists
1154 when (member v lis :test #'eq)
1155 count 1 )))
1158 ;;there is an error in simp-lead: it produced some equations which did not
1159 ;;give ideal containment.
1160 (defun simp-lead (eqns &key (open-g 1) variables &aux fac answ)
1161 (setq eqns (copy-list eqns))
1162 (show (length eqns))
1163 (setq answ (loop for v on eqns
1165 (setq fac (non-constant-factors (car v) open-g))
1166 (cond ((and (numberp (car v)) (zerop (car v))) nil)
1167 ((> (length fac ) 2)
1168 (return 'try-dichotomy))
1169 ((null fac) (return '(1)))
1170 (t (setf (car v) (car fac))
1172 finally
1173 (return (simp-lead1 eqns :open-g open-g :variables variables))))
1174 (show (or (symbolp answ) (length answ)))
1175 answ)
1177 (defun test-simp-lead (eqns)
1178 (shl eqns)
1179 (let ((answ (simp-lead1 eqns)))
1180 (cond ((atom answ) (show answ))
1181 (t (cond ((not (ideal-subsetp answ eqns))
1182 (break 't1))
1183 ((not (ideal-subsetp eqns answ))
1184 (break 't2)))
1185 (format t "both ok")
1186 (shl answ) answ))))
1188 (defun simp-lead1 (eqns &key (open-g 1) variables &aux deg-vector cof tem
1189 answ changed fac varl)
1190 (setq eqns (union-equal eqns))
1191 (cond (variables (setq varl variables ))
1192 (t (setq varl (list-variables eqns))))
1193 (loop named sue for var in varl
1194 for vari on varl
1195 do (setq variables vari)
1196 (setq tem var)
1197 (setq deg-vector (loop for u in eqns
1198 collecting (pdegree u var)))
1199 (loop for i in (sort (zl-union (delete 0 (copy-list deg-vector))) 'alphalessp)
1201 (loop for j in deg-vector
1202 for f in eqns
1203 when (eql j i)
1205 (or (eq tem var) (error "bad"))
1206 (setq cof (pcoeff f (list var j 1)))
1207 (loop for ff in eqns
1208 for jj in deg-vector
1209 ;;ff=a*y^i+b f=c*y^j+d
1210 ;;if j<=i want to replace ff by
1211 ;;ff-f*a/c*y^(i-j) (i.e. c*ff-a*f*y^i-j )
1212 ;;and this will be ok if
1213 ;; (denom (a/c) is invertible )
1214 when (and (>= jj j)(not (eql f ff)))
1215 when (may-invertp (denom (setq fac
1216 (ratreduce
1217 (pcoeff ff (list var jj 1))
1218 cof)))
1219 open-g)
1220 do (setq eqns (delete ff eqns :test #'equal))
1221 ; (format t "replacing for variable ~A .."var)
1222 ; (sh ff)
1223 ; (format t "using " ) (sh f)
1224 (setq answ (pdifference
1225 (ptimes (denom fac)
1227 (gen-ptimes f (pexpt (list var 1 1)
1228 (- jj j)) (num fac))))
1229 ; (format t " by") (sh answ)
1231 (cond ((not ($zerop answ))
1233 (setq eqns (cons answ eqns))))
1234 ; (show (length eqns))
1235 (setq changed t)
1237 ; (cond ((and changed (equal eqns orig))
1238 ; (merror "the equations did not change")))
1239 (return-from sue 'start-over)))))
1240 (cond (changed (simp-lead1 eqns :open-g open-g :variables variables))
1241 (t eqns)))
1244 (defun affine-open (list-vars &optional (inequal 1) &aux coords fns)
1245 (cond ((atom (car list-vars))
1246 (cond ((get (car list-vars) 'disrep)
1247 (setq fns (loop for v in list-vars
1248 collecting (list v 1 1 ))))))
1249 ((mbagp list-vars) (setq fns (st-rat list-vars)))
1250 (t (setq fns list-vars)))
1251 (setq coords (construct-rmap fns))
1252 (make-zopen :coord coords :inv coords :inequality inequal))
1253 ; (make-zopen :coord (make-rmap fns fns
1254 ; denom 1)
1255 ; inv (make-rmap fns fns
1256 ; denom 1)
1257 ; inequality (st-rat inequal)))
1258 (defun construct-pre-ldata-sheaves (&key s-var data opens)
1259 (check-arg data (or (null data)(null (car data)) (eq (caaar data) 'ldata)) "list of lists of ldata")
1260 (check-arg s-var (or (null s-var) (eq (car s-var) 's-var)) "s-var")
1261 (cond (opens (setq s-var (make-s-var :zopens opens))))
1262 (make-pre-ldata-sheaves :s-var s-var :data data))
1264 ;;;old forms worked
1265 ;(defremember grobner-basis-remember (basis)
1266 ; (setq *poly-simplifications* (grobner-basis basis)))
1267 ;(defun grobner-remember (basis)
1268 ; (setq *poly-simplifications* (grobner-basis-remember basis)))
1271 ;;to try to implemement not checking twice and timing out.
1272 (defremember grobner-basis-remember (basis &aux tem answ)
1273 (setq answ (catch 'took-too-long
1274 (setq tem (grobner-basis basis))))
1275 (cond (tem tem)
1276 (t (list 'took-too-long *timed-grobner-basis* *poly-simplifications*))))
1278 (defun grobner-remember (basis &aux simps)
1279 (setq simps (grobner-basis-remember basis))
1280 (cond ((eq (car simps ) 'took-too-long)
1281 (cond ((eq (second simps) *timed-grobner-basis*)
1282 (setq *poly-simplifications* (third simps))(throw 'took-too-long 'took-too-long))
1283 (t (setf (gethash (get 'grobner-basis-remember :memory-table) basis) nil)
1284 (grobner-remember basis))))
1285 (t (setq *poly-simplifications* (grobner-basis-remember basis)))))
1287 ;(defun delete-redundant-ldata (list-ld)
1288 ; (loop for v in list-ld
1289 ; do
1290 ; (loop for w in (ldata-eqns v)
1291 ; when (numberp w)
1292 ; do (setq list-ld (delete v list-ld))))
1293 ; (cond ((>= (length list-ld) 2)
1294 ; (loop for v on list-ld
1295 ; do (grobner-basis (ldata-eqns (first v)))
1296 ; (loop for u in list-ld
1297 ; when(and (not (eql u (first v)))
1298 ; (ideal-subsetp (ldata-eqns u)
1299 ; (ldata-eqns (first v))
1300 ; :reset-basis nil :verbose nil))
1301 ; do (format t "~%deleting redundant component..")
1302 ; (setq list-ld (delete (first v) list-ld))
1303 ; (return t)))))
1305 ; list-ld)
1307 (defun variety-ldata-subset (ld1 ld2 &key (open-g 1) ignore-ldata-inequalities)
1308 (cond (ignore-ldata-inequalities
1309 (multiple-value-bind (cont unit)
1310 (grobner-subset (ldata-eqns ld2) (ldata-eqns ld1) open-g)
1311 (values cont (and unit 'empty))))
1313 (let ((gg (nplcm open-g (ldata-inequality ld1))))
1314 (and (unit-idealp (cons (ldata-inequality ld2) (ldata-eqns ld1) )
1316 ;;return only one value since we don't want to test if ld1 is empty on open-g
1317 (values(grobner-subset (ldata-eqns ld2) (ldata-eqns ld1)
1318 (nplcm gg (ldata-inequality ld2)))))))))
1321 ;;;version 4.0 of delete has check of
1322 ;; V(I1,c1)^PV(I2,c2) where I1,c1 has inequality
1323 ;;if I2^PI1[c1^-1,c2^-1] and <c2,I1>[c1^-1] = <1>
1324 ;;ie if where c1 and c2 nonzero get containment, and also insist that V(I1,c1) does
1325 ;;not meet the c2=0 set.
