1 transfor.mac is from the book "Perturbation Methods, Bifurcation
2 Theory and Computer Algebra" by Rand & Armbruster (Springer 1987)
4 The procedure transform() performs an arbitrary (not necessarily
5 linear) coordinate transformation on a system of differential
8 The example is from p43. maxima-5.9.0 cvs reproduces the
11 (C1) load("./transfor.mac");
14 ENTER NUMBER OF EQUATIONS
16 ENTER SYMBOL FOR ORIGINAL VARIABLE 1
18 ENTER SYMBOL FOR ORIGINAL VARIABLE 2
20 ENTER SYMBOL FOR ORIGINAL VARIABLE 3
22 ENTER SYMBOL FOR TRANSFORMED VARIABLE 1
24 ENTER SYMBOL FOR TRANSFORMED VARIABLE 2
26 ENTER SYMBOL FOR TRANSFORMED VARIABLE 3
28 THE RHS'S OF THE D.E.'S ARE FUNCTIONS OF THE ORIGINAL VARIABLES:
36 D y /DT = - x z - y + r x
41 THE TRANSFORMATION IS ENTERED NEXT:
42 ENTER x AS A FUNCTION OF THE NEW VARIABLES
46 ENTER y AS A FUNCTION OF THE NEW VARIABLES
52 ENTER z AS A FUNCTION OF THE NEW VARIABLES
56 du s (u w + (1 - r) u) + s v (w - r + 1)
57 (D2) [[-- = - -------------------------------------,
61 dv s ((r - 1) u - u w) + v (s (- w + r + 1) + s + 1)
62 -- = - --------------------------------------------------,
66 dw s (b w - u ) + v + (u - s u) v
67 -- = - -------------------------------]]