Fix bug #2837: ev causes bogus WNA checks for sum, product, define and ":"
[maxima.git] / src / defint.lisp
blob59547caeaa4ce34d262005efe7f7c99ad86ab46e
1 ;; -*- Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- ;;;;
2 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3 ;;; The data in this file contains enhancments. ;;;;;
4 ;;; ;;;;;
5 ;;; Copyright (c) 1984,1987 by William Schelter,University of Texas ;;;;;
6 ;;; All rights reserved ;;;;;
7 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
8 ;;; (c) copyright 1982 massachusetts institute of technology ;;;
9 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
11 (in-package :maxima)
13 (macsyma-module defint)
15 ;;; this is the definite integration package.
16 ;; defint does definite integration by trying to find an
17 ;;appropriate method for the integral in question. the first thing that
18 ;;is looked at is the endpoints of the problem.
20 ;; i(grand,var,a,b) will be used for integrate(grand,var,a,b)
22 ;; References are to "Evaluation of Definite Integrals by Symbolic
23 ;; Manipulation", by Paul S. Wang,
24 ;; (http://www.lcs.mit.edu/publications/pubs/pdf/MIT-LCS-TR-092.pdf)
26 ;; nointegrate is a macsyma level flag which inhibits indefinite
27 ;;integration.
28 ;; abconv is a macsyma level flag which inhibits the absolute
29 ;;convergence test.
31 ;; $defint is the top level function that takes the user input
32 ;;and does minor changes to make the integrand ready for the package.
34 ;; next comes defint, which is the function that does the
35 ;;integration. it is often called recursively from the bowels of the
36 ;;package. defint does some of the easy cases and dispatches to:
38 ;; dintegrate. this program first sees if the limits of
39 ;;integration are 0,inf or minf,inf. if so it sends the problem to
40 ;;ztoinf or mtoinf, respectively.
41 ;; else, dintegrate tries:
43 ;; intsc1 - does integrals of sin's or cos's or exp(%i var)'s
44 ;; when the interval is 0,2 %pi or 0,%pi.
45 ;; method is conversion to rational function and find
46 ;; residues in the unit circle. [wang, pp 107-109]
48 ;; ratfnt - does rational functions over finite interval by
49 ;; doing polynomial part directly, and converting
50 ;; the rational part to an integral on 0,inf and finding
51 ;; the answer by residues.
53 ;; zto1 - i(x^(k-1)*(1-x)^(l-1),x,0,1) = beta(k,l) or
54 ;; i(log(x)*x^(x-1)*(1-x)^(l-1),x,0,1) = psi...
55 ;; [wang, pp 116,117]
57 ;; dintrad- i(x^m/(a*x^2+b*x+c)^(n+3/2),x,0,inf) [wang, p 74]
59 ;; dintlog- i(log(g(x))*f(x),x,0,inf) = 0 (by symmetry) or
60 ;; tries an integration by parts. (only routine to
61 ;; try integration by parts) [wang, pp 93-95]
63 ;; dintexp- i(f(exp(k*x)),x,a,inf) = i(f(x+1)/(x+1),x,0,inf)
64 ;; or i(f(x)/x,x,0,inf)/k. First case hold for a=0;
65 ;; the second for a=minf. [wang 96-97]
67 ;;dintegrate also tries indefinite integration based on certain
68 ;;predicates (such as abconv) and tries breaking up the integrand
69 ;;over a sum or tries a change of variable.
71 ;; ztoinf is the routine for doing integrals over the range 0,inf.
72 ;; it goes over a series of routines and sees if any will work:
74 ;; scaxn - sc(b*x^n) (sc stands for sin or cos) [wang, pp 81-83]
76 ;; ssp - a*sc^n(r*x)/x^m [wang, pp 86,87]
78 ;; zmtorat- rational function. done by multiplication by plog(-x)
79 ;; and finding the residues over the keyhole contour
80 ;; [wang, pp 59-61]
82 ;; log*rat- r(x)*log^n(x) [wang, pp 89-92]
84 ;; logquad0 log(x)/(a*x^2+b*x+c) uses formula
85 ;; i(log(x)/(x^2+2*x*a*cos(t)+a^2),x,0,inf) =
86 ;; t*log(a)/sin(t). a better formula might be
87 ;; i(log(x)/(x+b)/(x+c),x,0,inf) =
88 ;; (log^2(b)-log^2(c))/(2*(b-c))
90 ;; batapp - x^(p-1)/(b*x^n+a)^m uses formula related to the beta
91 ;; function [wang, p 71]
92 ;; there is also a special case when m=1 and a*b<0
93 ;; see [wang, p 65]
95 ;; sinnu - x^-a*n(x)/d(x) [wang, pp 69-70]
97 ;; ggr - x^r*exp(a*x^n+b)
99 ;; dintexp- see dintegrate
101 ;; ztoinf also tries 1/2*mtoinf if the integrand is an even function
103 ;; mtoinf is the routine for doing integrals on minf,inf.
104 ;; it too tries a series of routines and sees if any succeed.
106 ;; scaxn - when the integrand is an even function, see ztoinf
108 ;; mtosc - exp(%i*m*x)*r(x) by residues on either the upper half
109 ;; plane or the lower half plane, depending on whether
110 ;; m is positive or negative.
112 ;; zmtorat- does rational function by finding residues in upper
113 ;; half plane
115 ;; dintexp- see dintegrate
117 ;; rectzto%pi2 - poly(x)*rat(exp(x)) by finding residues in
118 ;; rectangle [wang, pp98-100]
120 ;; ggrm - x^r*exp((x+a)^n+b)
122 ;; mtoinf also tries 2*ztoinf if the integrand is an even function.
124 (load-macsyma-macros rzmac)
126 (declare-top (special *def2* pcprntd *mtoinf* rsn*
127 sn* sd* leadcoef checkfactors
128 *nodiverg exp1
129 *ul1* *ll1* *dflag bptu bptd plm* zn
130 *updn ul ll exp pe* pl* rl* pl*1 rl*1
131 loopstop* var nn* nd* dn* p*
132 factors rlm*
133 $trigexpandplus $trigexpandtimes
134 plogabs *scflag*
135 *sin-cos-recur* *rad-poly-recur* *dintlog-recur*
136 *dintexp-recur* defintdebug *defint-assumptions*
137 *current-assumptions*
138 *global-defint-assumptions*)
139 ;;;rsn* is in comdenom. does a ratsimp of numerator.
140 ;expvar
141 (special $intanalysis $abconvtest $noprincipal $nointegrate)
142 ;impvar
143 (special $solveradcan $solvetrigwarn *roots *failures
144 $logabs $tlimswitch $maxposex $maxnegex
145 $trigsign $savefactors $radexpand $breakup $%emode
146 $float $exptsubst dosimp context rp-polylogp
147 %p%i half%pi %pi2 half%pi3 varlist genvar
148 $domain $m1pbranch errorsw
149 limitp $algebraic
150 ;;LIMITP T Causes $ASKSIGN to do special things
151 ;;For DEFINT like eliminate epsilon look for prin-inf
152 ;;take realpart and imagpart.
153 integer-info
154 ;;If LIMITP is non-null ask-integer conses
155 ;;its assumptions onto this list.
156 generate-atan2))
157 ;If this switch is () then RPART returns ATAN's
158 ;instead of ATAN2's
160 (declare-top (special infinities real-infinities infinitesimals))
162 ;;These are really defined in LIMIT but DEFINT uses them also.
163 (cond ((not (boundp 'infinities))
164 (setq infinities '($inf $minf $infinity))
165 (setq real-infinities '($inf $minf))
166 (setq infinitesimals '($zeroa $zerob))))
168 (defmvar $intanalysis t
169 "When @code{true}, definite integration tries to find poles in the integrand
170 in the interval of integration.")
172 (defmvar defintdebug () "If true Defint prints out debugging information")
174 (defmvar integerl nil
175 "An integer-list for non-atoms found out to be `integer's")
177 (defmvar nonintegerl nil
178 "A non-integer-list for non-atoms found out to be `noninteger's")
180 ;; Not really sure what this is meant to do, but it's used by MTORAT,
181 ;; KEYHOLE, and POLELIST.
182 (defvar *semirat* nil)
184 (defmfun $defint (exp var ll ul)
186 ;; Distribute $defint over equations, lists, and matrices.
187 (cond ((mbagp exp)
188 (return-from $defint
189 (simplify
190 (cons (car exp)
191 (mapcar #'(lambda (e)
192 (simplify ($defint e var ll ul)))
193 (cdr exp)))))))
195 (let ((*global-defint-assumptions* ())
196 (integer-info ()) (integerl integerl) (nonintegerl nonintegerl))
197 (with-new-context (context)
198 (unwind-protect
199 (let ((*defint-assumptions* ()) (*def2* ()) (*rad-poly-recur* ())
200 (*sin-cos-recur* ()) (*dintexp-recur* ()) (*dintlog-recur* 0.)
201 (ans nil) (orig-exp exp) (orig-var var)
202 (orig-ll ll) (orig-ul ul)
203 (pcprntd nil) (*nodiverg nil) ($logabs t) ; (limitp t)
204 (rp-polylogp ())
205 ($%edispflag nil) ; to get internal representation
206 ($m1pbranch ())) ;Try this out.
