Merge branch 'master' of ssh://git.code.sf.net/p/maxima/code
[maxima.git] / src / rat3e.lisp
blob6ede4611cca9cb8e1e7ef8b0e2d8ffcbca096970
1 ;;; -*- Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- ;;;;
2 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3 ;;; The data in this file contains enhancments. ;;;;;
4 ;;; ;;;;;
5 ;;; Copyright (c) 1984,1987 by William Schelter,University of Texas ;;;;;
6 ;;; All rights reserved ;;;;;
7 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
8 ;;; (c) Copyright 1982 Massachusetts Institute of Technology ;;;
9 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
11 (in-package :maxima)
13 (macsyma-module rat3e)
15 ;; This is the rational function package part 5.
16 ;; It includes the conversion and top-level routines used
17 ;; by the rest of the functions.
19 (declare-top (special intbs* alflag var dosimp alc $myoptions
20 vlist scanmapp radlist expsumsplit *ratsimp* mplc*
21 $ratsimpexpons $expop $expon $negdistrib $gcd))
23 (defmvar genvar nil
24 "List of gensyms used to point to kernels from within polynomials.
25 The values cell and property lists of these symbols are used to
26 store various information.")
28 (defmvar genpairs nil)
29 (defmvar varlist nil "List of kernels")
30 (defmvar *fnewvarsw nil)
31 (defmvar *ratweights nil)
33 (defvar *ratsimp* nil)
35 (defmvar factorresimp nil "If `t' resimplifies factor(x-y) to x-y")
37 ;; User level global variables.
39 (defmvar $keepfloat nil "If `t' floating point coeffs are not converted to rationals")
40 (defmvar $factorflag nil "If `t' constant factor of polynomial is also factored")
41 (defmvar $dontfactor '((mlist)))
42 (defmvar $norepeat t)
43 (defmvar $ratweights '((mlist simp)))
45 (defmvar $ratfac nil "If `t' cre-forms are kept factored")
46 (defmvar $algebraic nil)
47 (defmvar $ratvars '((mlist simp)))
48 (defmvar $facexpand t)
50 (declare-top (special evp $infeval))
52 (defun mrateval (x)
53 (let ((varlist (caddar x)))
54 (cond ((and evp $infeval) (meval ($ratdisrep x)))
55 ((or evp
56 (and $float $keepfloat)
57 (not (alike varlist (mapcar #'meval varlist))))
58 (ratf (meval ($ratdisrep x))))
59 (t x))))
61 (defprop mrat mrateval mfexpr*)
63 (defmfun $ratnumer (x)
64 (cond ((mbagp x)
65 (cons (car x) (mapcar '$ratnumer (cdr x))))
67 (setq x (taychk2rat x))
68 (cons (car x) (cons (cadr x) 1)))))
70 (defmfun $ratdenom (x)
71 (cond ((mbagp x)
72 (cons (car x) (mapcar '$ratdenom (cdr x))))
74 (setq x (taychk2rat x))
75 (cons (car x) (cons (cddr x) 1)))))
77 (defun taychk2rat (x)
78 (cond ((and ($ratp x)
79 (member 'trunc (cdar x) :test #'eq))
80 ($taytorat x))
81 (t ($rat x))))
83 (defmvar tellratlist nil)
85 (defun tellratdisp (x)
86 (pdisrep+ (trdisp1 (cdr x) (car x))))
88 (defun trdisp1 (p var)
89 (cond ((null p) nil)
90 (t (cons (pdisrep* (if (mtimesp (cadr p))
91 (copy-list (cadr p))
92 (cadr p)) ;prevents clobbering p
93 (pdisrep! (car p) var))
94 (trdisp1 (cddr p) var)))))
96 (defmfun $untellrat (&rest args)
97 (dolist (x args)
98 (if (setq x (assol x tellratlist))
99 (setq tellratlist (remove x tellratlist :test #'equal))))
100 (cons '(mlist) (mapcar #'tellratdisp tellratlist)))
102 (defmfun $tellrat (&rest args)
103 (mapc #'tellrat1 args)
104 (unless (null args) (add2lnc 'tellratlist $myoptions))
105 (cons '(mlist) (mapcar #'tellratdisp tellratlist)))
107 (defun tellrat1 (x &aux varlist genvar $algebraic $ratfac algvar)
108 (setq x ($totaldisrep x))
109 (and (not (atom x)) (eq (caar x) 'mequal) (newvar (cadr x)))
110 (newvar (setq x (meqhk x)))
111 (unless varlist (merror (intl:gettext "tellrat: argument must be a polynomial; found: ~M") x))
112 (setq algvar (car (last varlist)))
113 (setq x (p-terms (primpart (cadr (ratrep* x)))))
114 (unless (equal (pt-lc x) 1) (merror (intl:gettext "tellrat: minimal polynomial must be monic.")))
115 (do ((p (pt-red x) (pt-red p)))
116 ((ptzerop p))
117 (setf (pt-lc p) (pdis (pt-lc p))))
118 (setq algvar (cons algvar x))
119 (if (setq x (assol (car algvar) tellratlist))
120 (setq tellratlist (remove x tellratlist :test #'equal)))
121 (push algvar tellratlist))
124 (defmfun $printvarlist ()
125 (cons '(mlist) (copy-tree varlist)))
127 (defmfun $showratvars (e)
128 (cons '(mlist simp)
129 (cond (($ratp e)
130 (if (member 'trunc (cdar e) :test #'eq) (setq e ($taytorat e)))
131 (caddar (minimize-varlist e)))
132 (t (let (varlist) (lnewvar e) varlist)))))
134 (defmfun $ratvars (&rest args)
135 (add2lnc '$ratvars $myoptions)
136 (setq $ratvars (cons '(mlist simp) (setq varlist (mapfr1 args varlist)))))
138 (defun mapfr1 (l varlist)
139 (mapcar #'(lambda (z) (fr1 z varlist)) l))
141 (defmvar inratsimp nil)
143 (defmfun $fullratsimp (exp &rest argl)
144 (prog (exp1)
145 loop (setq exp1 (simplify (apply #'$ratsimp (cons exp argl))))
146 (when (alike1 exp exp1) (return exp))
147 (setq exp exp1)
148 (go loop)))
150 (defun fullratsimp (l)
151 (let (($expop 0) ($expon 0) (inratsimp t) $ratsimpexpons)
152 (when (not ($ratp l))
153 ;; Not a mrat expression. Remove the special representation.