1327 ;(defun delete-redundant-ldata (list-ld &key (gg 1)
1328 ; &aux cc cint use-inverse (complexity-for-inverse 50))
1329 ; (loop for v in list-ld
1330 ; do
1331 ; (loop for w in (ldata-eqns v)
1332 ; when (numberp w)
1333 ; do (setq list-ld (delete v list-ld))))
1334 ; (cond ((>= (length list-ld) 2)
1335 ; (loop for v on list-ld
1336 ; do
1337 ; (setq cc (nplcm gg (ldata-inequality (first v))))
1338 ; (loop for u in list-ld
1339 ; when (not (eql u (first v)))
1340 ; do
1341 ; (setq cint (nplcm cc (ldata-inequality u)))
1343 ; (multiple-value-bind (cont unit)
1344 ; (grobner-subset (ldata-eqns u)
1345 ; (ldata-eqns (first v))
1346 ; cint)
1347 ; (cond ((and (or unit
1348 ; cont) (unit-idealp (cons (ldata-inequality u)
1349 ; (ldata-eqns (first v)))
1350 ; cc))
1351 ; (setq list-ld (delete (first v) list-ld))
1352 ; (format t "~%Deleting redundant component")
1353 ; (des (first v))
1354 ; (format t "~%Because of ")
1355 ; (show (list unit cont))
1356 ; (cond ((null unit)
1357 ; (des u)))
1358 ; (return t))))))))
1359 ; list-ld)
1361 ;;;putting use-inverse = t can be dangerous I am moving it to the aux
1362 ;;;this version is not correct but involves less calculation.
1363 ;;;maybe its ok if the resultant things are prime.
1365 ;(defun delete-redundant-ldata (list-ld &key (gg 1)
1366 ; &aux use-inverse (complexity-for-inverse 50))
1367 ; (loop for v in list-ld
1368 ; do
1369 ; (loop for w in (ldata-eqns v)
1370 ; when (numberp w)
1371 ; do (setq list-ld (delete v list-ld))))
1372 ; (cond ((>= (length list-ld) 2)
1373 ; (loop for v on list-ld
1374 ; do (loop for u in list-ld
1375 ; when (not (eql u (first v)))
1376 ; do
1377 ; (cond (use-inverse (setq gg
1378 ; (nplcm gg (ldata-inequality (first v))))))
1379 ;; (cond ( (> (pcomplexity gg) complexity-for-inverse)
1381 ;; (format t "%Not using inverse for deletion :.."
1382 ;; (des gg))
1383 ;; (setq gg 1)))
1384 ; (multiple-value-bind (cont unit)
1385 ; (grobner-subset (ldata-eqns u)
1386 ; (ldata-eqns (first v))
1387 ; gg)
1388 ; (cond ((or unit
1389 ; cont)
1390 ; (setq list-ld (delete (first v) list-ld))
1391 ; (format t "~%Deleting redundant component")
1392 ; (des (first v))
1393 ; (format t "~%Because of ")
1394 ; (show (list unit cont))
1395 ; (cond ((null unit)
1396 ; (des u)))
1397 ; (return t))))))))
1398 ; list-ld)
1401 ;;timed
1402 (defun delete-redundant-ldata (list-ld &key (open-g 1)
1403 (gg 1) ignore-ldata-inequalities
1404 &aux redundant )
1405 (setq gg (sftimes open-g gg))
1406 (setq list-ld (loop for v in list-ld
1407 when (not (unit-idealp (ldata-eqns v) (nplcm (ldata-inequality v) gg)))
1408 collecting v
1409 else do (format t "~2%Deleting the empty ldata ")
1410 (fsh v)))
1411 (loop for v in list-ld
1412 for vi from 0
1414 (loop for w in list-ld
1415 for wi from 0
1416 when (not (or (member vi redundant :test #'equal)
1417 (member wi redundant :test #'equal)
1418 (eql vi wi)))
1419 when
1420 (variety-ldata-subset v w :open-g gg :ignore-ldata-inequalities
1421 ignore-ldata-inequalities)
1422 do (push vi redundant)
1423 (format t "~2%Deleting redundant component")
1424 (fsh v)
1425 (format t "~%contained in ") (fsh w)))
1426 (loop for v in list-ld
1427 for vi from 0
1428 when (not (member vi redundant :test #'equal))
1429 collecting v))
1431 (defun describe-ldata (ld)
1432 (cond ((eq (first ld) 'ldata)
1433 (format t "~%The ~A equations are .." (length (ldata-eqns ld)))
1434 (shl (ldata-eqns ld))
1435 (format t "~%The inequality for the component calculation was ..")
1436 (sh (ldata-inequality ld)))
1437 (t (mapcar 'describe-ldata ld))))
1439 ; (setq mons
1440 ; (loop for v in (cdr mat)
1441 ; collecting
1442 ; (loop for u in '($x1 $x2 $x3 $x4 $x5)
1443 ; for w in (cdr v)
1444 ; with answ = 1
1445 ; do (setq tem (st-rat u))
1446 ; (setq answ (ptimes answ (pexpt tem w)))
1447 ; finally (return answ))))
1449 ;;will return a list of ldata
1451 (defun $add_to_solution_tree (a-list &aux tem tem1)
1452 (check-arg a-list $listp "macsymya list")
1453 ;;check this case had not been done yet:
1454 (loop named pat for u in (cdr a-list)
1456 (check-arg u $listp "macsyma list")
1457 (setq tem (from-case u))
1458 (loop for v in $solution_tree
1459 when (equal (from-case a-list) tem)
1460 do (cond ((yes-or-no-p "Remove from $solution_tree case ~A" tem)
1461 (loop for v in $solution_tree
1462 when (not (and (initial-equal
1463 (setq tem1(from-case v)) tem)
1464 (>= (length tem1) tem)))
1465 collecting v into tempp
1466 finally (setq $solution_tree tempp)
1467 (return-from pat 'fixed))))))
1468 (setq $solution_tree
1469 (cons '(mlist) (append (cdr a-list) (cdr $solution_tree))))
1470 ($sort_solution_tree))
1473 (defun $simplify_relative (system poly)
1474 ($grobner_basis (list '(mlist) poly))
1475 (append (delete 0 ($totaldisrep ($polysimp system))) (list poly)))
1478 (defun $list_irreducible_factors(poly &aux answer)
1479 (cond
1480 ((atom poly ) (list '(mlist) poly))
1481 ((MBAGP poly) (CONS (CAR poly) (MAPCAR #'$list_irreducible_factors (CDR poly))))
1482 ((eq (caar poly) 'mtimes)
1483 (cond ((member 'factored (car poly) :test #'eq)
1484 (loop for u in (cdr poly)
1486 (cond ((atom u)
1487 (push u answer))
1488 ((eq (caar u) 'mplus)
1489 (push u answer))
1490 ((eq (caar u) 'mexpt)
1491 (push (second u) answer )))
1492 finally (return ($sort (cons '(mlist) (zl-UNION answer))))))
1493 (t ($list_irreducible_factors ($factor poly)))))
1494 ((eq (caar poly) 'mexpt) ($list_irreducible_factors ($factor (second poly))))
1495 ((eq (caar poly) 'mplus)
1496 (cond ((member 'irreducible (car poly) :test #'eq) (list '(mlist) poly))
1497 (t ($list_irreducible_factors ($factor poly)))))
1498 (t (merror "how did you get here"))))
1501 (defun $show_solution_tree (&optional full-format &aux tem)
1502 (loop for v in (cdr $solution_tree)
1504 (setq tem (from-case v))
1505 (case (length tem)
1506 (0 (format t "~%Cases for the solution tree")
1507 (cond (full-format (i-$grind v))))
1508 (1 (format t "~% Case: ~A"(string-grind (car tem)))
1509 (cond (full-format (i-$grind v))))
1510 (2 (format t "~% Subcase ~A"(string-grind (second tem))))