208 (make-global-assumptions) ;sets *global-defint-assumptions*
209 (setq exp (ratdisrep exp))
210 (setq var (ratdisrep var))
211 (setq ll (ratdisrep ll))
212 (setq ul (ratdisrep ul))
213 (cond (($constantp var)
214 (merror (intl:gettext "defint: variable of integration cannot be a constant; found ~M") var))
215 (($subvarp var) (setq var (gensym))
216 (setq exp ($substitute var orig-var exp))))
217 (cond ((not (atom var))
218 (merror (intl:gettext "defint: variable of integration must be a simple or subscripted variable.~%defint: found ~M") var))
219 ((or (among var ul)
220 (among var ll))
221 (setq var (gensym))
222 (setq exp ($substitute var orig-var exp))))
223 (unless (lenient-extended-realp ll)
224 (merror (intl:gettext "defint: lower limit of integration must be real; found ~M") ll))
225 (unless (lenient-extended-realp ul)
226 (merror (intl:gettext "defint: upper limit of integration must be real; found ~M") ul))
228 (cond ((setq ans (defint exp var ll ul))
229 (setq ans (subst orig-var var ans))
230 (cond ((atom ans) ans)
231 ((and (free ans '%limit)
232 (free ans '%integrate)
233 (or (not (free ans '$inf))
234 (not (free ans '$minf))
235 (not (free ans '$infinity))))
236 (diverg))
237 ((not (free ans '$und))
238 `((%integrate) ,orig-exp ,orig-var ,orig-ll ,orig-ul))
239 (t ans)))
240 (t `((%integrate) ,orig-exp ,orig-var ,orig-ll ,orig-ul))))
241 (forget-global-assumptions)))))
243 (defun eezz (exp ll ul)
244 (cond ((or (polyinx exp var nil)
245 (catch 'pin%ex (pin%ex exp)))
246 (setq exp (antideriv exp))
247 ;; If antideriv can't do it, returns nil
248 ;; use limit to evaluate every answer returned by antideriv.
249 (cond ((null exp) nil)
250 (t (intsubs exp ll ul))))))
251 ;;;Hack the expression up for exponentials.
253 (defun sinintp (expr var)
254 ;; Is this expr a candidate for SININT ?
255 (let ((expr (factor expr))
256 (numer nil)
257 (denom nil))
258 (setq numer ($num expr))
259 (setq denom ($denom expr))
260 (cond ((polyinx numer var nil)
261 (cond ((and (polyinx denom var nil)
262 (deg-lessp denom var 2))
263 t)))
264 ;;ERF type things go here.
265 ((let ((exponent (%einvolve numer)))
266 (and (polyinx exponent var nil)
267 (deg-lessp exponent var 2)))
268 (cond ((free denom var)
269 t))))))
271 (defun deg-lessp (expr var power)
272 (cond ((or (atom expr)
273 (mnump expr)) t)
274 ((or (mtimesp expr)
275 (mplusp expr))
276 (do ((ops (cdr expr) (cdr ops)))
277 ((null ops) t)
278 (cond ((not (deg-lessp (car ops) var power))
279 (return ())))))
280 ((mexptp expr)
281 (and (or (not (alike1 (cadr expr) var))
282 (and (numberp (caddr expr))
283 (not (eq (asksign (m+ power (m- (caddr expr))))
284 '$negative))))
285 (deg-lessp (cadr expr) var power)))
286 ((and (consp expr)
287 (member 'array (car expr))
288 (not (eq var (caar expr))))
289 ;; We have some subscripted variable that's not our variable
290 ;; (I think), so it's deg-lessp.
292 ;; FIXME: Is this the best way to handle this? Are there
293 ;; other cases we're mising here?
294 t)))
296 (defun antideriv (a)
297 (let ((limitp ())
298 (ans ())
299 (generate-atan2 ()))
300 (setq ans (sinint a var))
301 (cond ((among '%integrate ans) nil)
302 (t (simplify ans)))))
304 ;; This routine tries to take a limit a couple of ways.
305 (defun get-limit (exp var val &optional (dir '$plus dir?))
306 (let ((ans (if dir?
307 (funcall #'limit-no-err exp var val dir)
308 (funcall #'limit-no-err exp var val))))
309 (if (and ans (not (among '%limit ans)))
311 (when (member val '($inf $minf) :test #'eq)
312 (setq ans (limit-no-err (maxima-substitute (m^t var -1) var exp)
315 (if (eq val '$inf) '$plus '$minus)))
316 (if (among '%limit ans) nil ans)))))
318 (defun limit-no-err (&rest argvec)
319 (declare (special errorsw))
320 (let ((errorsw t) (ans nil))
321 (setq ans (catch 'errorsw (apply #'$limit argvec)))
322 (if (eq ans t) nil ans)))
324 ;; test whether fun2 is inverse of fun1 at val
325 (defun test-inverse (fun1 var1 fun2 var2 val)
326 (let* ((out1 (let ((var var1))
327 (no-err-sub val fun1)))
328 (out2 (let ((var var2))
329 (no-err-sub out1 fun2))))
330 (alike1 val out2)))
332 ;; integration change of variable
333 (defun intcv (nv flag)
334 (let ((d (bx**n+a nv))
335 (*roots ()) (*failures ()) ($breakup ()))
336 (cond ((and (eq ul '$inf)
337 (equal ll 0)
338 (equal (cadr d) 1)) ())
339 ((eq var 'yx) ; new var cannot be same as old var
342 ;; This is a hack! If nv is of the form b*x^n+a, we can
343 ;; solve the equation manually instead of using solve.
344 ;; Why? Because solve asks us for the sign of yx and
345 ;; that's bogus.
346 (cond (d
347 ;; Solve yx = b*x^n+a, for x. Any root will do. So we
348 ;; have x = ((yx-a)/b)^(1/n).
349 (destructuring-bind (a n b)
351 (let ((root (power* (div (sub 'yx a) b) (inv n))))
352 (cond (t
353 (setq d root)
354 (cond (flag (intcv2 d nv))
355 (t (intcv1 d nv))))
356 ))))
358 (putprop 'yx t 'internal);; keep var from appearing in questions to user
359 (solve (m+t 'yx (m*t -1 nv)) var 1.)
360 (cond ((setq d ;; look for root that is inverse of nv
361 (do* ((roots *roots (cddr roots))
362 (root (caddar roots) (caddar roots)))
363 ((null root) nil)
364 (if (and (or (real-infinityp ll)
365 (test-inverse nv var root 'yx ll))
366 (or (real-infinityp ul)
367 (test-inverse nv var root 'yx ul)))
368 (return root))))
369 (cond (flag (intcv2 d nv))
370 (t (intcv1 d nv))))
371 (t ()))))))))
373 ;; d: original variable (var) as a function of 'yx
374 ;; ind: boolean flag
375 ;; nv: new variable ('yx) as a function of original variable (var)
376 (defun intcv1 (d nv)
377 (cond ((and (intcv2 d nv)
378 (equal ($imagpart *ll1*) 0)
379 (equal ($imagpart *ul1*) 0)
380 (not (alike1 *ll1* *ul1*)))
381 (let ((*def2* t))
382 (defint exp1 'yx *ll1* *ul1*)))))
384 ;; converts limits of integration to values for new variable 'yx
385 (defun intcv2 (d nv)
386 (intcv3 d nv)
387 (and (cond ((and (zerop1 (m+ ll ul))
388 (evenfn nv var))
389 (setq exp1 (m* 2 exp1)
390 *ll1* (limcp nv var 0 '$plus)))
391 (t (setq *ll1* (limcp nv var ll '$plus))))
392 (setq *ul1* (limcp nv var ul '$minus))))
394 ;; wrapper around limit, returns nil if
395 ;; limit not found (nounform returned), or undefined ($und or $ind)
396 (defun limcp (a b c d)
397 (let ((ans ($limit a b c d)))
398 (cond ((not (or (null ans)
399 (among '%limit ans)
400 (among '$ind ans)
401 (among '$und ans)))
402 ans))))
404 ;; rewrites exp, the integrand in terms of var,
405 ;; into exp1, the integrand in terms of 'yx.
406 (defun intcv3 (d nv)
407 (setq exp1 (m* (sdiff d 'yx)
408 (subst d var (subst 'yx nv exp))))
409 (setq exp1 (sratsimp exp1)))
411 (defun integrand-changevar (d newvar exp var)
412 (m* (sdiff d newvar)
413 (subst d var exp)))
415 (defun defint (exp var ll ul)
416 (let ((old-assumptions *defint-assumptions*)
417 (*current-assumptions* ())
418 (limitp t))
419 (unwind-protect
420 (prog ()
421 (setq *current-assumptions* (make-defint-assumptions 'noask))
422 (let ((exp (resimplify exp))
423 (var (resimplify var))
424 ($exptsubst t)
425 (loopstop* 0)
426 ;; D (not used? -- cwh)
427 ans nn* dn* nd* $noprincipal)
428 (cond ((setq ans (defint-list exp var ll ul))
429 (return ans))
430 ((or (zerop1 exp)
431 (alike1 ul ll))
432 (return 0.))
433 ((not (among var exp))
434 (cond ((or (member ul '($inf $minf) :test #'eq)
435 (member ll '($inf $minf) :test #'eq))
436 (diverg))
437 (t (setq ans (m* exp (m+ ul (m- ll))))
438 (return ans))))
439 ;; Look for integrals which involve log and exp functions.
440 ;; Maxima has a special algorithm to get general results.