154 (setq l (specrepcheck l)))
155 (setq l ($totaldisrep l))
156 (fr1 l varlist)))
158 (defmfun $totaldisrep (l)
159 (cond ((atom l) l)
160 ((not (among 'mrat l)) l)
161 ((eq (caar l) 'mrat) (ratdisrep l))
162 (t (cons (delete 'ratsimp (car l) :test #'eq) (mapcar '$totaldisrep (cdr l))))))
164 ;;;VARLIST HAS MAIN VARIABLE AT END
166 (defun joinvarlist (cdrl)
167 (mapc #'(lambda (z) (unless (memalike z varlist) (push z varlist)))
168 (reverse (mapfr1 cdrl nil))))
170 (defmfun $rat (e &rest vars)
171 (cond ((not (null vars))
172 (let (varlist)
173 (joinvarlist vars)
174 (lnewvar e)
175 (rat0 e)))
177 (lnewvar e)
178 (rat0 e))))
180 (defun rat0 (exp) ;SIMP FLAGS?
181 (if (mbagp exp)
182 (cons (car exp) (mapcar #'rat0 (cdr exp)))
183 (ratf exp)))
185 (defmfun $ratsimp (e &rest vars)
186 (cond ((not (null vars))
187 (let (varlist)
188 (joinvarlist vars)
189 (fullratsimp e)))
190 (t (fullratsimp e))))
192 ;; $RATSIMP, $FULLRATSIMP and $RAT allow for optional extra
193 ;; arguments specifying the VARLIST.
195 ;;;PSQFR HAS NOT BEEN CHANGED TO MAKE USE OF THE SQFR FLAGS YET
197 (defmfun $sqfr (x)
198 (let ((varlist (cdr $ratvars)) genvar $keepfloat $ratfac)
199 (sublis '((factored . sqfred) (irreducible . sqfr))
200 (ffactor x #'psqfr))))
202 (declare-top (special fn))
204 (defun whichfn (p)
205 (cond ((and (mexptp p) (integerp (caddr p)))
206 (list '(mexpt) (whichfn (cadr p)) (caddr p)))
207 ((mtimesp p)
208 (cons '(mtimes) (mapcar #'whichfn (cdr p))))
209 (fn (ffactor p #'pfactor))
210 (t (factoralg p))))
212 (declare-top (special var))
214 (defmvar adn* 1 "common denom for algebraic coefficients")
216 (defun factoralg (p)
217 (prog (alc ans adn* $gcd)
218 (setq $gcd '$algebraic)
219 (when (or (atom p) (numberp p)) (return p))
220 (setq adn* 1)
221 (when (and (not $nalgfac) (not intbs*))
222 (setq intbs* (findibase minpoly*)))
223 (setq algfac* t)
224 (setq ans (ffactor p #'pfactor))
225 (cond ((eq (caar ans) 'mplus)
226 (return p))
227 (mplc*
228 (setq ans (albk ans))))
229 (if (and (not alc) (equal 1 adn*)) (return ans))
230 (setq ans (partition ans (car (last varlist)) 1))
231 (return (mul (let ((dosimp t))
232 (mul `((rat) 1 ,adn*)
233 (car ans)
234 (if alc (pdis alc) 1)))
235 (cdr ans)))))
237 (defun albk (p) ;to undo monicizing subst
238 (let ((alpha (pdis alpha)) ($ratfac t))
239 (declare (special alpha))
240 ;; don't multiply them back out
241 (maxima-substitute (list '(mtimes simp) mplc* alpha) ;assumes mplc* is int
242 alpha p)))
245 (defmfun $gfactor (p &aux (gauss t))
246 (when ($ratp p) (setq p ($ratdisrep p)))
247 (setq p ($factor (subst '%i '$%i p) '((mplus) 1 ((mexpt) %i 2))))
248 (setq p (sublis '((factored . gfactored) (irreducible . irreducibleg)) p))
249 (let (($expop 0) ($expon 0) $negdistrib)
250 (maxima-substitute '$%i '%i p)))
252 (defmfun $factor (e &optional (mp nil mp?))
253 (let ($intfaclim (varlist (cdr $ratvars)) genvar ans)
254 (setq ans (if mp? (factor e mp) (factor e)))
255 (if (and factorresimp $negdistrib
256 (mtimesp ans) (null (cdddr ans))
257 (equal (cadr ans) -1) (mplusp (caddr ans)))
258 (let (($expop 0) ($expon 0))
259 ($multthru ans))
260 ans)))
262 (defun factor (e &optional (mp nil mp?))
263 (let ((tellratlist nil)
264 (varlist varlist)
265 (genvar nil)
266 ($gcd $gcd)
267 ($negdistrib $negdistrib))
268 (prog (fn var mm* mplc* intbs* alflag minpoly* alpha p algfac*
269 $keepfloat $algebraic cargs)
270 (declare (special cargs fn alpha))
271 (unless (member $gcd *gcdl* :test #'eq)
272 (setq $gcd (car *gcdl*)))
273 (let ($ratfac)
274 (setq p e
275 mm* 1
276 cargs (if mp? (list mp) nil))
277 (when (symbolp p) (return p))
278 (when ($numberp p)
279 (return (let (($factorflag (not scanmapp)))
280 (factornumber p))))
281 (when (mbagp p)
282 (return (cons (car p) (mapcar #'(lambda (x) (apply #'factor (cons x cargs))) (cdr p)))))
283 (cond (mp?