1511 (3 (format t "~% Subsubcase ~A") (string-grind (third tem)))
1512 (t (format t "~% Sub......~A" ) (string-grind (nthcdr 3 tem)))))
1513 '$done)
1515 (defun $eliminate_nonzero_factors (system &rest l)
1516 "rather crude see cancel below"
1517 (cond ($nonzero_factors
1518 (setq l (append l (cdr $nonzero_factors)))))
1519 (cond (L
1520 (setq system (div* system (power (apply 'mul* l) 10)))
1521 ($numerator system))
1522 (t system)))
1525 (defun $cancel_factors_and_denominators (variety factors-to-elim
1526 &optional (homogeneous nil)
1527 &aux system rat-variety type)
1528 "tries to return same type"
1529 (cond ((atom factors-to-elim) (setq factors-to-elim (list factors-to-elim)))
1530 (($listp factors-to-elim) (setq factors-to-elim (cdr factors-to-elim)))
1531 (t factors-to-elim))
1532 (check-arg variety $listp "macsyma list")
1533 (setq type (cond ((affine-polynomialp (second variety)) 'polynomial)
1534 ((rational-functionp (second variety)) 'rational-function)
1535 (($ratp (second variety)) '$rat)
1536 (t 'general)))
1537 (setq rat-variety
1538 (loop for v in (cdr variety)
1539 collecting (new-rat v)))
1540 (setq system rat-variety)
1541 (cond (homogeneous
1542 (loop for w in rat-variety
1543 with tem = 1
1544 do (setq tem (nplcm tem (denom w)))
1545 finally
1546 (setq tem (cons tem 1))
1547 (setq system
1548 (loop for w in system
1549 collecting
1550 (num (rattimes tem
1551 w t))))))
1552 (t (setq system
1553 (loop for w in rat-variety
1554 collecting (num w)))))
1555 (show factors-to-elim)
1556 (loop for v in factors-to-elim
1557 with tem
1559 (setq tem (pexpt (st-rat v) 7))
1560 (cond (homogeneous
1561 (loop for w in system
1562 do (setq tem (npgcd tem w))
1563 (cond ((numberp tem) (return 'done)))
1564 finally
1565 (setq system
1566 (loop for w in system
1567 collecting
1568 (pquotient w tem)))))
1569 (t (setq system
1570 (loop for w in system
1571 collecting
1572 (num (ratreduce w tem)))))))
1573 (case type
1574 (general
1575 (loop for w in system
1576 collecting
1577 (new-disrep w)
1578 into tem
1579 finally (return (cons '(mlist) tem))))
1580 ($rat (cons '(mlist) (mapcar 'header-poly system)))
1581 (t system)))
1583 (defun $blowup_chart (chart variety &optional homogeneous
1584 &aux divisor transform)
1585 "Performs the substitutions of chart and cancels the exceptional divisor
1586 and gets rid of denominators. It does this homogeneously if the value
1587 of homogeneous is not nil."
1589 (check-arg chart $listp "macsyma list")
1590 (check-arg variety $listp "macsyma list")
1591 (loop for w in (cdr chart)
1592 with tem = (third (second chart))
1594 (show tem )
1595 (setq tem ($gcd tem (third w)))
1596 finally (setq divisor tem)
1597 (format t "~%The exceptional divisor is ~A" tem))
1598 (setq transform ($sublis chart variety))
1599 ($cancel_factors_and_denominators transform (list '(mlist)
1600 divisor)
1601 homogeneous))
1603 ;;;want this to blowup where the locus is given by a complete intersection.
1604 ;(defun $blowup (variety locus-to-blowup new-var-prefix)
1605 ; (check-arg $listp locus-to-blowup "macsyma list")
1606 ; (loop for u in (cdr locus-to-blowup)
1607 ; collecting))
1609 (defun my-minor (mat rows-to-take cols-to-take)
1610 ($determinant ($sub_matrix mat rows-to-take cols-to-take)))
1612 (defun $wedge_matrix (mat n)
1613 (let ((tabl (list-tableaux n ($length (second mat)) )))
1614 (show tabl)
1615 (loop for u in tabl
1616 collecting
1617 (loop for v in tabl
1618 collecting (my-minor mat u v) into tem
1619 finally (return (cons '(mlist) tem)))
1620 into temm
1621 finally (return (cons '($matrix) temm)))))
1623 (defun $sublis_and_add (eqns expr &rest elimin &aux answer)
1624 (setq answer ($sublis eqns expr))
1625 (show elimin)
1626 (setq answer (append answer (mapcar 'bring-to-left-side (cdr eqns ))))
1627 (setq answer ($factor (apply '$eliminate_nonzero_factors
1628 answer elimin))))
1630 ;(defun pcomplexity (poly)
1631 ; (cond ((atom poly) 0)
1632 ; (t (loop for (deg cof) on (cdr poly) by #'cddr
1633 ; summing (+ deg (pcomplexity cof))))))
1635 ;(defun $remove_linears (eqns &aux (best t)used-eqns pcompw rat-eqns tem)
1636 ; (setq rat-eqns
1637 ; (loop for v in (cdr eqns) until (eq v '$case)
1638 ; collecting (st-rat v) ))
1639 ; (loop while best
1640 ; do
1641 ; (loop for w in rat-eqns
1642 ; initially (setq best nil)
1643 ; with prev-compl = 4000000
1644 ; when (setq tem (coll-linear w))
1645 ; do
1646 ; (show tem)
1647 ; (cond ((< (setq pcompw (pcomplexity w)) prev-compl)
1648 ; (setq prev-compl pcompw ) (setq best (cons (car tem) w))))
1649 ; finally (cond (best
1650 ; (format t "~%Substituting for ~A by using"
1651 ; (get (car best ) 'disrep))
1652 ; (sh (cdr best))
1653 ; (loop for v in rat-eqns
1654 ; collecting
1655 ; (psublis (list(cons (car best)
1656 ; (pcoeff (cdr best) 1
1657 ; (list (car best)))))
1658 ; (pcoeff (cdr best) (car best))
1659 ; (cdr best))
1660 ; into new-eqns
1661 ; finally (setq rat-eqns new-eqns)))))
1662 ; (push (cdr best) used-eqns) )
1663 ; (cond (used-eqns
1664 ; (cons '(mlist) (append (loop for v in rat-eqns
1665 ; collecting (header-poly v))
1666 ; (member '$case eqns :test #'eq)
1667 ; (loop for v in used-eqns
1668 ; collecting (header-poly v)))))))
1671 (defun $remove_Linears (eqns &aux subs lins)
1672 (loop for v in (cdr eqns)
1673 when (setq lins (cdr ($coll_linear eqns)))
1674 appending lins into lin-vars
1676 collecting v into lin-eqns
1677 finally (cond (lins
1678 (setq subs
1679 ($fast_linsolve (cons '(mlist) lin-eqns)
1680 (cons '(mlist)
1681 (zl-UNION lin-vars))))
1682 (format t "~%Eliminating linear variables ~A" lin-vars)
1684 (cond (subs (setq eqns ($sublis subs eqns))
1685 (setq eqns (append (delete 0 ($ratsimp eqns))
1686 (loop for v in subs collecting
1687 ($numerator
1688 (sub* (second v) (third v)))))))
1689 (t eqns))))
1693 ;(defmacro te (x v)
1694 ; (cond ((functionp x) `(,x ,v))
1695 ; (t 5)))
1697 (defmacro find-minimal (in-list ordering &optional such-that ind )
1698 (cond (such-that
1699 (cond ((functionp such-that)(setq ind '-ind-)
1700 (setq such-that `(,such-that -ind-)))