441 ((and (setq ans (defint-log-exp exp var ll ul)))
442 (return ans)))
443 (let* ((exp (rmconst1 exp))
444 (c (car exp))
445 (exp (%i-out-of-denom (cdr exp))))
446 (cond ((and (not $nointegrate)
447 (not (atom exp))
448 (or (among 'mqapply exp)
449 (not (member (caar exp)
450 '(mexpt mplus mtimes %sin %cos
451 %tan %sinh %cosh %tanh
452 %log %asin %acos %atan
453 %cot %acot %sec
454 %asec %csc %acsc
455 %derivative) :test #'eq))))
456 ;; Call ANTIDERIV with logabs disabled,
457 ;; because the Risch algorithm assumes
458 ;; the integral of 1/x is log(x), not log(abs(x)).
459 ;; Why not just assume logabs = false within RISCHINT itself?
460 ;; Well, there's at least one existing result which requires
461 ;; logabs = true in RISCHINT, so try to make a minimal change here instead.
462 (cond ((setq ans (let ($logabs) (antideriv exp)))
463 (setq ans (intsubs ans ll ul))
464 (return (cond (ans (m* c ans)) (t nil))))
465 (t (return nil)))))
466 (setq exp (tansc exp))
467 (cond ((setq ans (initial-analysis exp var ll ul))
468 (return (m* c ans))))
469 (return nil))))
470 (restore-defint-assumptions old-assumptions *current-assumptions*))))
472 (defun defint-list (exp var ll ul)
473 (cond ((mbagp exp)
474 (let ((ans (cons (car exp)
475 (mapcar
476 #'(lambda (sub-exp)
477 (defint sub-exp var ll ul))
478 (cdr exp)))))
479 (cond (ans (simplify ans))
480 (t nil))))
481 (t nil)))
483 (defun initial-analysis (exp var ll ul)
484 (let ((pole (cond ((not $intanalysis)
485 '$no) ;don't do any checking.
486 (t (poles-in-interval exp var ll ul)))))
487 (cond ((eq pole '$no)
488 (cond ((and (oddfn exp var)
489 (or (and (eq ll '$minf)
490 (eq ul '$inf))
491 (eq ($sign (m+ ll ul))
492 '$zero))) 0)
493 (t (parse-integrand exp var ll ul))))
494 ((eq pole '$unknown) ())
495 (t (principal-value-integral exp var ll ul pole)))))
497 (defun parse-integrand (exp var ll ul)
498 (let (ans)
499 (cond ((setq ans (eezz exp ll ul)) ans)
500 ((and (ratp exp var)
501 (setq ans (method-by-limits exp var ll ul))) ans)
502 ((and (mplusp exp)
503 (setq ans (intbyterm exp t))) ans)
504 ((setq ans (method-by-limits exp var ll ul)) ans)
505 (t ()))))
507 (defun rmconst1 (e)
508 (cond ((not (freeof var e))
509 (partition e var 1))
510 (t (cons e 1))))
513 (defun method-by-limits (exp var ll ul)
514 (let ((old-assumptions *defint-assumptions*))
515 (setq *current-assumptions* (make-defint-assumptions 'noask))
516 ;;Should be a PROG inside of unwind-protect, but Multics has a compiler
517 ;;bug wrt. and I want to test this code now.
518 (unwind-protect
519 (cond ((and (and (eq ul '$inf)
520 (eq ll '$minf))
521 (mtoinf exp var)))
522 ((and (and (eq ul '$inf)
523 (equal ll 0.))
524 (ztoinf exp var)))
525 ;;;This seems((and (and (eq ul '$inf)
526 ;;;fairly losing (setq exp (subin (m+ ll var) exp))
527 ;;; (setq ll 0.))
528 ;;; (ztoinf exp var)))
529 ((and (equal ll 0.)
530 (freeof var ul)
531 (eq ($asksign ul) '$pos)
532 (zto1 exp)))
533 ;; ((and (and (equal ul 1.)
534 ;; (equal ll 0.)) (zto1 exp)))
535 (t (dintegrate exp var ll ul)))
536 (restore-defint-assumptions old-assumptions *defint-assumptions*))))
539 (defun dintegrate (exp var ll ul)
540 (let ((ans nil) (arg nil) (*scflag* nil)
541 (*dflag nil) ($%emode t))
542 ;;;NOT COMPLETE for sin's and cos's.
543 (cond ((and (not *sin-cos-recur*)
544 (oscip exp)
545 (setq *scflag* t)
546 (intsc1 ll ul exp)))
547 ((and (not *rad-poly-recur*)
548 (notinvolve exp '(%log))
549 (not (%einvolve exp))
550 (method-radical-poly exp var ll ul)))
551 ((and (not (equal *dintlog-recur* 2.))
552 (setq arg (involve exp '(%log)))
553 (dintlog exp arg)))
554 ((and (not *dintexp-recur*)
555 (setq arg (%einvolve exp))
556 (dintexp exp var)))
557 ((and (not (ratp exp var))
558 (setq ans (let (($trigexpandtimes nil)
559 ($trigexpandplus t))
560 ($trigexpand exp)))
561 (setq ans ($expand ans))
562 (not (alike1 ans exp))
563 (intbyterm ans t)))
564 ;; Call ANTIDERIV with logabs disabled,
565 ;; because the Risch algorithm assumes
566 ;; the integral of 1/x is log(x), not log(abs(x)).
567 ;; Why not just assume logabs = false within RISCHINT itself?
568 ;; Well, there's at least one existing result which requires
569 ;; logabs = true in RISCHINT, so try to make a minimal change here instead.
570 ((setq ans (let ($logabs) (antideriv exp)))
571 (intsubs ans ll ul))
572 (t nil))))
574 (defun method-radical-poly (exp var ll ul)
575 ;;;Recursion stopper
576 (let ((*rad-poly-recur* t) ;recursion stopper
577 (result ()))
578 (cond ((and (sinintp exp var)
579 (setq result (antideriv exp))
580 (intsubs result ll ul)))
581 ((and (ratp exp var)
582 (setq result (ratfnt exp))))
583 ((and (not *scflag*)
584 (not (eq ul '$inf))
585 (radicalp exp var)
586 (kindp34)
587 (setq result (cv exp))))
588 (t ()))))
590 (defun principal-value-integral (exp var ll ul poles)
591 (let ((anti-deriv ()))
592 (cond ((not (null (setq anti-deriv (antideriv exp))))
593 (cond ((not (null poles))
594 (order-limits 'ask)
595 (cond ((take-principal anti-deriv ll ul poles))
596 (t ()))))))))
598 ;; adds up integrals of ranges between each pair of poles.
599 ;; checks if whole thing is divergent as limits of integration approach poles.
600 (defun take-principal (anti-deriv ll ul poles &aux ans merged-list)
601 ;;; calling $logcontract causes antiderivative of 1/(1-x^5) to blow up
602 ;; (setq anti-deriv (cond ((involve anti-deriv '(%log))
603 ;; ($logcontract anti-deriv))
604 ;; (t anti-deriv)))
605 (setq ans 0.)
606 (setq merged-list (interval-list poles ll ul))
607 (do ((current-pole (cdr merged-list) (cdr current-pole))
608 (previous-pole merged-list (cdr previous-pole)))
609 ((null current-pole) t)
610 (setq ans (m+ ans
611 (intsubs anti-deriv (m+ (caar previous-pole) 'epsilon)
612 (m+ (caar current-pole) (m- 'epsilon))))))
614 (setq ans (get-limit (get-limit ans 'epsilon 0 '$plus) 'prin-inf '$inf))
615 ;;Return section.
616 (cond ((or (null ans)
617 (not (free ans '$infinity))
618 (not (free ans '$ind))) ())
619 ((or (among '$minf ans)
620 (among '$inf ans)
621 (among '$und ans))
622 (diverg))
623 (t (principal) ans)))
625 (defun interval-list (pole-list ll ul)
626 (let ((first (car (first pole-list)))
627 (last (caar (last pole-list))))
628 (cond ((eq ul last)
629 (if (eq ul '$inf)
630 (setq pole-list (subst 'prin-inf '$inf pole-list))))
631 (t (if (eq ul '$inf)
632 (setq ul 'prin-inf))
633 (setq pole-list (append pole-list (list (cons ul 'ignored))))))
634 (cond ((eq ll first)
635 (if (eq ll '$minf)
636 (setq pole-list (subst (m- 'prin-inf) '$minf pole-list))))
637 (t (if (eq ll '$minf)
638 (setq ll (m- 'prin-inf)))
639 (setq pole-list (append (list (cons ll 'ignored)) pole-list)))))
640 pole-list)
642 ;; Assumes EXP is a rational expression with no polynomial part and
643 ;; converts the finite integration to integration over a half-infinite
644 ;; interval. The substitution y = (x-a)/(b-x) is used. Equivalently,
645 ;; x = (b*y+a)/(y+1).
647 ;; (I'm guessing CV means Change Variable here.)
648 (defun cv (exp)
649 (if (not (or (real-infinityp ll) (real-infinityp ul)))
650 ;; FIXME! This is a hack. We apply the transformation with
651 ;; symbolic limits and then substitute the actual limits later.
652 ;; That way method-by-limits (usually?) sees a simpler
653 ;; integrand.
655 ;; See Bugs 938235 and 941457. These fail because $FACTOR is
656 ;; unable to factor the transformed result. This needs more
657 ;; work (in other places).
