Use :setting-predicate to assert the vars takes strings
[maxima.git] / tests / rtest_powerseries.mac
blobaf6877a548eabd42e525dc4da5d5b17a26f1b1ec
1 /*
2   test_powerseries.mac
4   Tests for the powerseries() function
5 */
7 kill(all);
8 done$
11   Basic identities
13 powerseries(a, x, 0);
16 powerseries(x, x, 0);
19 /* Check that we get an error if the variable is a non-symbol atom */
20 errcatch(powerseries(x, 0, 0));
21 []$
23 errcatch(powerseries(x, "foo", 0));
24 []$
26 /* Check we distribute over bags */
27 niceindices(powerseries([sin(x), cos(x)], x, 0));
28 ''(niceindices([powerseries(sin(x), x, 0), powerseries(cos(x), x, 0)]))$
30 /* Check we distribute over sum() and product() */
31 niceindices(powerseries(sum(f(x,i), i, 0, inf), x, 0));
32 ''(niceindices(sum(powerseries(f(x,i), x, 0), i, 0, inf)));
34 niceindices(powerseries(product(f(x,i), i, 0, inf), x, 0));
35 ''(niceindices(product(powerseries(f(x,i), x, 0), i, 0, inf)));
38 /* Check that we can expand with respect to a non-atomic expression
39    (or at least check that we do something vaguely sensible) */
40 niceindices(powerseries(sin(x^2), x^2, 0) - powerseries(sin(x^2), x, 0));
43 /* Check that sums get expanded sanely (in SP1) */
44 niceindices(powerseries(a + sin(x), x, 0) - powerseries(sin(x), x, 0));
47 /* An element of the transformation dictionary for special trig sums in SP1 */
48 niceindices(powerseries (1+tan(x)^2, x, 0) - powerseries(sec(x)^2, x, 0));
51 /* Check that constant factors get pulled out (in SP1TIMES) */
52 niceindices(powerseries(a*sin(x), x, 0) - a*powerseries(sin(x), x, 0));
55 /* ... even if they aren't atoms. */
56 niceindices(powerseries((a+b)*sin(x), x, 0) - (a+b)*powerseries(sin(x), x, 0));
59 /* "Atomic" factors also get pulled out */
60 niceindices(powerseries(x*sin(x), x, 0) - x*powerseries(sin(x), x, 0));
63 /* Check that we evaluate powerseries at inf and minf sensibly */
64 powerseries(1/x, x, inf);
65 1/x$
67 powerseries(1/x, x, minf);
68 1/x$
71   Exponentiation of a sum is dealt with in SRBINEXPAND, which has to
72   cope with various possibilities depending on how much we know about
73   which terms are nonzero.
75 powerseries(x^y^z, x, 0);
76 x^y^z$
78 (declare([int, posint], integer),
79  assume(posint > 0),
80  assume(pos > 0),
81  assume(notequal(nz, 0)),
82  assume(equal(zero, 0)), 0);
85 powerseries((x^y+1)^zero, x, 0);
88 powerseries((zero*x + 2)^y, x, 0);
89 2^y$
91 powerseries((x + zero)^y, x, 0);
92 x^y$
94 niceindices(powerseries((nz + 1)^n, nz, 0));
95 'sum(nz^i/beta(i+1, n-i+1), i, 0, inf)/(n+1)$
97 niceindices(powerseries((nz + 1)^posint, nz, 0));
98 'sum(nz^i/beta(i+1, posint-i+1), i, 0, posint)/(posint+1)$
100 niceindices(powerseries((nz + 1)^k, nz, 0));
101 'sum(nz^i/beta(i+1, k-i+1), i, 0, inf)/(k+1)$
103 niceindices(powerseries((x + 1)^k, x, 0));
104 1 + 'sum(x^i/beta(i+1, k-i+1), i, 1, inf)/(k+1)$
106 niceindices(powerseries((x + u)^posint, x, 0));
107 ('sum(x^i*u^(posint-i)/beta(i+1, posint-i+1),
108       i, 0, posint-1) / (posint+1)) + x^posint$
110 powerseries((x + y)^k, x, 0);
111 'powerseries((x + y)^k, x, 0)$
113 /* Some more white-box tests, based on the structure of SRATEXPND */
115 /* If the numerator is monomial, factor it out and recurse */
116 niceindices(powerseries(a*x^u/(1+x), x, 0) - a*x^u*powerseries(1/(1+x), x, 0));
119 /* If the denominator is free of x and the numerator is a polynomial,
120    return the quotient */
121 powerseries((x^2 + x + 1)/(a + b + c), x, 0);
122 (x^2 + x + 1)/(a + b + c)$
125   If the denominator is free of y, but the numerator is sufficiently
126   gnarly, we give up. (Obviously, it would be nice to do better here!)