1702 (check-arg ind (not (null ind)) "non nil. Must specify index")))
1703 ` (loop for ,ind in ,in-list
1704 with prev-min
1705 when ,such-that
1706 do (cond (prev-min
1707 (cond ((funcall ,ordering ,ind prev-min)
1708 (setq prev-min ,ind))))
1709 (t (setq prev-min ,ind)))
1710 finally (return prev-min)))
1711 (t `(loop for v in ,in-list
1712 with prev-min
1713 do (cond (prev-min
1714 (cond ((funcall , ordering v prev-min)
1715 (setq prev-min v))))
1716 (t (setq prev-min v)))
1717 finally (return prev-min)))))
1720 ;(defun find-minimal (in-list &optional such-that ordering &aux prev-min)
1721 ; (cond (such-that
1722 ; (loop for v in in-list
1723 ; when (funcall such-that v)
1724 ; do (cond (prev-min
1725 ; (cond ((funcall ordering v prev-min)
1726 ; (setq prev-min v))))
1727 ; (t (setq prev-min v)))))
1728 ; (t (loop for v in in-list
1729 ; do (cond (prev-min
1730 ; (cond ((funcall ordering v prev-min)
1731 ; (setq prev-min v))))
1732 ; (t (setq prev-min v))))))
1734 ; prev-min)
1736 ;(defun find-good-variable-order (ideal)
1737 ; (setq vars (mapcar '$list_variables (cdr ideal)))
1738 ; (setq vars (mapcar 'cdr vars))
1739 ; (setq all-vars (union (apply 'append vars)))
1740 ; (setq f #'(lambda (v) (loop for w in vars
1741 ; when (member v :test #'eq) vars
1742 ; count1
1743 ; (sort all-vars #'(lambda (u v)
1745 ; (setq vars (sort vars #'(lambda( u v)(< (length u) (length v)))))
1746 ; (setq all-vars (union (apply 'append vars))))
1748 (defun find-good-variable-order (ideal &aux f all-vars vars)
1749 (declare (special f vars))
1750 (setq vars (mapcar '$list_variables (cdr ideal)))
1751 (setq vars (mapcar 'cdr vars))
1752 (setq all-vars (zl-union (apply 'append vars)))
1753 (setq f #'(lambda (v) (loop for w in vars when (member v vars) count 1 into tem
1754 finally (return tem))))
1755 (sort all-vars #'(lambda( u v)(< (funcall f u) (funcall f v)))))
1757 (defun may-invertp (poly invertible-poly)
1758 (if ($zerop poly)
1760 (numberp (denom (ratreduce invertible-poly (square-free poly))))))
1762 (defvar $char_set nil)
1763 (defvar $ideal nil)
1765 (defun poly-linearp (poly var may-invert &aux cof)
1766 (cond ((numberp poly ) nil)
1767 ((eql (pdegree poly var) 1)
1768 (setq cof (pcoeff poly (list var 1 1)))
1769 (cond ((atom cof) cof)
1770 ((may-invertp cof may-invert) cof)
1771 (t nil)))))
1773 ;(defun $te (eqns may-invert &aux ans)
1774 ; (setq ans (remove-linears (mapcar 'st-rat (cdr eqns) ) (st-rat may-invert)))
1775 ; (cons '(mlist) (mapcar 'new-disrep ans)))
1777 ;;;this seems the most efficient. If may-invert is x^2-1 then u*(x+1)+h(w,v)
1778 ;;;will cause the replacement u--> -h(w,v)/(x+1) in the remaining eqns.
1779 ;;;then it calls itself on the remaining equations.
1780 (defun remove-linears (eqns &optional (may-invert 1) &aux sub cof)
1781 (check-arg eqns (affine-polynomialp (car eqns)) "first term not polynomial")
1782 (loop for v in eqns do
1783 (block sue
1784 (loop for vari in (list-variables v)
1785 when (setq cof (poly-linearp v vari may-invert))
1786 do (setq sub (cons vari (pdifference (ptimes (list vari 1 1) cof) v))
1787 denom cof)
1788 (loop for uu in eqns
1789 when (not (equal uu v))
1790 collecting (psublis (list sub) denom uu) into new-eqn
1791 finally (return-from sue (cons (num (ratreduce v cof))
1792 (remove-linears new-eqn may-invert))))))
1793 finally (return eqns)))
1795 (defvar *to-invert* nil)
1797 (defun $ritt_set (ideal-generators &optional (may-invert 1) &aux rat-ideal tem id)
1798 "makes $char_set from an ideal-generators pushing the leading coefs into *to-invert*"
1799 (setq $ideal (setq id (make-ideal)))
1801 (setf (ideal-variable-correspondence id)
1802 (order-variables (find-good-variable-order ideal-generators)))
1803 (ideal-variable-correspondence id)
1804 (setq rat-ideal
1805 (loop for u in (cdr ideal-generators)
1806 with tem
1807 when (not (pzerop (setq tem (st-rat u))))
1808 collecting tem ))
1809 (setq may-invert (st-rat may-invert))
1810 (setq rat-ideal (remove-linears rat-ideal may-invert))
1811 (setq vars (reverse (sort (list-variables rat-ideal)'pointergp)))
1812 (show vars)
1813 (show (car rat-ideal))
1814 (setq *to-invert* (list may-invert))
1815 (setq rat-ideal
1816 (loop for v in rat-ideal
1817 collecting (remove-common-factors v may-invert)))
1818 (setq $char_set
1819 (loop for v in vars
1820 with temm
1821 when (setq temm (find-minimal
1822 rat-ideal
1823 #'(lambda (u v)(< (p-le u) (p-le v)))
1824 (and (listp pol) (eq (p-var pol) v)) pol))
1826 do (show temm); (sh v)
1828 collecting temm))
1829 (loop for v in rat-ideal
1831 (setq tem (ritt-reduce v $char_set))
1832 (mshow tem)
1833 (show (length $char_set))
1834 (cond ((pzerop tem) nil)
1835 (t (setq $char_set (add-to-chain tem $char_set)))))
1836 (setq $char_set (eliminate-factors $char_set *to-invert*))
1837 (setf (ideal-char-set id) $char_set)
1838 (setf (ideal-localization id) *to-invert*)
1839 ($disrep_ideal id))
1841 (defun eliminate-factors (good factors-to-elim )
1842 (loop for v in factors-to-elim
1843 with mon
1844 do (setq mon (pexpt v 5))
1845 (setq good
1846 (loop for w in good
1847 collecting (num (ratreduce w mon)))))
1848 good)
1850 (defun header-fake (expr)
1851 (cond ((or (numberp expr)(get (car expr) 'disrep))
1852 (cons '(mrat nil nil) (cons expr 1)))
1853 ((and (or (numberp (car expr))( get (caar expr) 'disrep))
1854 (or (numberp (cdr expr)) (get (cadr expr) 'disrep)))
1855 (cons '(mrat nil nil) expr))
1856 (t (merror "not a rat'l fun or poly (at least no disrep prop)"))))
1857 (defun fake-disrep (pol)
1858 ($totaldisrep (header-fake pol)))
1860 (defun $disrep_ideal (ideal)
1861 (list '(mlist)
1862 (cons '(mlist)(mapcar 'fake-disrep (ideal-char-set ideal)))
1863 (cons '(mlist)(mapcar 'fake-disrep (ideal-localization ideal)))))
1865 ;(defun ideal-disrep item ideal)
1866 ; (loop with added = t
1867 ; while added
1868 ; do (setq added nil)
1869 ; (loop for v in rat-ideal
1870 ; do (show (length $char_set))
1871 ; (setq tem (ritt-reduce v $char_set))
1872 ; when (not (pzerop tem))
1873 ; do
1874 ; (mshow tem)