284 (setq alpha (meqhk mp))
285 (newvar alpha)
286 (setq minpoly* (cadr (ratrep* alpha)))
287 (when (or (pcoefp minpoly*)
288 (not (univar (cdr minpoly*)))
289 (< (cadr minpoly*) 2))
290 (merror (intl:gettext "factor: second argument must be a nonlinear, univariate polynomial; found: ~M") alpha))
291 (setq alpha (pdis (list (car minpoly*) 1 1))
292 mm* (cadr minpoly*))
293 (unless (equal (caddr minpoly*) 1)
294 (setq mplc* (caddr minpoly*))
295 (setq minpoly* (pmonz minpoly*))
296 (setq p (maxima-substitute (div alpha mplc*) alpha p)))
297 (setq $algebraic t)
298 ($tellrat(pdis minpoly*))
299 (setq algfac* t))
301 (setq fn t)))
302 (unless scanmapp (setq p (let (($ratfac t)) (sratsimp p))))
303 (newvar p)
304 (when (symbolp p) (return p))
305 (when (numberp p)
306 (return (let (($factorflag (not scanmapp)))
307 (factornumber p))))
308 (setq $negdistrib nil)
309 (setq p (let ($factorflag ($ratexpand $facexpand))
310 (whichfn p))))
312 (setq p (let (($expop 0) ($expon 0))
313 (simplify p)))
314 (cond ((mnump p) (return (factornumber p)))
315 ((atom p) (return p)))
316 (and $ratfac (not $factorflag) ($ratp e) (return ($rat p)))
317 (and $factorflag (mtimesp p) (mnump (cadr p))
318 (setq alpha (factornumber (cadr p)))
319 (cond ((alike1 alpha (cadr p)))
320 ((mtimesp alpha)
321 (setq p (cons (car p) (append (cdr alpha) (cddr p)))))
323 (setq p (cons (car p) (cons alpha (cddr p)))))))
324 (when (null (member 'factored (car p) :test #'eq))
325 (setq p (cons (append (car p) '(factored)) (cdr p))))
326 (return p))))
328 (defun factornumber (n)
329 (setq n (nretfactor1 (nratfact (cdr ($rat n)))))
330 (cond ((cdr n)
331 (cons '(mtimes simp factored)
332 (if (equal (car n) -1)
333 (cons (car n) (nreverse (cdr n)))
334 (nreverse n))))
335 ((atom (car n))
336 (car n))
338 (cons (cons (caaar n) '(simp factored)) (cdar n)))))
340 (defun nratfact (x)
341 (cond ((equal (cdr x) 1) (cfactor (car x)))
342 ((equal (car x) 1) (revsign (cfactor (cdr x))))
343 (t (nconc (cfactor (car x)) (revsign (cfactor (cdr x)))))))
345 ;;; FOR LISTS OF JUST NUMBERS
346 (defun nretfactor1 (l)
347 (cond ((null l) nil)
348 ((equal (cadr l) 1) (cons (car l) (nretfactor1 (cddr l))))
349 (t (cons (if (equal (cadr l) -1)
350 (list '(rat simp) 1 (car l))
351 (list '(mexpt simp) (car l) (cadr l)))
352 (nretfactor1 (cddr l))))))
354 (declare-top (unspecial var))
356 (defmfun $polymod (p &optional (m 0 m?))
357 (let ((modulus modulus))
358 (when m?
359 (setq modulus m)
360 (when (or (not (integerp modulus)) (zerop modulus))
361 (merror (intl:gettext "polymod: modulus must be a nonzero integer; found: ~M") modulus)))
362 (when (minusp modulus)
363 (setq modulus (abs modulus)))
364 (mod1 p)))
366 (defun mod1 (e)
367 (if (mbagp e) (cons (car e) (mapcar 'mod1 (cdr e)))
368 (let (formflag)
369 (newvar e)
370 (setq formflag ($ratp e) e (ratrep* e))
371 (setq e (cons (car e) (ratreduce (pmod (cadr e)) (pmod (cddr e)))))
372 (cond (formflag e) (t (ratdisrep e))))))
374 (defmfun $divide (x y &rest vars)
375 (prog (h varlist tt ty formflag $ratfac)
376 (when (and ($ratp x) (setq formflag t) (integerp (cadr x)) (equal (cddr x) 1))
377 (setq x (cadr x)))
378 (when (and ($ratp y) (setq formflag t) (integerp (cadr y)) (equal (cddr y) 1))
379 (setq y (cadr y)))
380 (when (and (integerp x) (integerp y))
381 (when (zerop y)
382 (merror (intl:gettext "divide: Quotient by zero")))
383 (return (cons '(mlist) (multiple-value-list (truncate x y)))))
384 (setq varlist vars)
385 (mapc #'newvar (reverse (cdr $ratvars)))
386 (newvar y)
387 (newvar x)
388 (setq x (ratrep* x))
389 (setq h (car x))
390 (setq x (cdr x))
391 (setq y (cdr (ratrep* y)))
392 (cond ((and (equal (setq tt (cdr x)) 1) (equal (cdr y) 1))
393 (setq x (pdivide (car x) (car y))))
394 (t (setq ty (cdr y))
395 (setq x (ptimes (car x) (cdr y)))
396 (setq x (pdivide x (car y)))
397 (setq x (list
398 (ratqu (car x) tt)
399 (ratqu (cadr x) (ptimes tt ty))))))
400 (setq h (list '(mlist) (cons h (car x)) (cons h (cadr x))))
401 (return (if formflag h ($totaldisrep h)))))
403 (defmfun $quotient (&rest args)
404 (cadr (apply '$divide args)))
406 (defmfun $remainder (&rest args)
407 (caddr (apply '$divide args)))
409 (defmfun $gcd (x y &rest vars)
410 (prog (h varlist genvar $keepfloat formflag)
411 (setq formflag ($ratp x))
412 (and ($ratp y) (setq formflag t))
413 (setq varlist vars)
414 (dolist (v varlist)
415 (when (numberp v) (improper-arg-err v '$gcd)))
416 (newvar x)
417 (newvar y)
418 (when (and ($ratp x) ($ratp y) (equal (car x) (car y)))
419 (setq genvar (car (last (car x))) h (car x) x (cdr x) y (cdr y))
420 (go on))
421 (setq x (ratrep* x))
422 (setq h (car x))
423 (setq x (cdr x))
424 (setq y (cdr (ratrep* y)))
425 on (setq x (cons (pgcd (car x) (car y)) (plcm (cdr x) (cdr y))))
426 (setq h (cons h x))
427 (return (if formflag h (ratdisrep h)))))
429 (defmfun $content (x &rest vars)
430 (prog (y h varlist formflag)
431 (setq formflag ($ratp x))
432 (setq varlist vars)
433 (newvar x)
434 (desetq (h x . y) (ratrep* x))
435 (unless (atom x)
436 ;; (CAR X) => gensym corresponding to apparent main var.