128 powerseries((x+x^(1+y)+1)/(2+y), x, 0);
129 powerseries((x+x^(1+y)+1)/(2+y), x, 0)$
132   Another gnarly example we can't deal with. We can't use partial
133   fraction expansion because we don't know that k < 2 (and, even if we
134   did, I don't know how we'd parametrise the result on k).
136 powerseries((x+1)^k/((x+2)*(x+3)), x, 0);
137 powerseries((x+1)^k/((x+2)*(x+3)), x, 0)$
139 /* The only way of getting a monomial denominator in sratexpnd is if
140    the numerator is a polynomial. If the denominator is a sum, we return the
141    sum of quotients: */
142 powerseries((x^2 + x + 1)/(a*x^2), x, 0);
143 1/a + 1/(a*x) + 1/(a*x^2)$
145 /* If the denominator isn't a sum, we just return the quotient of the
146    top and bottom. */
147 powerseries((1+x)^n/(a*x^2), x, 0);
148 (1+x)^n/(a*x^2)$
150 /* (I haven't yet managed to find an example that triggers the
151     SRATSUBST clause and doesn't yield a noun form) */
153 /* Partial fraction expansion */
154 niceindices(powerseries(1/((1-2*x)*(1-3*x)), x, 0));
155 'sum((3^(i+1) - 2^(i+1))*x^i, i, 0, inf)$
158   Make sure we give up (rather than possibly recursing infinitely) in
159   the general case at the bottom of SRATEXPND.
161 powerseries((x+2)*(x+3)^k/(x*(x+4)), x, 0);
162 powerseries((x+2)*(x+3)^k/(x*(x+4)), x, 0)$
165   A complicated example of a partial fraction expansion. The expansion
166   into partial fractions is 1 + 2/(x+3) - 6/(x+4), and the terms then
167   expand into two infinite series and one constant term. This test
168   makes sure that we coalesce the two series properly (in PSP2FOLDSUM).
170 factor(niceindices(powerseries((x+1)*(x+2)/((x+3)*(x+4)), x, 0)));
171 (sum(3^(-i-1)*(-1)^i*(4^(i+1)-3^(i+2))*x^i/4^i,i,0,inf)+2)/2$
174   Make sure we successfully remove zero roots from the denominator
175   before trying to expand partial fractions.
177 niceindices(powerseries((x+2)*(x+3)/(x^2*(x+1)^k), x, 0)*x^2 -
178             powerseries((x+2)*(x+3)/(x+1)^k, x, 0));
181 /* Fixed in series.lisp rev 1.5, 04 Feb 2004.