1875 ; (setq $char_set (add-to-chain tem $char_set))
1876 ; (show (length $char_set))
1877 ; else do (setq rat-ideal (delete v rat-ideal)) (format t "its zero")
1878 ; finally (setq rat-ideal nil)))
1879 ; $char_set)
1881 (defun square-free (p)
1882 (let ((facts (psqfr p)))
1883 (if (cddr facts)
1884 (loop for v in (cddr facts) by #'cddr
1885 with answer = (car facts) do
1886 (setq answer (ptimes v answer))
1887 finally (return answer))
1888 (car facts))))
1890 (defun $square_free_numerators (expr)
1891 (cond ((atom expr) expr)
1892 ((affine-polynomialp expr)(square-free expr))
1893 ((rational-functionp expr) (square-free (num expr)))
1894 (($ratp expr) (cons (car expr) (cons (square-free (num (cdr expr)))
1895 1)))
1896 ((mbagp expr) (cons (car expr)
1897 (mapcar '$square_free_numerators (cdr expr))))
1898 (t (let ((tem (new-rat expr)))
1900 (header-poly (cons (square-free (num tem)) 1))))))
1904 (defun add-to-chain (poly chain)
1905 (setq poly (square-free poly))
1906 (cond ((eql poly 0) chain)
1907 (t (loop for v in chain
1908 when (eq (p-var poly)(p-var v))
1909 do (cond ((< (p-le poly) (p-le v))(show 'deleting)
1910 (setq chain (delete v chain :test #'equal)))
1911 ((>= (p-le poly)(p-le v))
1912 (mshow poly v) (merror "not reduced")))
1913 finally(format t "~%adding .." )
1914 (sh poly)
1915 (setq chain
1916 (sort (cons poly chain)
1917 #'(lambda (u v)
1918 (pointergp (p-var u) (p-var v)))))
1919 (return chain)))))
1922 (defun order-variables (list-of-vars &aux vc)
1923 (cond (($listp list-of-vars) (setq list-of-vars (cdr list-of-vars))))
1924 (setq vc (make-variable-correspondence))
1925 (loop for v in list-of-vars
1926 for i from 1
1927 with w
1928 collecting (setq w (gensym)) into gen
1930 (setf (get w 'disrep) v)
1931 (setf (symbol-value w) i)
1932 finally (setf (vc-genvar vc) gen)
1933 (setf (vc-varlist vc) (copy-list list-of-vars)))
1936 (defmacro with-vc (var-corr &rest body)
1937 `(let ((*genvar* (vc-genvar ,var-corr))
1938 (*varlist* (vc-varlist ,var-corr)))
1939 (unwind-protect
1940 (progn ,@ body)
1941 (setf (vc-genvar ,var-corr) *genvar*)
1942 (setf (vc-varlist ,var-corr ) *varlist*))))
1944 ;(defun sh (f)
1945 ; (cond ($display2d (displa (header-poly f)))
1946 ; (t (string-grind (header-poly f) :stream t))))
1947 ;(defun shl (l) (mapcar 'sh l))
1948 ;(defun shl (l)
1949 ; (cond ($display2d (mapcar 'sh l))
1950 ; (t (loop for v in l
1951 ; for i from 0
1952 ; initially (format t "~%[")
1953 ; do (sh (header-poly v))
1954 ; when (< i (1- (length l))) do(format t ",~%")
1955 ; finally (format t "]")))))
1958 ;(defun add-to-chain (poly chain)
1959 ; (cond ((eql poly 0) chain)
1960 ; (t
1961 ; (loop for v on chain
1962 ; collecting (car v) into tem
1963 ; when (eq (p-var poly)(p-var (car v)))
1964 ; do (cond ((< (p-le poly) (p-le (car v)))
1965 ; (return (nconc tem (cdr v)))))
1967 ; finally (return (cons poly chain))))))
1972 (defun must-ritt-reducep (poly ch-set)
1973 (cond ((atom poly) nil)
1975 (loop for v in ch-set
1976 when (eq (p-var poly) (p-var v))
1977 do (cond ((>= (p-le poly) (p-le v))
1978 (return t)))))))
1981 (defun ritt-reduce (poly ch-set &aux tem)
1982 ;;assumes the ch-set is sorted by main variables
1983 (loop while (must-ritt-reducep poly ch-set)
1985 (loop for v in ch-set
1986 when (numberp poly)
1987 do (return poly)
1988 when (eq (p-var poly) (p-var v))
1989 do (cond ((>= (p-le poly) (p-le v))
1990 (setq poly (second (setq tem (vdivide poly v))))
1991 ; (push-new (third tem) *to-invert*) 'equal
1992 (cond ((not (numberp (third tem)))
1993 (setq *to-invert*
1994 (list (nplcm (third tem)
1995 (car *to-invert*))))))
1996 (show *to-invert*)))
1997 finally (return poly)))
1998 poly)
2000 ;;rational-map will be type rmap
2001 ;; funs (f1 f2 ... fn) denom gg
2002 ;;zopen set : (((p1, pn)gp) (q1,..qn) gq),gg
2003 ;;where zi=qi(x1,x2, xn)/gp and xi=pi(z1,..,zn)/gq
2005 (defmfun my-testdivide (x y)
2006 (ignore-rat-err (pquotient x y)))
2008 (defun new-testdivide (f g &aux quot)
2009 (setq quot (ratreduce f g))
2010 (setq quot (cond ((equal (denom quot) 1) (num quot))
2011 (t nil)))
2012 (iassert (equal quot (my-testdivide f g)))
2013 quot)
2015 (defun eliminate-highest-power-dividing-homogeneously (list-fns divisor &optional
2016 (highest-deg 10000)
2017 &aux quot )
2018 (cond ((and (numberp divisor)(Equal (abs divisor) 1))
2019 list-fns)
2021 (loop named sue
2022 with prev-list-quotients = list-fns
2023 for i from 1
2025 (loop for v in prev-list-quotients
2027 (setq quot (my-testdivide v divisor))
2028 when (or (null quot) (> i highest-deg))
2030 (return-from sue prev-list-quotients)
2031 else
2032 collecting quot into new-quotients
2033 finally (setq prev-list-quotients new-quotients))))))
2036 ;(defun eliminate-common-factors (list-fns &aux facts simple-fn)
2037 ; (loop for v in list-fns collecting (pcomplexity v)
2038 ; into tem
2039 ; when (not (pzerop v))
2040 ; minimize (car tem) into the-min
2041 ; finally
2042 ; (setq simple-fn (nth (setq the-min (find-position-in-list the-min tem)) list-fns)))
2043 ; (setq facts (npfactor simple-fn))
2044 ; (loop for (pol deg) on facts by #'cddr
2045 ; with quot = list-fns
2046 ; do (setq quot (eliminate-highest-power-dividing-homogeneously quot pol deg))
2047 ; finally (return quot)))
2049 (defun sort-remember (list predicate &key key)
2050 (setq list (loop for i from 0 for v in list
2051 collecting (cons i v)))
2052 (setq list (sort list predicate :key (or (and key #'(lambda (x) (key (cdr x))))
2053 #'cdr)))
2054 (loop for v on list
2055 collecting (caar v) into ordering
2056 do (setf (car v) (cdar v))
2057 finally (return (values list ordering))))
2059 (defun un-sort (list ordering &aux (newlist (make-list (length ordering))))
2060 (loop for v in ordering
2061 for w in list
2062 do (setf (nth v newlist) w))
2063 newlist)
2065 (defun sort-by-ordering (list ordering)
2066 (loop for v in ordering
2067 collecting (nth v list)))
2069 (defun copy-sort (list predicate &key key slow-key remember)
2070 "copies the list and sorts by predicate. If slow-key, it uses only one application of the key per item.