658 (let ((trans (integrand-changevar (m// (m+t 'll (m*t 'ul 'yx))
659 (m+t 1. 'yx))
660 'yx exp var)))
661 ;; If the limit is a number, use $substitute so we simplify
662 ;; the result. Do we really want to do this?
663 (setf trans (if (mnump ll)
664 ($substitute ll 'll trans)
665 (subst ll 'll trans)))
666 (setf trans (if (mnump ul)
667 ($substitute ul 'ul trans)
668 (subst ul 'ul trans)))
669 (method-by-limits trans 'yx 0. '$inf))
670 ()))
672 ;; Integrate rational functions over a finite interval by doing the
673 ;; polynomial part directly, and converting the rational part to an
674 ;; integral from 0 to inf. This is evaluated via residues.
675 (defun ratfnt (exp)
676 (let ((e (pqr exp)))
677 ;; PQR divides the rational expression and returns the quotient
678 ;; and remainder
679 (flet ((try-antideriv (e lo hi)
680 (let ((ans (antideriv e)))
681 (when ans
682 (intsubs ans lo hi)))))
684 (cond ((equal 0. (car e))
685 ;; No polynomial part
686 (let ((ans (try-antideriv exp ll ul)))
687 (if ans
689 (cv exp))))
690 ((equal 0. (cdr e))
691 ;; Only polynomial part
692 (eezz (car e) ll ul))
694 ;; A non-zero quotient and remainder. Combine the results
695 ;; together.
696 (let ((ans (try-antideriv (m// (cdr e) dn*) ll ul)))
697 (cond (ans
698 (m+t (eezz (car e) ll ul)
699 ans))
701 (m+t (eezz (car e) ll ul)
702 (cv (m// (cdr e) dn*)))))))))))
704 ;; I think this takes a rational expression E, and finds the
705 ;; polynomial part. A cons is returned. The car is the quotient and
706 ;; the cdr is the remainder.
707 (defun pqr (e)
708 (let ((varlist (list var)))
709 (newvar e)
710 (setq e (cdr (ratrep* e)))
711 (setq dn* (pdis (ratdenominator e)))
712 (setq e (pdivide (ratnumerator e) (ratdenominator e)))
713 (cons (simplify (rdis (car e))) (simplify (rdis (cadr e))))))
716 (defun intbyterm (exp *nodiverg)
717 (let ((saved-exp exp))
718 (cond ((mplusp exp)
719 (let ((ans (catch 'divergent
720 (andmapcar #'(lambda (new-exp)
721 (let ((*def2* t))
722 (defint new-exp var ll ul)))
723 (cdr exp)))))
724 (cond ((null ans) nil)
725 ((eq ans 'divergent)
726 (let ((*nodiverg nil))
727 (cond ((setq ans (antideriv saved-exp))
728 (intsubs ans ll ul))
729 (t nil))))
730 (t (sratsimp (m+l ans))))))
731 ;;;If leadop isn't plus don't do anything.
732 (t nil))))
734 (defun kindp34 nil
735 (numden exp)
736 (let* ((d dn*)
737 (a (cond ((and (zerop1 ($limit d var ll '$plus))
738 (eq (limit-pole (m+ exp (m+ (m- ll) var))
739 var ll '$plus)
740 '$yes))
742 (t nil)))
743 (b (cond ((and (zerop1 ($limit d var ul '$minus))
744 (eq (limit-pole (m+ exp (m+ ul (m- var)))
745 var ul '$minus)
746 '$yes))
748 (t nil))))
749 (or a b)))
751 (defun diverg nil
752 (cond (*nodiverg (throw 'divergent 'divergent))
753 (t (merror (intl:gettext "defint: integral is divergent.")))))
755 (defun make-defint-assumptions (ask-or-not)
756 (cond ((null (order-limits ask-or-not)) ())
757 (t (mapc 'forget *defint-assumptions*)
758 (setq *defint-assumptions* ())
759 (let ((sign-ll (cond ((eq ll '$inf) '$pos)
760 ((eq ll '$minf) '$neg)
761 (t ($sign ($limit ll)))))
762 (sign-ul (cond ((eq ul '$inf) '$pos)
763 ((eq ul '$minf) '$neg)
764 (t ($sign ($limit ul)))))
765 (sign-ul-ll (cond ((and (eq ul '$inf)
766 (not (eq ll '$inf))) '$pos)
767 ((and (eq ul '$minf)
768 (not (eq ll '$minf))) '$neg)
769 (t ($sign ($limit (m+ ul (m- ll))))))))
770 (cond ((eq sign-ul-ll '$pos)
771 (setq *defint-assumptions*
772 `(,(assume `((mgreaterp) ,var ,ll))
773 ,(assume `((mgreaterp) ,ul ,var)))))
774 ((eq sign-ul-ll '$neg)
775 (setq *defint-assumptions*
776 `(,(assume `((mgreaterp) ,var ,ul))
777 ,(assume `((mgreaterp) ,ll ,var))))))
778 (cond ((and (eq sign-ll '$pos)
779 (eq sign-ul '$pos))
780 (setq *defint-assumptions*
781 `(,(assume `((mgreaterp) ,var 0))
782 ,@*defint-assumptions*)))
783 ((and (eq sign-ll '$neg)
784 (eq sign-ul '$neg))
785 (setq *defint-assumptions*
786 `(,(assume `((mgreaterp) 0 ,var))
787 ,@*defint-assumptions*)))
788 (t *defint-assumptions*))))))
790 (defun restore-defint-assumptions (old-assumptions assumptions)
791 (do ((llist assumptions (cdr llist)))
792 ((null llist) t)
793 (forget (car llist)))
794 (do ((llist old-assumptions (cdr llist)))
795 ((null llist) t)
796 (assume (car llist))))
798 (defun make-global-assumptions ()
799 (setq *global-defint-assumptions*
800 (cons (assume '((mgreaterp) *z* 0.))
801 *global-defint-assumptions*))
802 ;; *Z* is a "zero parameter" for this package.
803 ;; Its also used to transform.
804 ;; limit(exp,var,val,dir) -- limit(exp,tvar,0,dir)
805 (setq *global-defint-assumptions*
806 (cons (assume '((mgreaterp) epsilon 0.))
807 *global-defint-assumptions*))
808 (setq *global-defint-assumptions*
809 (cons (assume '((mlessp) epsilon 1.0e-8))
810 *global-defint-assumptions*))
811 ;; EPSILON is used in principal value code to denote the familiar
812 ;; mathematical entity.
813 (setq *global-defint-assumptions*
814 (cons (assume '((mgreaterp) prin-inf 1.0e+8))
815 *global-defint-assumptions*)))
817 ;;; PRIN-INF Is a special symbol in the principal value code used to
818 ;;; denote an end-point which is proceeding to infinity.
820 (defun forget-global-assumptions ()
821 (do ((llist *global-defint-assumptions* (cdr llist)))
822 ((null llist) t)
823 (forget (car llist)))
824 (cond ((not (null integer-info))
825 (do ((llist integer-info (cdr llist)))
826 ((null llist) t)
827 (i-$remove `(,(cadar llist) ,(caddar llist)))))))
829 (defun order-limits (ask-or-not)
830 (cond ((or (not (equal ($imagpart ll) 0))
831 (not (equal ($imagpart ul) 0))) ())
832 (t (cond ((alike1 ll (m*t -1 '$inf))
833 (setq ll '$minf)))
834 (cond ((alike1 ul (m*t -1 '$inf))
835 (setq ul '$minf)))
836 (cond ((alike1 ll (m*t -1 '$minf))
837 (setq ll '$inf)))
838 (cond ((alike1 ul (m*t -1 '$minf))
839 (setq ul '$inf)))
840 (cond ((eq ll ul)
841 ; We have minf <= ll = ul <= inf
843 ((eq ul '$inf)
844 ; We have minf <= ll < ul = inf
846 ((eq ll '$minf)
847 ; We have minf = ll < ul < inf
849 ; Now substitute
851 ; var -> -var
852 ; ll -> -ul
853 ; ul -> inf
855 ; so that minf < ll < ul = inf
856 (setq exp (subin (m- var) exp))
857 (setq ll (m- ul))
858 (setq ul '$inf))
859 ((or (eq ll '$inf)
860 (equal (complm ask-or-not) -1))
861 ; We have minf <= ul < ll
863 ; Now substitute
865 ; exp -> -exp
866 ; ll <-> ul
868 ; so that minf <= ll < ul
869 (setq exp (m- exp))
870 (rotatef ll ul)))
871 t)))
873 (defun complm (ask-or-not)
874 (let ((askflag (cond ((eq ask-or-not 'ask) t)
875 (t nil)))
876 (a ()))
877 (cond ((alike1 ul ll) 0.)
878 ((eq (setq a (cond (askflag ($asksign ($limit (m+t ul (m- ll)))))
879 (t ($sign ($limit (m+t ul (m- ll)))))))
880 '$pos)
882 ((eq a '$neg) -1)
883 (t 1.))))
885 ;; Substitute a and b into integral e
887 ;; Looks for discontinuties in integral, and works around them.
888 ;; For example, in
890 ;; integrate(x^(2*n)*exp(-(x)^2),x) ==>
891 ;; -gamma_incomplete((2*n+1)/2,x^2)*x^(2*n+1)*abs(x)^(-2*n-1)/2
893 ;; the integral has a discontinuity at x=0.