182    First case returned second result */
183 niceindices(powerseries(1/sqrt(1 + x), x, 0));
184 1 + 2*'sum(x^i/beta(1/2-i,i+1),i,1,inf);
185 niceindices (powerseries(sqrt(1+x),x,0));
186 1 + 2*('sum(x^i/beta(3/2-i,i+1),i,1,inf))/3;
188 /* sf bug 1730044 - powerseries(1+x^n,x,0) wrong; see also #2764 power series of 1 + x^n */
189 powerseries(1+x^n, x, 0);
190 1+x^n$
192 (gensumnum : 0, declare(n, integer), powerseries(1/(1+x^n), x, 0));
193 'sum((-1)^i1*x^(i1*n),i1,0,inf)$
195 /* #2756 powerseries of constant plus power of linear  */
196 (gensumnum : 0, powerseries(1 + (1-x)^(1/3),x,0));
197 (3*sum(((-1)^i1*x^i1)/beta(4/3-i1,i1+1),i1,1,inf))/4+2$
199 /* Examples from SF bug report [ 1722156 ] powerseries((x+1)/(1-2*x^2), x, 0);
200  * tnx Dan Gildea
201  */
203 gensumnum : 0;
206 /* two simple roots */
207 powerseries((1)/((1-2*x)*(1-3*x)), x, 0);
208 'sum((3^(i1+1)+(-2*2^i1))*x^i1,i1,0,inf);
210 /* fibonacci */
211 powerseries((1)/(1-x-x^2), x, 0);
212 -'sum((-2*(sqrt(5)-1)^(-i2-1)*2^i2/sqrt(5)
213  -2*(sqrt(5)+1)^(-i2-1)*(-2)^i2/sqrt(5))
214  *x^i2,i2,0,inf);
216 /* 1 1 2 2 4 4 8 8 */
217 factor(powerseries((1+x)/(1-2*x^2), x, 0));
219 'sum( (-1*(1/-(1/sqrt(2)))*(1/sqrt(2)-1)*(1/-(4/sqrt(2)))*(1/-(1/sqrt(2)))^i3 +
220       -1*(1/(1/sqrt(2)))*(-1/sqrt(2)-1)*(1/(4/sqrt(2)))*(1/(1/sqrt(2)))^i3 ) * x^i3,i3,0,inf);
223 'sum(2^(i3/2-3/2)*((sqrt(2)-1)*(-1)^i3+sqrt(2)+1)*x^i3,i3,0,inf);
225 /* multiple root */
226 powerseries((1+x)/(1-x)^2, x, 0);
227 'sum(2*(i4+1)*x^i4-x^i4,i4,0,inf);
229 /* numerator higher order poly than denom */
230 powerseries((1+x^3)/(1-x-x^2), x, 0);
231 -2*x
232  *'sum((-2*(sqrt(5)-1)^(-i5-1)*2^i5/sqrt(5)
233    -2*(sqrt(5)+1)^(-i5-1)*(-2)^i5/sqrt(5))
234    *x^i5,i5,0,inf)
235   -x+1;
237 /* zero root in denom */
238 powerseries((1)/((1-2*x)*(x)), x, 0);
239 ('sum(2^i6*x^i6,i6,0,inf))/x;
241 /* one simple and one repeated root in denom */
242 powerseries((1+x+x^2)/((1-2*x)*(1+x)^2), x, 0);
243 'sum(7*2^i7*x^i7/9+(i7+1)*(-1)^i7*x^i7/3-(-1)^i7*x^i7/9,i7,0,inf);
245 /* gcd of exps is two */
246 powerseries((1-x^2)/(1-4*x^2+x^4), x, 0);
247 'sum((-1*(1/(2-sqrt(3)))*(sqrt(3)-1)*(1/(2*(2-sqrt(3))-4))*(1/(2-sqrt(3)))^i8 +
248       -1*(1/(sqrt(3)+2))*(-sqrt(3)-1)*(1/(2*(sqrt(3)+2)-4))*(1/(sqrt(3)+2))^i8 )*x^(2*i8),
249       i8, 0, inf);
251 /* #2750 powerseries(x^x,x,0) gives Lisp error */
252 powerseries(x^x, x, 0);
253 'powerseries(x^x, x, 0)$
255 sumcontract(intosum(powerseries(1+ (1-x)^(a),x,0) - powerseries((1-x)^(a),x,0)));
259   #2775: Don't expand a powerseries with log(ab)=log(a)+log(b) if a
260          is negative
262   (and also #2767)
264 (gensumnum : 0, powerseries (log(2-x), x, 0));
265 log(2) - sum (2^(-i2-1)*x^(i2+1)/(i2+1), i2, 0, inf)$
268   #2760: powerseries at minf
270   For an analytic function like this, the power series at minf should
271   match the power series at inf.