2071 If slow-key or remember it returns a second value : the ordering so that (un-sort result ordering)
2072 would restore the list"
2073 (cond (slow-key
2074 (multiple-value-bind (result order)
2075 (sort-remember (mapcar slow-key list) predicate)
2076 (values (sort-by-ordering list order) order)))
2077 (remember (sort-remember list predicate :key key))
2078 (t (sort (copy-list list) predicate :key key))))
2080 ;;this works for rational functions as well should be fixed to use complexity to.
2081 (defun eliminate-common-factors (list-functions &aux num-gcd denom-gcd firs)
2082 "try to speed up by putting simple ones first"
2083 (multiple-value-bind (list-fns order)
2084 (copy-sort list-functions '< :slow-key
2085 #'(lambda (x) (+ (pcomplexity (function-numerator x))
2086 (pcomplexity (function-denominator x)))))
2087 (setq firs (first list-fns))
2088 (cond ((affine-polynomialp firs)
2089 (setq num-gcd firs)
2090 (setq denom-gcd 1))
2091 ((rational-functionp firs)
2092 (setq num-gcd (num firs))
2093 (setq denom-gcd (denom firs))))
2094 (loop for v in (cdr list-fns)
2095 when (affine-polynomialp v)
2096 do (setq num-gcd (pgcd num-gcd v))
2097 (setq denom-gcd 1)
2098 else
2099 do (check-arg v 'rational-functionp "rational function")
2100 (setq num-gcd (pgcd num-gcd (num v))))
2101 (un-sort (loop for v in list-fns
2102 collecting
2103 (st-rat (cons (pquotient (function-numerator v) num-gcd)
2104 (pquotient (function-denominator v) denom-gcd))))
2105 order)))
2110 (defun reduce-rational-map-old (rmap &aux answ (gc (rmap-denom rmap)) (genvar *genvar*))
2111 (let ((genvar (nreverse(sort (list-variables (cons (rmap-denom rmap)(rmap-fns rmap)))
2112 'pointergp))))
2113 (loop for v in (rmap-fns rmap)
2115 (setq gc (pgcd gc v)))
2116 (setq answ (make-rmap))
2117 (setf (rmap-fns answ)
2118 (loop for v in (rmap-fns rmap)
2119 collecting (pquotient v gc)))
2120 (setf (rmap-denom answ) (pquotient (rmap-denom rmap)gc))
2121 answ))
2125 (defun reduce-rational-map (rmap &aux red-fns fns (genvar *genvar*) answ)
2126 (let ((genvar (nreverse(sort (list-variables (cons (rmap-denom rmap)(rmap-fns rmap)))
2127 'pointergp))))
2128 (setq fns (cons (rmap-denom rmap) (rmap-fns rmap)))
2129 (setq red-fns (eliminate-common-factors fns))
2130 (setq answ (zl-copy-structure rmap rmap- fns (cdr red-fns)
2131 denom (car red-fns)))
2132 answ))
2134 (defun convert-rmap-to-new (name)
2135 (zl-copy-structure
2136 name rmap-
2138 (loop for v in (rmap-fns name)
2139 collecting (ratreduce v (rmap-denom name)))))
2143 (defun new-rmap-p (rmap)
2144 (and (eq (car rmap) 'rmap)
2145 (loop for v in (rmap-fns rmap)
2146 when (not (rational-functionp v))
2147 do (return nil) finally (return t))))
2149 (defmacro new-rmap (f)
2150 `(cond ((not (new-rmap-p ,f))(format t "~%Converting an rmap")
2151 (setq ,f (convert-rmap-to-new ,f)))))
2154 (defun my-pairlis (l g)
2155 (loop for v in l
2156 for w in g
2157 collecting (cons v w)))
2159 (defremember compose-rmap (f g)
2160 (let (fns-f subs)
2161 (new-rmap f) (new-rmap g)
2162 (setq subs (loop for gg in (rmap-fns g)
2163 for v in *xxx* collecting (cons v gg)))
2164 (setq fns-f (loop for ff in (rmap-fns f) collecting (simple-rat-sublis subs ff)))
2165 (construct-rmap fns-f)))
2167 ;;should take [(x1+x2)
2169 (defun construct-rmap (list-funs &aux (answ 1) rat-fns)
2170 (cond (($listp list-funs)(setq list-funs (cdr list-funs))))
2171 (setq rat-fns (loop for v in list-funs
2172 when (affine-polynomialp v) collecting (cons v 1)
2173 else when (rational-functionp v) collecting v
2174 else when (get v 'disrep) collecting (cons (list v 1 1) 1)
2175 else collecting (new-rat v)))
2176 (loop for w in rat-fns
2177 do (setq answ (nplcm answ (denom w))))
2178 (make-rmap :fns rat-fns :denom answ))
2182 (defun describe-rmap (rmap)
2183 (cond ((eq (car rmap) 'rmap)
2184 (loop for v in (rmap-fns rmap)
2185 collecting (header-poly v) into tem
2186 finally (displa (cons '(mlist) tem)) (format t "Common denom is ..")
2187 (displa ($factor (new-disrep (rmap-denom rmap))))))))
2189 (defvar *give-coordinates* t)
2191 (defun describe-zopen (op)
2192 (cond ((zopen-history op)
2193 (format t "~%The opens history is ~A " (zopen-history op))))
2194 (cond (*give-coordinates*
2195 (format t "~%Zopen with Coord and inverse")
2196 (describe-rmap (zopen-coord op))
2197 (describe-rmap (zopen-inv op))))
2198 (format t "~%inequality is ..")