895 (defun intsubs (e a b)
896 (let ((edges (cond ((not $intanalysis)
897 '$no) ;don't do any checking.
898 (t (discontinuities-in-interval
899 (let (($algebraic t))
900 (sratsimp e))
901 var a b)))))
903 (cond ((or (eq edges '$no)
904 (eq edges '$unknown))
905 (whole-intsubs e a b))
907 (do* ((l edges (cdr l))
908 (total nil)
909 (a1 (car l) (car l))
910 (b1 (cadr l) (cadr l)))
911 ((null (cdr l)) (if (every (lambda (x) x) total)
912 (m+l total)))
913 (push
914 (whole-intsubs e a1 b1)
915 total))))))
917 ;; look for terms with a negative exponent
919 ;; recursively traverses exp in order to find discontinuities such as
920 ;; erfc(1/x-x) at x=0
921 (defun discontinuities-denom (exp)
922 (cond ((atom exp) 1)
923 ((and (eq (caar exp) 'mexpt)
924 (not (freeof var (cadr exp)))
925 (not (member ($sign (caddr exp)) '($pos $pz))))
926 (m^ (cadr exp) (m- (caddr exp))))
928 (m*l (mapcar #'discontinuities-denom (cdr exp))))))
930 ;; returns list of places where exp might be discontinuous in var.
931 ;; list begins with ll and ends with ul, and include any values between
932 ;; ll and ul.
933 ;; return '$no or '$unknown if no discontinuities found.
934 (defun discontinuities-in-interval (exp var ll ul)
935 (let* ((denom (discontinuities-denom exp))
936 (roots (real-roots denom var)))
937 (cond ((eq roots '$failure)
938 '$unknown)
939 ((eq roots '$no)
940 '$no)
941 (t (do ((dummy roots (cdr dummy))
942 (pole-list nil))
943 ((null dummy)
944 (cond (pole-list
945 (append (list ll)
946 (sortgreat pole-list)
947 (list ul)))
948 (t '$no)))
949 (let ((soltn (caar dummy)))
950 ;; (multiplicity (cdar dummy)) ;; not used
951 (if (strictly-in-interval soltn ll ul)
952 (push soltn pole-list))))))))
955 ;; Carefully substitute the integration limits A and B into the
956 ;; expression E.
957 (defun whole-intsubs (e a b)
958 (cond ((easy-subs e a b))
959 (t (setq *current-assumptions*
960 (make-defint-assumptions 'ask)) ;get forceful!
961 (let (($algebraic t))
962 (setq e (sratsimp e))
963 (cond ((limit-subs e a b))
964 (t (same-sheet-subs e a b)))))))
966 ;; Try easy substitutions. Return NIL if we can't.
967 (defun easy-subs (e ll ul)
968 (cond ((or (infinityp ll) (infinityp ul))
969 ;; Infinite limits aren't easy
970 nil)
972 (cond ((or (polyinx e var ())
973 (and (not (involve e '(%log %asin %acos %atan %asinh %acosh %atanh %atan2
974 %gamma_incomplete %expintegral_ei)))
975 (free ($denom e) var)))
976 ;; It's easy if we have a polynomial. I (rtoy) think
977 ;; it's also easy if the denominator is free of the
978 ;; integration variable and also if the expression
979 ;; doesn't involve inverse functions.
981 ;; gamma_incomplete and expintegral_ie
982 ;; included because of discontinuity in
983 ;; gamma_incomplete(0, exp(%i*x)) and
984 ;; expintegral_ei(exp(%i*x))
986 ;; XXX: Are there other cases we've forgotten about?
988 ;; So just try to substitute the limits into the
989 ;; expression. If no errors are produced, we're done.
990 (let ((ll-val (no-err-sub ll e))
991 (ul-val (no-err-sub ul e)))
992 (cond ((or (eq ll-val t)
993 (eq ul-val t))
994 ;; no-err-sub has returned T. An error was catched.
995 nil)
996 ((and ll-val ul-val)
997 (m- ul-val ll-val))
998 (t nil))))
999 (t nil)))))
1001 (defun limit-subs (e ll ul)
1002 (cond ((involve e '(%atan %gamma_incomplete %expintegral_ei))
1003 ()) ; functions with discontinuities
1004 (t (setq e ($multthru e))
1005 (let ((a1 ($limit e var ll '$plus))
1006 (a2 ($limit e var ul '$minus)))
1007 (combine-ll-ans-ul-ans a1 a2)))))
1009 ;; check for divergent integral
1010 (defun combine-ll-ans-ul-ans (a1 a2)
1011 (cond ((member a1 '($inf $minf $infinity ) :test #'eq)
1012 (cond ((member a2 '($inf $minf $infinity) :test #'eq)
1013 (cond ((eq a2 a1) ())
1014 (t (diverg))))
1015 (t (diverg))))
1016 ((member a2 '($inf $minf $infinity) :test #'eq) (diverg))
1017 ((or (member a1 '($und $ind) :test #'eq)
1018 (member a2 '($und $ind) :test #'eq)) ())
1019 (t (m- a2 a1))))
1021 ;;;This function works only on things with ATAN's in them now.
1022 (defun same-sheet-subs (exp ll ul &aux ll-ans ul-ans)
1023 ;; POLES-IN-INTERVAL doesn't know about the poles of tan(x). Call
1024 ;; trigsimp to convert tan into sin/cos, which POLES-IN-INTERVAL
1025 ;; knows how to handle.
1027 ;; XXX Should we fix POLES-IN-INTERVAL instead?
1029 ;; XXX Is calling trigsimp too much? Should we just only try to
1030 ;; substitute sin/cos for tan?
1032 ;; XXX Should the result try to convert sin/cos back into tan? (A
1033 ;; call to trigreduce would do it, among other things.)
1034 (let* ((exp (mfuncall '$trigsimp exp))
1035 (poles (atan-poles exp ll ul)))
1036 ;;POLES -> ((mlist) ((mequal) ((%atan) foo) replacement) ......)
1037 ;;We can then use $SUBSTITUTE
1038 (setq ll-ans (limcp exp var ll '$plus))
1039 (setq exp (sratsimp ($substitute poles exp)))
1040 (setq ul-ans (limcp exp var ul '$minus))
1041 (if (and ll-ans
1042 ul-ans)
1043 (combine-ll-ans-ul-ans ll-ans ul-ans)
1044 nil)))
1046 (defun atan-poles (exp ll ul)
1047 `((mlist) ,@(atan-pole1 exp ll ul)))
1049 (defun atan-pole1 (exp ll ul &aux ipart)
1050 (cond
1051 ((mapatom exp) ())
1052 ((matanp exp) ;neglect multiplicity and '$unknowns for now.
1053 (desetq (exp . ipart) (trisplit exp))
1054 (cond
1055 ((not (equal (sratsimp ipart) 0)) ())
1056 (t (let ((pole (poles-in-interval (let (($algebraic t))
1057 (sratsimp (cadr exp)))
1058 var ll ul)))
1059 (cond ((and pole (not (or (eq pole '$unknown)
1060 (eq pole '$no))))
1061 (do ((l pole (cdr l)) (llist ()))
1062 ((null l) llist)
1063 (cond
1064 ((zerop1 (m- (caar l) ll)) t) ; don't worry about discontinuity
1065 ((zerop1 (m- (caar l) ul)) t) ; at boundary of integration
1066 (t (let ((low-lim ($limit (cadr exp) var (caar l) '$minus))
1067 (up-lim ($limit (cadr exp) var (caar l) '$plus)))
1068 (cond ((and (not (eq low-lim up-lim))
1069 (real-infinityp low-lim)
1070 (real-infinityp up-lim))
1071 (let ((change (if (eq low-lim '$minf)
1072 (m- '$%pi)
1073 '$%pi)))
1074 (setq llist (cons `((mequal simp) ,exp ,(m+ exp change))
1075 llist)))))))))))))))
1076 (t (do ((l (cdr exp) (cdr l))
1077 (llist ()))
1078 ((null l) llist)
1079 (setq llist (append llist (atan-pole1 (car l) ll ul)))))))
1081 (defun difapply (n d s fn1)
1082 (prog (k m r $noprincipal)
1083 (cond ((eq ($asksign (m+ (deg d) (m- s) (m- 2.))) '$neg)
1084 (return nil)))
1085 (setq $noprincipal t)
1086 (cond ((or (not (mexptp d))
1087 (not (numberp (setq r (caddr d)))))
1088 (return nil))
1089 ((and (equal n 1.)
1090 (eq fn1 'mtorat)
1091 (equal 1. (deg (cadr d))))
1092 (return 0.)))
1093 (setq m (deg (setq d (cadr d))))
1094 (setq k (m// (m+ s 2.) m))
1095 (cond ((eq (ask-integer (m// (m+ s 2.) m) '$any) '$yes)
1096 nil)
1097 (t (setq k (m+ 1 k))))
1098 (cond ((eq ($sign (m+ r (m- k))) '$pos)
1099 (return (diffhk fn1 n d k (m+ r (m- k))))))))
1101 (defun diffhk (fn1 n d r m)
1102 (prog (d1 *dflag)
1103 (setq *dflag t)
1104 (setq d1 (funcall fn1 n
1105 (m^ (m+t '*z* d) r)
1106 (m* r (deg d))))
1107 (cond (d1 (return (difap1 d1 r '*z* m 0.))))))