437 ;; MAIN-GENVAR => gensym corresponding to the genuine main var.
438 (let ((main-genvar (nth (1- (length varlist)) genvar)))
439 (unless (eq (car x) main-genvar)
440 (setq x `(,main-genvar 0 ,x)))))
441 (setq x (rcontent x)
442 y (cons 1 y))
443 (setq h (list '(mlist)
444 (cons h (rattimes (car x) y nil))
445 (cons h (cadr x))))
446 (return (if formflag h ($totaldisrep h)))))
448 (defun pget (gen)
449 (cons gen '(1 1)))
451 (defun m$exp? (x)
452 (and (mexptp x) (eq (cadr x) '$%e)))
454 (defun algp ($x)
455 (algpchk $x nil))
457 (defun algpget ($x)
458 (algpchk $x t))
460 (defun algpchk ($x mpflag &aux temp)
461 (cond ((eq $x '$%i) '(2 -1))
462 ((eq $x '$%phi) '(2 1 1 -1 0 -1))
463 ((radfunp $x nil)
464 (if (not mpflag) t
465 (let ((r (prep1 (cadr $x))))
466 (cond ((onep1 (cdr r)) ;INTEGRAL ALG. QUANT.?
467 (list (caddr (caddr $x))
468 (car r)))
469 (*ratsimp* (setq radlist (cons $x radlist)) nil)))))
470 ((not $algebraic) nil)
471 ((and (m$exp? $x) (mtimesp (setq temp (caddr $x)))
472 (equal (cddr temp) '($%i $%pi))
473 (ratnump (setq temp (cadr temp))))
474 (if mpflag (primcyclo (* 2 (caddr temp))) t))
475 ((not mpflag) (assolike $x tellratlist))
476 ((setq temp (copy-list (assolike $x tellratlist)))
477 (do ((p temp (cddr p))) ((null p))
478 (rplaca (cdr p) (car (prep1 (cadr p)))))
479 (setq temp
480 (cond ((ptzerop (pt-red temp)) (list (pt-le temp) (pzero)))
481 ((zerop (pt-le (pt-red temp)))
482 (list (pt-le temp) (pminus (pt-lc (pt-red temp)))))
483 (t temp)))
484 (if (and (= (pt-le temp) 1) (setq $x (assol $x genpairs)))
485 (rplacd $x (cons (cadr temp) 1)))
486 temp)))
488 (defun radfunp (x funcflag) ;FUNCFLAG -> TEST FOR ALG FUNCTION NOT NUMBER
489 (cond ((atom x) nil)
490 ((not (eq (caar x) 'mexpt)) nil)
491 ((not (ratnump (caddr x))) nil)
492 (funcflag (not (numberp (cadr x))))
493 (t t)))
495 (defun ratsetup (vl gl)
496 (ratsetup1 vl gl) (ratsetup2 vl gl))
498 (defun ratsetup1 (vl gl)
499 (and $ratwtlvl
500 (mapc #'(lambda (v g)
501 (setq v (assolike v *ratweights))
502 (if v (putprop g v '$ratweight) (remprop g '$ratweight)))
503 vl gl)))
505 (defun ratsetup2 (vl gl)
506 (when $algebraic
507 (mapc #'(lambda (g) (remprop g 'algord)) gl)
508 (mapl #'(lambda (v lg)
509 (cond ((setq v (algpget (car v)))
510 (algordset v lg) (putprop (car lg) v 'tellrat))
511 (t (remprop (car lg) 'tellrat))))
512 vl gl))
513 (and $ratfac (let ($ratfac)
514 (mapc #'(lambda (v g)
515 (if (mplusp v)
516 (putprop g (car (prep1 v)) 'unhacked)
517 (remprop g 'unhacked)))
518 vl gl))))
520 (defun porder (p)
521 (if (pcoefp p) 0 (valget (car p))))
523 (defun algordset (x gl)
524 (do ((p x (cddr p))
525 (mv 0))
526 ((null p)
527 (do ((l gl (cdr l)))
528 ((or (null l) (> (valget (car l)) mv)))
529 (putprop (car l) t 'algord)))
530 (setq mv (max mv (porder (cadr p))))))
532 (defun gensym-readable (name)
533 (cond ((symbolp name)
534 (gensym (string-trim "$" (string name))))
536 (setq name (aformat nil "~:M" name))
537 (if name (gensym name) (gensym)))))
539 (defun orderpointer (l)
540 (loop for v in l
541 for i below (- (length l) (length genvar))
542 collecting (gensym-readable v) into tem
543 finally (setq genvar (nconc tem genvar))
544 (return (prenumber genvar 1))))
546 (defun creatsym (n)
547 (dotimes (i n)
548 (push (gensym) genvar)))
550 (defun prenumber (v n)
551 (do ((vl v (cdr vl))
552 (i n (1+ i)))
553 ((null vl) nil)
554 (setf (symbol-value (car vl)) i)))
556 (defun rget (genv)
557 (cons (if (and $ratwtlvl
558 (or (fixnump $ratwtlvl)
559 (merror (intl:gettext "rat: 'ratwtlvl' must be an integer; found: ~M") $ratwtlvl))
560 (> (or (get genv '$ratweight) -1) $ratwtlvl))
561 (pzero)
562 (pget genv))
565 (defun ratrep (x varl)
566 (setq varlist varl)
567 (ratrep* x))
569 (defun ratrep* (x)
570 (let (genpairs)
571 (orderpointer varlist)
572 (ratsetup1 varlist genvar)
573 (mapc #'(lambda (y z) (push (cons y (rget z)) genpairs)) varlist genvar)
574 (ratsetup2 varlist genvar)
575 (xcons (prep1 x) ; PREP1 changes VARLIST
576 (list* 'mrat 'simp varlist genvar ; when $RATFAC is T.