2199 (displa ($factor (new-disrep (zopen-inequality op)))))
2201 (defun xxx (i)
2202 (list (nth (1- i) *xxx* ) 1 1))
2204 ;; I is the index of the special slot so this will return
2205 ;;the ith cover of the blowup of the FIRSTK coordinates of
2206 ;; DIM-affine space
2207 (defun ichart (i firstk dim &aux fns qss pss)
2208 (setq fns
2209 (loop for j from 1 to dim
2210 when (and (<= j firstk) (not (eql j i)))
2211 collecting (xxx j)
2212 else
2213 collecting (ptimes (xxx i) (xxx j))))
2214 (setq fns (loop for v in fns
2215 with den = (xxx i)
2216 collecting (ratreduce v den)))
2217 (setq pss (construct-rmap fns ))
2218 (setq fns
2219 (loop for j from 1 to dim
2220 when (and (<= j firstk) (not (eql i j)))
2221 collecting (ptimes (xxx i) (xxx j))
2222 else collecting (xxx j) ))
2223 (setq qss (construct-rmap fns ))
2224 (make-zopen :coord pss :inv qss :inequality 1))
2226 (defun des (obj &optional (stream *standard-output*))
2227 (let ((*standard-output* stream))
2228 (cond
2229 ((atom obj)(format t "~s" obj))
2230 ((or (affine-polynomialp obj)(rational-functionp obj))(sh obj))
2231 (t (case (car obj)
2232 (zopen (show (zopen-history obj)))
2233 ; (describe-zopen obj))
2234 (rmap (format t "~%Rmap with coordinate functions") (describe-rmap obj))
2235 (ldata (format t "~%Ldata with the comoponent equations")(describe-ldata obj))
2236 (pre-ldata-sheaves (format t "~%Pre Ldata sheaves")(describe-pls obj))
2237 (components (describe-components obj))
2238 (s-var (format t "~%S Variety with basic open sets :")(des (cdr obj) stream))
2240 (t (cond ((macsyma-typep obj) (string-grind obj :stream stream))
2242 (loop for v in obj
2243 for i from 0
2245 (cond ((and (listp v)(member (car v) '(ldata zopen) :test #'eq))
2246 (format t "~%Number ~D :" i)))
2247 (des v stream))))))))
2248 obj))
2250 (defun des (obj &optional (stream *standard-output*))
2251 (let ((*standard-output* stream))
2252 (cond
2253 ((atom obj)(format t "~s" obj))
2254 ((or (affine-polynomialp obj)(rational-functionp obj))(sh obj))
2255 (t (case (car obj)
2256 (zopen
2257 (describe-zopen obj))
2258 (rmap (format t "~%Rmap with coordinate functions") (describe-rmap obj))
2259 (ldata (format t "~%Ldata with the comoponent equations")(describe-ldata obj))
2260 (pre-ldata-sheaves (format t "~%Pre Ldata sheaves")(describe-pls obj))
2261 (components (describe-components obj))
2262 (s-var (format t "~%S Variety with basic open sets :")(des (cdr obj) stream))
2264 (t (cond ((macsyma-typep obj) (string-grind obj :stream stream))
2266 (loop for v in obj
2267 for i from 0
2269 (cond ((and (listp v) (member (car v) '(ldata zopen) :test #'eq))
2270 (format t "Number ~D :" i)))
2271 (des v stream))))))))
2272 obj))
2276 (eval-when
2277 (:compile-toplevel :load-toplevel :execute)
2278 (defmacro pls-opens (pls) `(sv-zopens (pls-s-var ,pls))))
2280 (defvar *reorder-eqns* t)
2282 (defun describe-pls (pls &aux dim eqns ch-set)
2283 (format t "~%It has ~D opens having ~A components."
2284 (length (pls-opens pls)) (loop for u in (pls-data pls)
2285 collecting (length u)))
2286 (loop for v in (sv-zopens (pls-s-var pls))
2287 for w in (pls-data pls)
2288 for i from 0
2289 do (des v)
2290 (setq dim (length (rmap-fns (zopen-coord v))))
2291 (loop for u in w
2292 when *reorder-eqns*
2293 when
2294 (progn (multiple-value (eqns ch-set) (order-equations (ldata-eqns u)))
2295 ch-set)
2296 collecting (- dim (length (ldata-eqns u))) into tem
2297 else collecting "?" into tem
2298 when *reorder-eqns*
2299 collecting (make-ldata :eqns eqns :inequality
2300 (ldata-inequality u)
2301 :usedup (ldata-usedup u))
2302 into newl
2303 finally
2304 (format t "~%with the ~D ldata" (length w))
2305 (cond (*reorder-eqns* (format t " of dimension ~A " tem)
2306 (setq w newl)))
2307 (format t "on open number ~D: "i))
2308 (des w)))
2310 (defun make-component-history (pls &key (add-to-open-history t) &aux dim eqns ch-set)
2311 (loop named sue for op in (pls-opens pls)
2312 for lis-dat in (pls-data pls)
2314 (setq dim (length (rmap-fns (zopen-coord op))))
2315 collecting
2316 (loop for u in lis-dat
2317 when
2318 (progn (multiple-value (eqns ch-set) (order-equations (ldata-eqns u)))
2319 ch-set)
2320 collecting (- dim (length (ldata-eqns u))) into tem
2321 else collecting "?" into tem
2322 finally (cond (add-to-open-history
2323 (push (cons 'dimensions tem) (zopen-history op))))
2324 (return (cons 'dimensions tem)))))
2326 (defun zopen-dim (zop)
2327 (length (rmap-fns (zopen-coord zop))))
2329 ;;tried to simplify and write better.
2330 ;(defun new-ldata-simplifications (ldata &key (open-g 1)
2331 ; &aux fns used-up answ var *clear-above*)
2332 ; (prog
2333 ; sue
2334 ; nil
2335 ; (setq fns (copy-list (ldata-eqns ldata)))
2336 ; eliminate-linears
2337 ; (loop for f in fns
2339 ; when (and (not (member f used-up)) (setq var (any-linearp f open-g)))
2340 ; do
2341 ; (setq fns (replace-functions fns
2342 ; f var))
2343 ; (setq used-up (replace-functions used-up
2344 ; f var))
2345 ; (push f used-up)
2346 ; (go eliminate-linears))
2347 ; (setq fns (union-equal fns))
2348 ; eliminate-invertible-leading
2349 ; (loop for f in fns
2350 ; when (setq var (any-invertible-leading-coefficient f open-g))
2351 ; when (not (loop for v in *clear-above*
2352 ; with deg = (pdegree f var)
2353 ; when (and (eq (car v) var) (>= deg (second v)))
2354 ; do (return nil) finally (return t)))
2355 ; do
2356 ; (setq fns (replace-functions fns
2357 ; f var))
2358 ; (setq fns (cons f fns))
2359 ; (go eliminate-linears))
2361 ; (setq ldata (copy-structure ldata ldata- eqns (delete 0 (union-equal used-up fns))))
2362 ; make-dichotomy
2363 ; (setq answ (new-make-dichotomy ldata :open-g open-g))
2364 ; ;;if no dichotomy continue
2365 ; (cond ((eql (length answ) 1) (setq ldata (car answ)))
2366 ; (t (return (delete-redundant-ldata answ))))
2367 ; divide-dichotomy
2368 ; (setq answ (new-divide-dichotomy ldata :open-g open-g))
2369 ; (cond ((eql (length answ) 1) (setq ldata (car answ)))
2370 ; (t (return (delete-redundant-ldata answ))))
2371 ; (return answ)))
2374 ;;;not sure about the *refine-opens* = nil mode working.
2375 ;(defun new-MAKE-DICHOTOMY (ldata &key (open-g 1)&aux all-facs stop-simplify eqns-modv ld answ gg dich lin-dich)
2376 ; "If stop-simplify is true then it only works if have linear dichotomy. It returns
2377 ; a list of ldata "
2378 ; (setq dich (find-good-dichotomy ldata))
2379 ; (setq all-facs *all-factors*)
2380 ; (setq dich (order-dichotomy dich))
2381 ; (show dich)
2382 ; (setq gg (nplcm open-g (ldata-inequality ldata)))
2383 ; (cond ((null *refine-opens*) (setq open-g gg) ))
2384 ; (setq lin-dich
2385 ; (loop for v in dich when (not (any-linearp v gg)) do (return nil)
2386 ; finally (return (and dich t))))
2387 ; (show lin-dich)
2388 ;;; I think the gm-prepared business should all be done after.
2389 ;;; this may not be true. The simplifications from finding a gm-prepared
2390 ;;; and performing the elimination of variables might be necessary.