1109 (defun principal nil
1110 (cond ($noprincipal (diverg))
1111 ((not pcprntd)
1112 (format t "Principal Value~%")
1113 (setq pcprntd t))))
1115 ;; e is of form poly(x)*exp(m*%i*x)
1116 ;; s is degree of denominator
1117 ;; adds e to bptu or bptd according to sign of m
1118 (defun rib (e s)
1119 (let (*updn c)
1120 (cond ((or (mnump e) (constant e))
1121 (setq bptu (cons e bptu)))
1122 (t (setq e (rmconst1 e))
1123 (setq c (car e))
1124 (setq nn* (cdr e))
1125 (setq nd* s)
1126 (setq e (catch 'ptimes%e (ptimes%e nn* nd*)))
1127 (cond ((null e) nil)
1128 (t (setq e (m* c e))
1129 (cond (*updn (setq bptu (cons e bptu)))
1130 (t (setq bptd (cons e bptd))))))))))
1132 ;; check term is of form poly(x)*exp(m*%i*x)
1133 ;; n is degree of denominator
1134 (defun ptimes%e (term n)
1135 (cond ((and (mexptp term)
1136 (eq (cadr term) '$%e)
1137 (polyinx (caddr term) var nil)
1138 (eq ($sign (m+ (deg ($realpart (caddr term))) -1))
1139 '$neg)
1140 (eq ($sign (m+ (deg (setq nn* ($imagpart (caddr term))))
1141 -2.))
1142 '$neg))
1143 (cond ((eq ($asksign (ratdisrep (ratcoef nn* var))) '$pos)
1144 (setq *updn t))
1145 (t (setq *updn nil)))
1146 term)
1147 ((and (mtimesp term)
1148 (setq nn* (polfactors term))
1149 (or (null (car nn*))
1150 (eq ($sign (m+ n (m- (deg (car nn*)))))
1151 '$pos))
1152 (not (alike1 (cadr nn*) term))
1153 (ptimes%e (cadr nn*) n)
1154 term))
1155 (t (throw 'ptimes%e nil))))
1157 (defun csemidown (n d var)
1158 (let ((pcprntd t)) ;Not sure what to do about PRINCIPAL values here.
1159 (princip (res n d #'lowerhalf #'(lambda (x)
1160 (cond ((equal ($imagpart x) 0) t)
1161 (t ())))))))
1163 (defun lowerhalf (j)
1164 (eq ($asksign ($imagpart j)) '$neg))
1166 (defun upperhalf (j)
1167 (eq ($asksign ($imagpart j)) '$pos))
1170 (defun csemiup (n d var)
1171 (let ((pcprntd t)) ;I'm not sure what to do about PRINCIPAL values here.
1172 (princip (res n d #'upperhalf #'(lambda (x)
1173 (cond ((equal ($imagpart x) 0) t)
1174 (t ())))))))
1176 (defun princip (n)
1177 (cond ((null n) nil)
1178 (t (m*t '$%i ($rectform (m+ (cond ((car n)
1179 (m*t 2. (car n)))
1180 (t 0.))
1181 (cond ((cadr n)
1182 (principal)
1183 (cadr n))
1184 (t 0.))))))))
1186 ;; exponentialize sin and cos
1187 (defun sconvert (e)
1188 (cond ((atom e) e)
1189 ((polyinx e var nil) e)
1190 ((eq (caar e) '%sin)
1191 (m* '((rat) -1 2)
1192 '$%i
1193 (m+t (m^t '$%e (m*t '$%i (cadr e)))
1194 (m- (m^t '$%e (m*t (m- '$%i) (cadr e)))))))
1195 ((eq (caar e) '%cos)
1196 (mul* '((rat) 1. 2.)
1197 (m+t (m^t '$%e (m*t '$%i (cadr e)))
1198 (m^t '$%e (m*t (m- '$%i) (cadr e))))))
1199 (t (simplify
1200 (cons (list (caar e)) (mapcar #'sconvert (cdr e)))))))
1202 (defun polfactors (exp)
1203 (let (poly rest)
1204 (cond ((mplusp exp) nil)
1205 (t (cond ((mtimesp exp)
1206 (setq exp (reverse (cdr exp))))
1207 (t (setq exp (list exp))))
1208 (mapc #'(lambda (term)
1209 (cond ((polyinx term var nil)
1210 (push term poly))
1211 (t (push term rest))))
1212 exp)
1213 (list (m*l poly) (m*l rest))))))
1215 (defun esap (e)
1216 (prog (d)
1217 (cond ((atom e) (return e))
1218 ((not (among '$%e e)) (return e))
1219 ((and (mexptp e)
1220 (eq (cadr e) '$%e))
1221 (setq d ($imagpart (caddr e)))
1222 (return (m* (m^t '$%e ($realpart (caddr e)))
1223 (m+ `((%cos) ,d)
1224 (m*t '$%i `((%sin) ,d))))))
1225 (t (return (simplify (cons (list (caar e))
1226 (mapcar #'esap (cdr e)))))))))
1228 ;; computes integral from minf to inf for expressions of the form
1229 ;; exp(%i*m*x)*r(x) by residues on either the upper half
1230 ;; plane or the lower half plane, depending on whether
1231 ;; m is positive or negative. [wang p. 77]
1233 ;; exponentializes sin and cos before applying residue method.
1234 ;; can handle some expressions with poles on real line, such as
1235 ;; sin(x)*cos(x)/x.
1236 (defun mtosc (grand)
1237 (numden grand)
1238 (let ((n nn*)
1239 (d dn*)
1240 ratterms ratans
1241 plf bptu bptd s upans downans)
1242 (cond ((not (or (polyinx d var nil)
1243 (and (setq grand (%einvolve d))
1244 (among '$%i grand)
1245 (polyinx (setq d (sratsimp (m// d (m^t '$%e grand))))
1247 nil)
1248 (setq n (m// n (m^t '$%e grand)))))) nil)
1249 ((equal (setq s (deg d)) 0) nil)
1250 ;;;Above tests for applicability of this method.
1251 ((and (or (setq plf (polfactors n)) t)
1252 (setq n ($expand (cond ((car plf)
1253 (m*t 'x* (sconvert (cadr plf))))
1254 (t (sconvert n)))))
1255 (cond ((mplusp n) (setq n (cdr n)))
1256 (t (setq n (list n))))
1257 (dolist (term n t)
1258 (cond ((polyinx term var nil)
1259 ;; call to $expand can create rational terms
1260 ;; with no exp(m*%i*x)
1261 (setq ratterms (cons term ratterms)))
1262 ((rib term s))
1263 (t (return nil))))
1264 ;;;Function RIB sets up the values of BPTU and BPTD
1265 (cond ((car plf)
1266 (setq bptu (subst (car plf) 'x* bptu))
1267 (setq bptd (subst (car plf) 'x* bptd))
1268 (setq ratterms (subst (car plf) 'x* ratterms))
1269 t) ;CROCK, CROCK. This is TERRIBLE code.
1270 (t t))
1271 ;;;If there is BPTU then CSEMIUP must succeed.
1272 ;;;Likewise for BPTD.
1273 (setq ratans
1274 (if ratterms
1275 (let (($intanalysis nil))
1276 ;; The original integrand was already
1277 ;; determined to have no poles by initial-analysis.
1278 ;; If individual terms of the expansion have poles, the poles
1279 ;; must cancel each other out, so we can ignore them.
1280 (try-defint (m// (m+l ratterms) d) var '$minf '$inf))
1282 ;; if integral of ratterms is divergent, ratans is nil,
1283 ;; and mtosc returns nil
1285 (cond (bptu (setq upans (csemiup (m+l bptu) d var)))
1286 (t (setq upans 0)))
1287 (cond (bptd (setq downans (csemidown (m+l bptd) d var)))
1288 (t (setq downans 0))))
1290 (sratsimp (m+ ratans
1291 (m* '$%pi (m+ upans (m- downans)))))))))
1294 (defun evenfn (e var)
1295 (let ((temp (m+ (m- e)
1296 (cond ((atom var)
1297 ($substitute (m- var) var e))
1298 (t ($ratsubst (m- var) var e))))))
1299 (cond ((zerop1 temp)
1301 ((zerop1 (sratsimp temp))
1303 (t nil))))
1305 (defun oddfn (e var)
1306 (let ((temp (m+ e (cond ((atom var)
1307 ($substitute (m- var) var e))
1308 (t ($ratsubst (m- var) var e))))))
1309 (cond ((zerop1 temp)
1311 ((zerop1 (sratsimp temp))
1313 (t nil))))
1315 (defun ztoinf (grand var)
1316 (prog (n d sn* sd* varlist
1317 s nc dc
1318 ans r $savefactors checkfactors temp test-var)
1319 (setq $savefactors t sn* (setq sd* (list 1.)))
1320 (cond ((eq ($sign (m+ loopstop* -1))
1321 '$pos)
1322 (return nil))
1323 ((setq temp (or (scaxn grand)
1324 (ssp grand)))
1325 (return temp))
1326 ((involve grand '(%sin %cos %tan))
1327 (setq grand (sconvert grand))
1328 (go on)))
1330 (cond ((polyinx grand var nil)
1331 (diverg))
1332 ((and (ratp grand var)
1333 (mtimesp grand)
1334 (andmapcar #'snumden (cdr grand)))
1335 (setq nn* (m*l sn*)
1336 sn* nil)
1337 (setq dn* (m*l sd*)
1338 sd* nil))
1339 (t (numden grand)))
1341 ;;;New section.