577 (if (and (not (atom x)) (member 'irreducible (cdar x) :test #'eq))
578 '(irreducible))))))
580 (defvar *withinratf* nil)
582 (defun ratf (l)
583 (prog (u *withinratf*)
584 (setq *withinratf* t)
585 (when (eq '%% (catch 'ratf (newvar l)))
586 (setq *withinratf* nil)
587 (return (srf l)))
588 (setq u (catch 'ratf (ratrep* l))) ; for truncation routines
589 (return (or u (prog2 (setq *withinratf* nil) (srf l))))))
592 (defun prep1 (x &aux temp)
593 (cond ((floatp x)
594 (cond ($keepfloat (cons x 1.0))
595 ((prepfloat x))))
596 ((integerp x) (cons (cmod x) 1))
597 ((rationalp x)
598 (if (null modulus)
599 (cons (numerator x) (denominator x))
600 (cquotient (numerator x) (denominator x))))
601 ((atom x) (cond ((assolike x genpairs))
602 (t (newsym x))))
603 ((and $ratfac (assolike x genpairs)))
604 ((eq (caar x) 'mplus)
605 (cond ($ratfac
606 (setq x (mapcar #'prep1 (cdr x)))
607 (cond ((every #'frpoly? x)
608 (cons (mfacpplus (mapl #'(lambda (x) (rplaca x (caar x))) x)) 1))
609 (t (do ((a (car x) (facrplus a (car l)))
610 (l (cdr x) (cdr l)))
611 ((null l) a)))))
612 (t (do ((a (prep1 (cadr x)) (ratplus a (prep1 (car l))))
613 (l (cddr x) (cdr l)))
614 ((null l) a)))))
615 ((eq (caar x) 'mtimes)
616 (do ((a (savefactors (prep1 (cadr x)))
617 (rattimes a (savefactors (prep1 (car l))) sw))
618 (l (cddr x) (cdr l))
619 (sw (not (and $norepeat (member 'ratsimp (cdar x) :test #'eq)))))
620 ((null l) a)))
621 ((eq (caar x) 'mexpt)
622 (newvarmexpt x (caddr x) t))
623 ((eq (caar x) 'mquotient)
624 (ratquotient (savefactors (prep1 (cadr x)))
625 (savefactors (prep1 (caddr x)))))
626 ((eq (caar x) 'mminus)
627 (ratminus (prep1 (cadr x))))
628 ((eq (caar x) 'rat)
629 (cond (modulus (cons (cquotient (cmod (cadr x)) (cmod (caddr x))) 1))
630 (t (cons (cadr x) (caddr x)))))
631 ((eq (caar x) 'bigfloat)(bigfloat2rat x))
632 ((eq (caar x) 'mrat)
633 (cond ((and *withinratf* (member 'trunc (car x) :test #'eq))
634 (throw 'ratf nil))
635 ((catch 'compatvl
636 (progn
637 (setq temp (compatvarl (caddar x) varlist (cadddr (car x)) genvar))
639 (cond ((member 'trunc (car x) :test #'eq)
640 (cdr ($taytorat x)))
641 ((and (not $keepfloat)
642 (or (pfloatp (cadr x)) (pfloatp (cddr x))))
643 (cdr (ratrep* ($ratdisrep x))))
644 ((sublis temp (cdr x)))))
645 (t (cdr (ratrep* ($ratdisrep x))))))
646 ((assolike x genpairs))
647 (t (setq x (littlefr1 x))
648 (cond ((assolike x genpairs))
649 (t (newsym x))))))
652 (defun putonvlist (x)
653 (push x vlist)
654 (and $algebraic
655 (setq x (assolike x tellratlist))
656 (mapc 'newvar1 x)))
658 (setq expsumsplit t) ;CONTROLS SPLITTING SUMS IN EXPONS
660 (defun newvarmexpt (x e flag)
661 ;; WHEN FLAG IS T, CALL RETURNS RATFORM
662 (prog (topexp)
663 (when (and (integerp e) (not flag))
664 (return (newvar1 (cadr x))))
665 (setq topexp 1)
666 top (cond
668 ;; X=B^N FOR N A NUMBER
669 ((integerp e)
670 (setq topexp (* topexp e))
671 (setq x (cadr x)))
672 ((atom e) nil)
674 ;; X=B^(P/Q) FOR P AND Q INTEGERS
675 ((eq (caar e) 'rat)
676 (cond ((or (minusp (cadr e)) (> (cadr e) 1))
677 (setq topexp (* topexp (cadr e)))
678 (setq x (list '(mexpt)
679 (cadr x)
680 (list '(rat) 1 (caddr e))))))
681 (cond ((or flag (numberp (cadr x)) ))
682 (*ratsimp*
683 (cond ((memalike x radlist) (return nil))
684 (t (setq radlist (cons x radlist))
685 (return (newvar1 (cadr x))))) )
686 ($algebraic (newvar1 (cadr x)))))
687 ;; X=B^(A*C)
688 ((eq (caar e) 'mtimes)
689 (cond
690 ((or
692 ;; X=B^(N *C)
693 (and (atom (cadr e))
694 (integerp (cadr e))
695 (setq topexp (* topexp (cadr e)))
696 (setq e (cddr e)))
698 ;; X=B^(P/Q *C)
699 (and (not (atom (cadr e)))
700 (eq (caaadr e) 'rat)