2391 ; (cond ((null lin-dich)
2392 ; (check-for-gm-prepared (ldata-eqns ldata) open-g)
2393 ; (show *stop-simplify*)))
2394 ; (setq stop-simplify *stop-simplify*)
2395 ; (cond ((and ;;(null *refine-opens*)
2396 ; *stop-simplify* )
2397 ; (setq answ (ldata-refinement ldata (car *stop-simplify*)
2398 ; (second *stop-simplify*) :inequality open-g))
2399 ;; (mshow answ) (format t "**Is the refinement ")
2400 ; (setq *stop-simplify* nil)
2401 ; (setq answ (loop for v in answ
2402 ; appending (new-ldata-simplifications v :open-g
2403 ; open-g))))
2404 ; ;;priority 1 Linear-dichotomy
2405 ; ;; 2 gm-prepared equation
2406 ; ;; 3 any dichotomy
2407 ; ;;proceed with dich if dich is linear or if found no gm-prepared
2408 ; ((or lin-dich (null *stop-simplify*))
2409 ; (cond (dich
2410 ; (loop for v in dich
2411 ; with so-far = 1
2412 ; appending
2413 ; (progn
2414 ; (setq eqns-modv
2415 ; (loop for facs in all-facs
2416 ; when (not (member v facs))
2417 ; collecting
2418 ; (apply 'gen-ptimes (loop for ter in facs by #'cddr
2419 ; when (not
2420 ; (may-invertp
2421 ; ter so-far))
2422 ; collecting ter))))
2423 ; (cond ((member nil eqns-modv :test #'eq) (merror "nil should not be here")))
2424 ; (cond ((eq v nil) (merror "nil should not be here")))
2425 ; (setq ld (make-ldata))
2426 ; (setf (ldata-eqns ld) (cons v eqns-modv))
2427 ; (setf (ldata-inequality ld)(nplcm gg so-far))
2428 ; (setf so-far (nplcm so-far v))
2429 ; (cond ((Null *stop-simplify*)
2430 ; (new-LDATA-SIMPLIFICATIONS ld :open-g open-g))
2431 ; (t (list ld))))
2432 ; into list-of-ld
2433 ; finally
2434 ; (cond ((null list-of-ld)
2435 ; (setq answ (list (make-ldata eqns '(1) inequality 1))))
2436 ; (t (setq answ list-of-ld)))))
2437 ; (t (setq answ (list ldata))))))
2439 ; (cond ((null answ) (setq answ (list ldata))))
2440 ;;; (cond ((null answ) (setq answ (list (make-ldata :eqns '(1) :inequality 1)))))
2441 ;; (setq answ (delete-redundant-ldata answ)))
2442 ; answ)
2444 ;(defun new-divide-dichotomy (ldata &key (open-g 1) &aux (eqns (ldata-eqns ldata)) f new-eqns do-dichotomy
2445 ; try occurs vars highest-vars orig-rep repeat eqns-rep)
2447 ; "endeavors to turn ldata into an triangular list of eqns
2448 ; so that each equation has possibly one more variable occurring than the
2449 ; previous. It takes a good order for the variables and then takes the first variable
2450 ; to be highest in two succeeding eqns, and does a division to try to correct this. If
2451 ; the leading variable is not invertible it does a dichotomy. This dichotomy must be
2452 ; at the level of open sets, since otherwise we will not get component containment."
2453 ; ;;ordering should take into account open-g
2454 ; (setq vars (good-order-variables eqns))
2455 ; (setq occurs (second vars))
2456 ; (setq vars (first vars))
2457 ; (setq highest-vars
2458 ; (loop for v in occurs
2459 ; collecting (loop for u in vars
2460 ; when (member u v :test #'eq)
2461 ; do (return u))))
2462 ; (show vars highest-vars)
2463 ; (setq repeat
2464 ; (loop named rep for v in vars
2465 ; do
2466 ; (loop for w on highest-vars
2467 ; when (and (eq (car w) v)
2468 ; (member v (cdr w) :test #'eq))
2469 ; do (return-from rep v))))
2470 ; (cond
2471 ; (repeat
2472 ; (setq eqns-rep (loop for v in eqns
2473 ; for u in highest-vars
2474 ; when (eq u repeat)
2475 ; collecting v))
2476 ; (setq orig-rep (copy-list eqns-rep))
2477 ; (show (length eqns-rep))
2478 ; (setq eqns-rep (sort-key eqns-rep '< 'pdegree repeat))
2479 ; (loop for v on eqns-rep while (>= (length v ) 2)
2480 ; do
2481 ; (cond ((eq ( pdegree (first v) repeat)
2482 ; (pdegree (second v) repeat))
2483 ; ;;choose the least complex leading coefficient to divide by
2484 ; (setq try
2485 ; (sort-key (firstn 2 v) '<
2486 ; #'(lambda (u var) (pcomplexity
2487 ; (leading-coefficient u var)))
2488 ; repeat)))
2489 ; (t (setq try (firstn 2 v))))
2490 ; (setq f (second try))
2491 ; (multiple-value-bind (rem c-reqd)
2492 ; (gen-prem f (first try) repeat)
2493 ; (show rem)
2494 ; (cond ((null rem) (merror "empty")))
2495 ; (cond ((may-invertp c-reqd open-g)
2496 ; (return (new-ldata-simplifications
2497 ; (copy-structure ldata ldata-
2498 ; eqns
2499 ; (cons rem (delete f(copy-list eqns))))
2500 ; :open-g open-g)))))
2501 ; finally (return (list ldata))))))
2506 ;resolution(f):=
2507 ;block([g,h],
2508 ; for i thru 5 do
2509 ; (g: coeff(f,x),
2510 ; h: f-x*g,
2511 ; f: expand(subst(x+g/2,x,h)+g^2/4)),
2512 ; return(f));
2513 ;(defun resolution (f n var &aux h g gg ggg)
2514 ; (loop for i below n
2515 ; with mon = (list var 1 1)
2516 ; do (setq g (pcoeff (num f) mon))
2517 ; (setq h (ratdifference f (setq gg (ratreduce (ptimes g mon) (denom f)))))
2518 ; (setq ff (gen-rat-sublis
2519 ; (list var)
2520 ; (list (setq ggg (ratplus (cons mon 1) (ratreduce g (* 2 (denom f))))))
2521 ; h))
2522 ; (setq g (ratreduce g (denom f)))
2523 ; (setq ff (ratplus ff (rattimes (cons 1 4) (rattimes g g nil) t)))
2524 ; (show (denom h))
2525 ; (setq f ff)
2526 ; finally (return f)))
2529 ;(defun new-solve-ldata (ldata &key (open-g 1))
2530 ; (user:function-let
2531 ; (ldata-simplifications #'(lambda (&rest l) (list (car l))))
2533 ; (loop until (equal list-ld prev-ld)
2534 ; with list-ld = (list ldata)
2535 ; do
2536 ; (format t "~%make-dichotomy")
2537 ; (setq list-ld
2538 ; (loop for ld in list-ld
2539 ; appending (make-dichotomy ld :open-g open-g)))
2540 ; (mshow list-ld)
2541 ; (format t "~%divide-dichotomy")
2542 ; (setq list-ld
2543 ; (loop for ld in list-ld
2544 ; appending (divide-dichotomy ld :open-g open-g)))
2545 ; (mshow list-ld))))
2548 ;;;ideas have a simpflag slot
2549 ;;;which contains things like 'all-irreducible 'no-linears 'no-
2550 ;;;a clear above slot which has '(x 3 y 1) to indicate that only one
2551 ;;;note if z+y is a polynomial can't use it for z and y so it has to
2552 ;;;be in the used up group.