1342 (setq n (rmconst1 nn*))
1343 (setq d (rmconst1 dn*))
1344 (setq nc (car n))
1345 (setq n (cdr n))
1346 (setq dc (car d))
1347 (setq d (cdr d))
1348 (cond ((polyinx d var nil)
1349 (setq s (deg d)))
1350 (t (go findout)))
1351 (cond ((and (setq r (findp n))
1352 (eq (ask-integer r '$integer) '$yes)
1353 (setq test-var (bxm d s))
1354 (setq ans (apply 'fan (cons (m+ 1. r) test-var))))
1355 (return (m* (m// nc dc) (sratsimp ans))))
1356 ((and (ratp grand var)
1357 (setq ans (zmtorat n (cond ((mtimesp d) d)
1358 (t ($sqfr d)))
1359 s #'ztorat)))
1360 (return (m* (m// nc dc) ans)))
1361 ((and (evenfn d var)
1362 (setq nn* (p*lognxp n s)))
1363 (setq ans (log*rat (car nn*) d (cadr nn*)))
1364 (return (m* (m// nc dc) ans)))
1365 ((involve grand '(%log))
1366 (cond ((setq ans (logquad0 grand))
1367 (return (m* (m// nc dc) ans)))
1368 (t (return nil)))))
1369 findout
1370 (cond ((setq temp (batapp grand))
1371 (return temp))
1372 (t nil))
1374 (cond ((let ((*mtoinf* nil))
1375 (setq temp (ggr grand t)))
1376 (return temp))
1377 ((mplusp grand)
1378 (cond ((let ((*nodiverg t))
1379 (setq ans (catch 'divergent
1380 (andmapcar #'(lambda (g)
1381 (ztoinf g var))
1382 (cdr grand)))))
1383 (cond ((eq ans 'divergent) nil)
1384 (t (return (sratsimp (m+l ans)))))))))
1386 (cond ((and (evenfn grand var)
1387 (setq loopstop* (m+ 1 loopstop*))
1388 (setq ans (method-by-limits grand var '$minf '$inf)))
1389 (return (m*t '((rat) 1. 2.) ans)))
1390 (t (return nil)))))
1392 (defun ztorat (n d s)
1393 (cond ((and (null *dflag)
1394 (setq s (difapply n d s #'ztorat)))
1396 ((setq n (let ((plogabs ()))
1397 (keyhole (m* `((%plog) ,(m- var)) n) d var)))
1398 (m- n))
1400 ;; Let's not signal an error here. Return nil so that we
1401 ;; eventually return a noun form if no other algorithm gives
1402 ;; a result.
1403 #+(or)
1404 (merror (intl:gettext "defint: keyhole integration failed.~%"))
1405 nil)))
1407 (setq *dflag nil)
1409 (defun logquad0 (exp)
1410 (let ((a ()) (b ()) (c ()))
1411 (cond ((setq exp (logquad exp))
1412 (setq a (car exp) b (cadr exp) c (caddr exp))
1413 ($asksign b) ;let the data base know about the sign of B.
1414 (cond ((eq ($asksign c) '$pos)
1415 (setq c (m^ (m// c a) '((rat) 1. 2.)))
1416 (setq b (simplify
1417 `((%acos) ,(add* 'epsilon (m// b (mul* 2. a c))))))
1418 (setq a (m// (m* b `((%log) ,c))
1419 (mul* a (simplify `((%sin) ,b)) c)))
1420 (get-limit a 'epsilon 0 '$plus))))
1421 (t ()))))
1423 (defun logquad (exp)
1424 (let ((varlist (list var)))
1425 (newvar exp)
1426 (setq exp (cdr (ratrep* exp)))
1427 (cond ((and (alike1 (pdis (car exp))
1428 `((%log) ,var))
1429 (not (atom (cdr exp)))
1430 (equal (cadr (cdr exp)) 2.)
1431 (not (equal (ptterm (cddr exp) 0.) 0.)))
1432 (setq exp (mapcar 'pdis (cdr (oddelm (cdr exp)))))))))
1434 (defun mtoinf (grand var)
1435 (prog (ans ans1 sd* sn* p* pe* n d s nc dc $savefactors checkfactors temp)
1436 (setq $savefactors t)
1437 (setq sn* (setq sd* (list 1.)))
1438 (cond ((eq ($sign (m+ loopstop* -1)) '$pos)
1439 (return nil))
1440 ((involve grand '(%sin %cos))
1441 (cond ((and (evenfn grand var)
1442 (or (setq temp (scaxn grand))
1443 (setq temp (ssp grand))))
1444 (return (m*t 2. temp)))
1445 ((setq temp (mtosc grand))
1446 (return temp))
1447 (t (go en))))
1448 ((among '$%i (%einvolve grand))
1449 (cond ((setq temp (mtosc grand))
1450 (return temp))
1451 (t (go en)))))
1452 (setq grand ($exponentialize grand)) ; exponentializing before numden
1453 (cond ((polyinx grand var nil) ; avoids losing multiplicities [ 1309432 ]
1454 (diverg))
1455 ((and (ratp grand var)
1456 (mtimesp grand)
1457 (andmapcar #'snumden (cdr grand)))
1458 (setq nn* (m*l sn*) sn* nil)
1459 (setq dn* (m*l sd*) sd* nil))
1460 (t (numden grand)))
1461 (setq n (rmconst1 nn*))
1462 (setq d (rmconst1 dn*))
1463 (setq nc (car n))
1464 (setq n (cdr n))
1465 (setq dc (car d))
1466 (setq d (cdr d))
1467 (cond ((polyinx d var nil)
1468 (setq s (deg d))))
1469 (cond ((and (not (%einvolve grand))
1470 (notinvolve exp '(%sinh %cosh %tanh))
1471 (setq p* (findp n))
1472 (eq (ask-integer p* '$integer) '$yes)
1473 (setq pe* (bxm d s)))
1474 (cond ((and (eq (ask-integer (caddr pe*) '$even) '$yes)
1475 (eq (ask-integer p* '$even) '$yes))
1476 (cond ((setq ans (apply 'fan (cons (m+ 1. p*) pe*)))
1477 (setq ans (m*t 2. ans))
1478 (return (m* (m// nc dc) ans)))))
1479 ((equal (car pe*) 1.)
1480 (cond ((and (setq ans (apply 'fan (cons (m+ 1. p*) pe*)))
1481 (setq nn* (fan (m+ 1. p*)
1482 (car pe*)
1483 (m* -1 (cadr pe*))
1484 (caddr pe*)
1485 (cadddr pe*))))
1486 (setq ans (m+ ans (m*t (m^ -1 p*) nn*)))
1487 (return (m* (m// nc dc) ans))))))))
1488 (cond
1489 ((and (ratp grand var)
1490 (setq ans1 (zmtorat n (cond ((mtimesp d) d) (t ($sqfr d))) s #'mtorat)))
1491 (setq ans (m*t '$%pi ans1))
1492 (return (m* (m// nc dc) ans)))
1493 ((and (or (%einvolve grand)
1494 (involve grand '(%sinh %cosh %tanh)))
1495 (p*pin%ex n) ;setq's P* and PE*...Barf again.
1496 (setq ans (catch 'pin%ex (pin%ex d))))
1497 ;; We have an integral of the form p(x)*F(exp(x)), where
1498 ;; p(x) is a polynomial.
1499 (cond ((null p*)
1500 ;; No polynomial
1501 (return (dintexp grand var)))
1502 ((not (and (zerop1 (get-limit grand var '$inf))
1503 (zerop1 (get-limit grand var '$minf))))
1504 ;; These limits must exist for the integral to converge.
1505 (diverg))
1506 ((setq ans (rectzto%pi2 (m*l p*) (m*l pe*) d))
1507 ;; This only handles the case when the F(z) is a
1508 ;; rational function.
1509 (return (m* (m// nc dc) ans)))
1510 ((setq ans (log-transform (m*l p*) (m*l pe*) d))
1511 ;; If we get here, F(z) is not a rational function.
1512 ;; We transform it using the substitution x=log(y)
1513 ;; which gives us an integral of the form
1514 ;; p(log(y))*F(y)/y, which maxima should be able to
1515 ;; handle.
1516 (return (m* (m// nc dc) ans)))
1518 ;; Give up. We don't know how to handle this.
1519 (return nil)))))
1521 (cond ((setq ans (ggrm grand))
1522 (return ans))
1523 ((and (evenfn grand var)
1524 (setq loopstop* (m+ 1 loopstop*))
1525 (setq ans (method-by-limits grand var 0 '$inf)))
1526 (return (m*t 2. ans)))
1527 (t (return nil)))))
1529 (defun linpower0 (exp var)
1530 (cond ((and (setq exp (linpower exp var))
1531 (eq (ask-integer (caddr exp) '$even)
1532 '$yes)
1533 (ratgreaterp 0. (car exp)))
1534 exp)))
1536 ;;; given (b*x+a)^n+c returns (a b n c)
1537 (defun linpower (exp var)
1538 (let (linpart deg lc c varlist)
1539 (cond ((not (polyp exp)) nil)
1540 (t (let ((varlist (list var)))
1541 (newvar exp)
1542 (setq linpart (cadr (ratrep* exp)))
1543 (cond ((atom linpart)
1544 nil)
1545 (t (setq deg (cadr linpart))
1546 ;;;get high degree of poly
1547 (setq linpart ($diff exp var (m+ deg -1)))
1548 ;;;diff down to linear.