701 (not (equal 1 (cadadr e)))
702 (setq topexp (* topexp (cadadr e)))
703 (setq e (cons (list '(rat)
705 (caddr (cadr e)))
706 (cddr e)))))
707 (setq x
708 (list '(mexpt)
709 (cadr x)
710 (setq e (simplify (cons '(mtimes)
711 e)))))
712 (go top))))
714 ;; X=B^(A+C)
715 ((and (eq (caar e) 'mplus) expsumsplit) ;SWITCH CONTROLS
716 (setq ;SPLITTING EXPONENT
717 x ;SUMS
718 (cons
719 '(mtimes)
720 (mapcar
721 #'(lambda (ll)
722 (list '(mexpt)
723 (cadr x)
724 (simplify (list '(mtimes)
725 topexp
726 ll))))
727 (cdr e))))
728 (cond (flag (return (prep1 x)))
729 (t (return (newvar1 x))))))
730 (cond (flag nil)
731 ((equal 1 topexp)
732 (cond ((or (atom x)
733 (not (eq (caar x) 'mexpt)))
734 (newvar1 x))
735 ((or (memalike x varlist) (memalike x vlist))
736 nil)
737 (t (cond ((or (atom x) (null *fnewvarsw))
738 (putonvlist x))
739 (t (setq x (littlefr1 x))
740 (mapc #'newvar1 (cdr x))
741 (or (memalike x vlist)
742 (memalike x varlist)
743 (putonvlist x)))))))
744 (t (newvar1 x)))
745 (return
746 (cond
747 ((null flag) nil)
748 ((equal 1 topexp)
749 (cond
750 ((and (not (atom x)) (eq (caar x) 'mexpt))
751 (cond ((assolike x genpairs))
752 ;; *** SHOULD ONLY GET HERE IF CALLED FROM FR1. *FNEWVARSW=NIL
753 (t (setq x (littlefr1 x))
754 (cond ((assolike x genpairs))
755 (t (newsym x))))))
756 (t (prep1 x))))
757 (t (ratexpt (prep1 x) topexp))))))
759 (defun newvar1 (x)
760 (cond ((numberp x) nil)
761 ((memalike x varlist) nil)
762 ((memalike x vlist) nil)
763 ((atom x) (putonvlist x))
764 ((member (caar x)
765 '(mplus mtimes rat mdifference
766 mquotient mminus bigfloat) :test #'eq)
767 (mapc #'newvar1 (cdr x)))
768 ((eq (caar x) 'mexpt)
769 (newvarmexpt x (caddr x) nil))
770 ((eq (caar x) 'mrat)
771 (and *withinratf* (member 'trunc (cdddar x) :test #'eq) (throw 'ratf '%%))
772 (cond ($ratfac (mapc 'newvar3 (caddar x)))
773 (t (mapc #'newvar1 (reverse (caddar x))))))
774 (t (cond (*fnewvarsw (setq x (littlefr1 x))
775 (mapc #'newvar1 (cdr x))
776 (or (memalike x vlist)
777 (memalike x varlist)
778 (putonvlist x)))
779 (t (putonvlist x))))))
781 (defun newvar3 (x)
782 (or (memalike x vlist)
783 (memalike x varlist)
784 (putonvlist x)))
786 (defun fr1 (x varlist) ;put radicands on initial varlist?
787 (prog (genvar $norepeat *ratsimp* radlist vlist nvarlist ovarlist genpairs)
788 (newvar1 x)
789 (setq nvarlist (mapcar #'fr-args vlist))
790 (cond ((not *ratsimp*) ;*ratsimp* not set for initial varlist
791 (setq varlist (nconc (sortgreat vlist) varlist))
792 (return (rdis (cdr (ratrep* x))))))
793 (setq ovarlist (nconc vlist varlist)
794 vlist nil)
795 (mapc #'newvar1 nvarlist) ;*RATSIMP*=T PUTS RADICANDS ON VLIST
796 (setq nvarlist (nconc nvarlist varlist) ; RADICALS ON RADLIST
797 varlist (nconc (sortgreat vlist) (radsort radlist) varlist))
798 (orderpointer varlist)
799 (setq genpairs (mapcar #'(lambda (x y) (cons x (rget y))) varlist genvar))
800 (let (($algebraic $algebraic) ($ratalgdenom $ratalgdenom) radlist)
801 (and (not $algebraic)
802 (some #'algpget varlist) ;NEEDS *RATSIMP*=T
803 (setq $algebraic t $ratalgdenom nil))
804 (ratsetup varlist genvar)
805 (setq genpairs
806 (mapcar #'(lambda (x y) (cons x (prep1 y))) ovarlist nvarlist))
807 (setq x (rdis (prep1 x)))
808 (cond (radlist ;rational radicands
809 (setq *ratsimp* nil)
810 (setq x (ratsimp (simplify x) nil nil)))))
811 (return x)))
813 (defun ratsimp (x varlist genvar) ($ratdisrep (ratf x)))
815 (defun littlefr1 (x)
816 (cons (remove 'simp (car x) :test #'eq) (mapfr1 (cdr x) nil)))
818 ;;IF T RATSIMP FACTORS RADICANDS AND LOGANDS
819 (defmvar fr-factor nil)
821 (defun fr-args (x) ;SIMP (A/B)^N TO A^N/B^N ?