273 block([inf_exp, minf_exp],
274   gensumnum : 0,
275   inf_exp: powerseries (1/(1+x), x, inf),
276   gensumnum : 0,
277   minf_exp: powerseries (1/(1+x), x, inf),
278   inf_exp - minf_exp);
281 /* #2765: powerseries with non-integer order */
282 powerseries (diff (f(x), x, biggles), x, 0);
283 'powerseries (diff (f(x), x, biggles), x, 0)$
285 /* #2755: powerseries of natural exponential */
286 niceindices (powerseries (%e^x, x, 1));
287 sum (1/i!, i, 0, inf) * sum((x-1)^i/i!, i, 0, inf)$
290   #2760
292   Make sure that we give up rather than trying to substitute an
293   arbitrary expression for an integration / differentiation variable
294   after expansion.
296 powerseries(f(x), x, inf);
297 'powerseries(f(x), x, inf)$
300   The test above gives up when it sees either an integral or a
301   derivative wrt the expansion variable as it's trying to substitute
302   answers back in. Make sure that we still allow either with respect
303   to some other variable. (Expand somewhere other than zero, otherwise
304   we skip the substitution step)
306 factor(powerseries(integrate(f(x), x)*y, y, 1));
307 'integrate(f(x), x)*y$
309 niceindices(powerseries(log(sin(x)/x),x,0));
310 /*('sum((-1)^i1*2^(2*i1)*bern(2*i1)*x^(2*i1)/(i1*(2*i1)!),i1,1,inf))/2$*/
311 'sum((-1)^i*2^(2*i-1)*bern(2*i)*x^(2*i)/(i*(2*i)!),i,1,inf);
314   Check that we don't substitute blindly into the bound variables in
315   at() expressions.
317   The powerseries expands the integral of f(x) by computing an
318   antiderivative of the power series of f(x). Since we don't know
319   anything about f, this contains terms like "at(diff(f(x), x, n),
320   x=0)". If we then substituted the endpoints blindly, we'd get an
321   error from substituting in a number as a differentiation variable.
323 op(niceindices(powerseries(integrate(f(x), x, 0, y), y, 0)));
324 ''(nounify('sum))$
327   Check we get a noun form (rather than something exploding) when
328   expanding a known power series and then trying to substitute in some
329   arbitrary function. At the moment, we only support arguments that
330   are monomials (see SP2SUB in series.lisp).
332 powerseries(sin(f(x)), x, 0);
333 powerseries(sin(f(x)), x, 0)$
335 /* Basic support for expanding log(1+x) */
336 factor(sumcontract(intosum(powerseries(log(x+1), x, 0) -
337                            sum((-1)^(i+1)*x^i/i, i, 1, inf))));
340 /* Check that we can expand log(1+a*x^k) for various a and k. */
341 niceindices(powerseries(log(1+a*x), x, 0));
342 -sum((-1)^i * a^i * x^i / i, i, 1, inf)$
344 niceindices(powerseries(log(1-a*x), x, 0));
345 -sum(a^i * x^i / i, i, 1, inf)$
348   A particular example of a log expansion that didn't work when you
349   only allowed contents that SMONO accepted
351 niceindices(powerseries(log(1-z*exp(-4)), z, 0));
352 -sum(exp(-4*i)*z^i/i, i, 1, inf)$
354 /* verify power series for lambert_w */
356 ps: niceindices (powerseries (lambert_w(x), x, 0));
357 -'sum(i^(i - 1)*(-1)^i*x^i/i!, i, 1, inf);
359 (subst (inf = 5, ps), ev (%%, nouns));
360 x - x^2 + 3*x^3/2 - 8*x^4/3 + 125*x^5/24;
362 /* Test that gensumnum:false works */
363 gensumnum:false;
364 false;
366 powerseries(log(1+x),x,0);
367 -'sum(((-1)^i*x^i)/i,i,1,inf);
369 (kill(all), 0);