822 (cond ((atom x)
823 (when (eq x '$%i) (setq *ratsimp* t)) ;indicates algebraic present
825 (t (setq *ratsimp* t) ;FLAG TO CHANGED ELMT.
826 (simplify (zp (cons (remove 'simp (car x) :test #'eq)
827 (if (or (radfunp x nil) (eq (caar x) '%log))
828 (cons (if fr-factor (factor (cadr x))
829 (fr1 (cadr x) varlist))
830 (cddr x))
831 (let (modulus)
832 (mapfr1 (cdr x) varlist)))))))))
834 ;;SIMPLIFY MEXPT'S & RATEXPAND EXPONENT
836 (defun zp (x)
837 (if (and (mexptp x) (not (atom (caddr x))))
838 (list (car x) (cadr x)
839 (let ((varlist varlist) *ratsimp*)
840 ($ratexpand (caddr x))))
843 (defun newsym (e)
844 (prog (g p)
845 (when (setq g (assolike e genpairs))
846 (return g))
847 (setq g (gensym-readable e))
848 (putprop g e 'disrep)
849 (push e varlist)
850 (push (cons e (rget g)) genpairs)
851 (valput g (if genvar (1- (valget (car genvar))) 1))
852 (push g genvar)
853 (when (setq p (and $algebraic (algpget e)))
854 (algordset p genvar)
855 (putprop g p 'tellrat))
856 (return (rget g))))
858 ;; Any program which calls RATF on
859 ;; a floating point number but does not wish to see "RAT replaced ..."
860 ;; message, must bind $RATPRINT to NIL.
862 (defmvar $ratprint t)
864 (defmvar $ratepsilon 2e-15)
866 ;; This control of conversion from float to rational appears to be explained
867 ;; nowhere. - RJF
869 (defun maxima-rationalize (x)
870 (cond ((not (floatp x)) x)
871 ;; Handle denormalized floats -- see maxima-discuss 2021-04-27 and bug 3777
872 ((and (not (= x 0.0)) (< (abs x) COMMON-LISP:LEAST-POSITIVE-NORMALIZED-DOUBLE-FLOAT))
873 (let ((r ($rationalize x)))
874 (cons (cadr r) (caddr r))))
875 ((< x 0.0)
876 (setq x (ration1 (* -1.0 x)))
877 (rplaca x (* -1 (car x))))
878 (t (ration1 x))))
880 (defun ration1 (x)
881 (let ((rateps (if (not (floatp $ratepsilon))
882 ($float $ratepsilon)
883 $ratepsilon)))
884 (or (and (zerop x) (cons 0 1))
885 (prog (y a)
886 (return
887 ;; I (rtoy) think this is computing a continued fraction
888 ;; expansion of the given float.
890 ;; FIXME? CMUCL used to use this routine for its
891 ;; RATIONALIZE function, but there were known bugs in
892 ;; that implementation, where the result was not very
893 ;; accurate. Unfortunately, I can't find the example
894 ;; that demonstrates this. In any case, CMUCL replaced
895 ;; it with an algorithm based on the code in Clisp, which
896 ;; was much better.
897 (do ((xx x (setq y (/ 1.0 (- xx (float a x)))))
898 (num (setq a (floor x)) (+ (* (setq a (floor y)) num) onum))
899 (den 1 (+ (* a den) oden))
900 (onum 1 num)
901 (oden 0 den))
902 ((or (zerop (- xx (float a x)))
903 (and (not (zerop den))
904 (not (> (abs (/ (- x (/ (float num x) (float den x))) x)) rateps))))
905 (cons num den))))))))
907 (defun prepfloat (f)
908 (cond (modulus (merror (intl:gettext "rat: can't rationalize ~M when modulus = ~M") f modulus))
909 ($ratprint (mtell (intl:gettext "~&rat: replaced ~A by") f)))
910 (setq f (maxima-rationalize f))
911 (when $ratprint
912 (mtell " ~A/~A = ~A~%" (car f) (cdr f) (fpcofrat1 (car f) (cdr f))))
915 (defun pdisrep (p)
916 (if (atom p)
918 (pdisrep+ (pdisrep2 (cdr p) (get (car p) 'disrep)))))
920 (defun pdisrep! (n var)
921 (cond ((zerop n) 1)
922 ((equal n 1) (cond ((atom var) var)
923 ((or (eq (caar var) 'mtimes)
924 (eq (caar var) 'mplus))
925 (copy-list var))
926 (t var)))
927 ((eql var 1) 1)
928 (t (list '(mexpt ratsimp) var n))))
930 (defun pdisrep+ (p)
931 (cond ((null (cdr p)) (car p))
932 (t (let ((a (last p)))
933 (cond ((mplusp (car a))
934 (rplacd a (cddar a))
935 (rplaca a (cadar a))))
936 (cons '(mplus ratsimp) p)))))
938 (defun pdisrep* (a b)
939 (cond ((equal a 1) b)
940 ((equal b 1) a)
941 (t (cons '(mtimes ratsimp) (nconc (pdisrep*chk a) (pdisrep*chk b))))))
943 (defun pdisrep*chk (a)
944 (if (mtimesp a) (cdr a) (ncons a)))
946 (defun pdisrep2 (p var)
947 (cond ((null p) nil)
948 ($ratexpand (pdisrep2expand p var))
949 (t (do ((l () (cons (pdisrep* (pdisrep (cadr p)) (pdisrep! (car p) var)) l))
950 (p p (cddr p)))
951 ((null p) (nreverse l))))))
953 ;; IF $RATEXPAND IS TRUE, (X+1)*(Y+1) WILL DISPLAY AS
954 ;; XY + Y + X + 1 OTHERWISE, AS (X+1)Y + X + 1
955 (defmvar $ratexpand nil)
957 (defmfun $ratexpand (x)
958 (if (mbagp x)
959 (cons (car x) (mapcar '$ratexpand (cdr x)))
960 (let (($ratexpand t) ($ratfac nil))
961 (ratdisrep (ratf x)))))
963 (defun pdisrep*expand (a b)
964 (cond ((equal a 1) (list b))
965 ((equal b 1) (list a))
966 ((or (atom a) (not (eq (caar a) 'mplus)))
967 (list (cons (quote (mtimes ratsimp))
968 (nconc (pdisrep*chk a) (pdisrep*chk b)))))
969 (t (mapcar #'(lambda (z) (if (equal z 1) b
970 (cons '(mtimes ratsimp)
971 (nconc (pdisrep*chk z)
972 (pdisrep*chk b)))))
973 (cdr a)))))
975 (defun pdisrep2expand (p var)
976 (cond ((null p) nil)
977 (t (nconc (pdisrep*expand (pdisrep (cadr p)) (pdisrep! (car p) var))
978 (pdisrep2expand (cddr p) var)))))
981 (defmvar $ratdenomdivide t)
983 (defmfun $ratdisrep (x)
984 (cond ((mbagp x)
985 ;; Distribute over lists, equations, and matrices.
986 (cons (car x) (mapcar #'$ratdisrep (cdr x))))
987 ((not ($ratp x)) x)
989 (setq x (ratdisrepd x))
990 (if (and (not (atom x))
991 (member 'trunc (cdar x) :test #'eq))
992 (cons (delete 'trunc (copy-list (car x)) :count 1 :test #'eq)
993 (cdr x))
994 x))))
996 ;; RATDISREPD is needed by DISPLA. - JPG
997 (defun ratdisrepd (x)
998 (mapc #'(lambda (y z) (putprop y z (quote disrep)))
999 (cadddr (car x))
1000 (caddar x))
1001 (let ((varlist (caddar x)))
1002 (if (member 'trunc (car x) :test #'eq)
1003 (srdisrep x)
1004 (cdisrep (cdr x)))))
1006 (defun cdisrep (x &aux n d sign)
1007 (cond ((pzerop (car x)) 0)
1008 ((or (equal 1 (cdr x)) (floatp (cdr x))) (pdisrep (car x)))
1009 (t (setq sign (cond ($ratexpand (setq n (pdisrep (car x))) 1)
1010 ((pminusp (car x))
1011 (setq n (pdisrep (pminus (car x)))) -1)
1012 (t (setq n (pdisrep (car x))) 1)))
1013 (setq d (pdisrep (cdr x)))
1014 (cond ((and (numberp n) (numberp d))
1015 (list '(rat) (* sign n) d))
1016 ((and $ratdenomdivide $ratexpand
1017 (not (atom n))
1018 (eq (caar n) 'mplus))
1019 (fancydis n d))
1020 ((numberp d)
1021 (list '(mtimes ratsimp)
1022 (list '(rat) sign d) n))
1023 ((equal sign -1)
1024 (cons '(mtimes ratsimp)
1025 (cond ((numberp n)
1026 (list (* n -1)
1027 (list '(mexpt ratsimp) d -1)))
1028 (t (list sign n (list '(mexpt ratsimp) d -1))))))
1029 ((equal n 1)
1030 (list '(mexpt ratsimp) d -1))
1031 (t (list '(mtimes ratsimp) n
1032 (list '(mexpt ratsimp) d -1)))))))
1035 ;; FANCYDIS GOES THROUGH EACH TERM AND DIVIDES IT BY THE DENOMINATOR.
1037 (defun fancydis (n d)
1038 (setq d (simplify (list '(mexpt) d -1)))
1039 (simplify (cons '(mplus)
1040 (mapcar #'(lambda (z) ($ratdisrep (ratf (list '(mtimes) z d))))
1041 (cdr n)))))
1044 (defun compatvarl (a b c d)
1045 (cond ((null a) nil)
1046 ((or (null b) (null c) (null d)) (throw 'compatvl nil))
1047 ((alike1 (car a) (car b))
1048 (setq a (compatvarl (cdr a) (cdr b) (cdr c) (cdr d)))
1049 (if (eq (car c) (car d))
1051 (cons (cons (car c) (car d)) a)))
1052 (t (compatvarl a (cdr b) c (cdr d)))))
1054 (defun newvar (l &aux vlist)
1055 (newvar1 l)
1056 (setq varlist (nconc (sortgreat vlist) varlist)))
1058 (defun sortgreat (l)
1059 (and l (nreverse (stable-sort l 'great))));FIXME consider a total order function with #'sort
1061 (defun fnewvar (l &aux (*fnewvarsw t))
1062 (newvar l))
1064 (defun nestlev (exp)
1065 (if (atom exp)
1067 (do ((m (nestlev (cadr exp)) (max m (nestlev (car l))))
1068 (l (cddr exp) (cdr l)))
1069 ((null l) (1+ m)))))
1071 (defun radsort (l)
1072 (sort l #'(lambda (a b)
1073 (let ((na (nestlev a)) (nb (nestlev b)))
1074 (cond ((< na nb) t)
1075 ((> na nb) nil)
1076 (t (great b a)))))))
1078 ;; THIS IS THE END OF THE NEW RATIONAL FUNCTION PACKAGE PART 5
1079 ;; IT INCLUDES THE CONVERSION AND TOP-LEVEL ROUTINES USED
1080 ;; BY THE REST OF THE FUNCTIONS.