1549 (setq lc (sdiff linpart var))
1550 ;;;all the way to constant.
1551 (setq linpart (sratsimp (m// linpart lc)))
1552 (setq lc (sratsimp (m// lc `((mfactorial) ,deg))))
1553 ;;;get rid of factorial from differentiation.
1554 (setq c (sratsimp (m+ exp (m* (m- lc)
1555 (m^ linpart deg)))))))
1556 ;;;Sees if can be expressed as (a*x+b)^n + part freeof x.
1557 (cond ((not (among var c))
1558 `(,lc ,linpart ,deg ,c))
1559 (t nil)))))))
1561 (defun mtorat (n d s)
1562 (let ((*semirat* t))
1563 (cond ((and (null *dflag)
1564 (setq s (difapply n d s #'mtorat)))
1566 (t (csemiup n d var)))))
1568 (defun zmtorat (n d s fn1)
1569 (prog (c)
1570 (cond ((eq ($sign (m+ s (m+ 1 (setq nn* (deg n)))))
1571 '$neg)
1572 (diverg))
1573 ((eq ($sign (m+ s -4))
1574 '$neg)
1575 (go on)))
1576 (setq d ($factor d))
1577 (setq c (rmconst1 d))
1578 (setq d (cdr c))
1579 (setq c (car c))
1580 (cond
1581 ((mtimesp d)
1582 (setq d (cdr d))
1583 (setq n (partnum n d))
1584 (let ((rsn* t))
1585 (setq n ($xthru (m+l
1586 (mapcar #'(lambda (a b)
1587 (let ((foo (funcall fn1 (car a) b (deg b))))
1588 (if foo (m// foo (cadr a))
1589 (return-from zmtorat nil))))
1591 d)))))
1592 (return (cond (c (m// n c))
1593 (t n)))))
1596 (setq n (funcall fn1 n d s))
1597 (return (when n (sratsimp (cond (c (m// n c))
1598 (t n)))))))
1600 (defun pfrnum (f g n n2 var)
1601 (let ((varlist (list var)) genvar)
1602 (setq f (polyform f)
1603 g (polyform g)
1604 n (polyform n)
1605 n2 (polyform n2))
1606 (setq var (caadr (ratrep* var)))
1607 (setq f (resprog0 f g n n2))
1608 (list (list (pdis (cadr f)) (pdis (cddr f)))
1609 (list (pdis (caar f)) (pdis (cdar f))))))
1611 (defun polyform (e)
1612 (prog (f d)
1613 (newvar e)
1614 (setq f (ratrep* e))
1615 (and (equal (cddr f) 1)
1616 (return (cadr f)))
1617 (and (equal (length (setq d (cddr f))) 3)
1618 (not (among (car d)
1619 (cadr f)))
1620 (return (list (car d)
1621 (- (cadr d))
1622 (ptimes (cadr f) (caddr d)))))
1623 (merror "defint: bug from PFRNUM in RESIDU.")))
1625 (defun partnum (n dl)
1626 (let ((n2 1) ans nl)
1627 (do ((dl dl (cdr dl)))
1628 ((null (cdr dl))
1629 (nconc ans (ncons (list n n2))))
1630 (setq nl (pfrnum (car dl) (m*l (cdr dl)) n n2 var))
1631 (setq ans (nconc ans (ncons (car nl))))
1632 (setq n2 (cadadr nl) n (caadr nl) nl nil))))
1634 (defun ggrm (e)
1635 (prog (poly expo *mtoinf* mb varlist genvar l c gvar)
1636 (setq varlist (list var))
1637 (setq *mtoinf* t)
1638 (cond ((and (setq expo (%einvolve e))
1639 (polyp (setq poly (sratsimp (m// e (m^t '$%e expo)))))
1640 (setq l (catch 'ggrm (ggr (m^t '$%e expo) nil))))
1641 (setq *mtoinf* nil)
1642 (setq mb (m- (subin 0. (cadr l))))
1643 (setq poly (m+ (subin (m+t mb var) poly)
1644 (subin (m+t mb (m*t -1 var)) poly))))
1645 (t (return nil)))
1646 (setq expo (caddr l)
1647 c (cadddr l)
1648 l (m* -1 (car l))
1649 e nil)
1650 (newvar poly)
1651 (setq poly (cdr (ratrep* poly)))
1652 (setq mb (m^ (pdis (cdr poly)) -1)
1653 poly (car poly))
1654 (setq gvar (caadr (ratrep* var)))
1655 (cond ((or (atom poly)
1656 (pointergp gvar (car poly)))
1657 (setq poly (list 0. poly)))
1658 (t (setq poly (cdr poly))))
1659 (return (do ((poly poly (cddr poly)))
1660 ((null poly)
1661 (mul* (m^t '$%e c) (m^t expo -1) mb (m+l e)))
1662 (setq e (cons (ggrm1 (car poly) (pdis (cadr poly)) l expo)
1663 e))))))
1665 (defun ggrm1 (d k a b)
1666 (setq b (m// (m+t 1. d) b))
1667 (m* k `((%gamma) ,b) (m^ a (m- b))))
1669 ;; Compute the integral(n/d,x,0,inf) by computing the negative of the
1670 ;; sum of residues of log(-x)*n/d over the poles of n/d inside the
1671 ;; keyhole contour. This contour is basically an disk with a slit
1672 ;; along the positive real axis. n/d must be a rational function.
1673 (defun keyhole (n d var)
1674 (let* ((*semirat* ())
1675 (res (res n d
1676 #'(lambda (j)
1677 ;; Ok if not on the positive real axis.
1678 (or (not (equal ($imagpart j) 0))
1679 (eq ($asksign j) '$neg)))
1680 #'(lambda (j)
1681 (cond ((eq ($asksign j) '$pos)
1683 (t (diverg)))))))
1684 (when res
1685 (let ((rsn* t))
1686 ($rectform ($multthru (m+ (cond ((car res)
1687 (car res))
1688 (t 0.))
1689 (cond ((cadr res)
1690 (cadr res))
1691 (t 0.)))))))))
1693 ;; Look at an expression e of the form sin(r*x)^k, where k is an
1694 ;; integer. Return the list (1 r k). (Not sure if the first element
1695 ;; of the list is always 1 because I'm not sure what partition is
1696 ;; trying to do here.)
1697 (defun skr (e)
1698 (prog (m r k)
1699 (cond ((atom e) (return nil)))
1700 (setq e (partition e var 1))
1701 (setq m (car e))
1702 (setq e (cdr e))
1703 (cond ((setq r (sinrx e))
1704 (return (list m r 1)))
1705 ((and (mexptp e)
1706 (eq (ask-integer (setq k (caddr e)) '$integer) '$yes)
1707 (setq r (sinrx (cadr e))))
1708 (return (list m r k))))))
1710 ;; Look at an expression e of the form sin(r*x) and return r.
1711 (defun sinrx (e)
1712 (cond ((and (consp e) (eq (caar e) '%sin))
1713 (cond ((eq (cadr e) var)
1715 ((and (setq e (partition (cadr e) var 1))
1716 (eq (cdr e) var))
1717 (car e))))))
1721 ;; integrate(a*sc(r*x)^k/x^n,x,0,inf).
1722 (defun ssp (exp)
1723 (prog (u n c arg)
1724 ;; Get the argument of the involved trig function.
1725 (when (null (setq arg (involve exp '(%sin %cos))))
1726 (return nil))
1727 ;; I don't think this needs to be special.
1728 #+nil
1729 (declare (special n))
1730 ;; Replace (1-cos(arg)^2) with sin(arg)^2.
1731 (setq exp ($substitute ;(m^t `((%sin) ,var) 2.)
1732 ;(m+t 1. (m- (m^t `((%cos) ,var) 2.)))
1733 ;; The code from above generates expressions with
1734 ;; a missing simp flag. Furthermore, the
1735 ;; substitution has to be done for the complete
1736 ;; argument of the trig function. (DK 02/2010)
1737 `((mexpt simp) ((%sin simp) ,arg) 2)
1738 `((mplus) 1 ((mtimes) -1 ((mexpt) ((%cos) ,arg) 2)))
1739 exp))
1740 (numden exp)
1741 (setq u nn*)
1742 (cond ((and (setq n (findp dn*))
1743 (eq (ask-integer n '$integer) '$yes))
1744 ;; n is the power of the denominator.
1745 (cond ((setq c (skr u))
1746 ;; The simple case.
1747 (return (scmp c n)))
1748 ((and (mplusp u)
1749 (setq c (andmapcar #'skr (cdr u))))
1750 ;; Do this for a sum of such terms.
1751 (return (m+l (mapcar #'(lambda (j) (scmp j n))
1752 c)))))))))
1754 ;; We have an integral of the form sin(r*x)^k/x^n. C is the list (1 r k).
1756 ;; The substitution y=r*x converts this integral to
1758 ;; r^(n-1)*integral(sin(y)^k/y^n,y,0,inf)
1760 ;; (If r is negative, we need to negate the result.)
1762 ;; The recursion Wang gives on p. 87 has a typo. The second term
1763 ;; should be subtracted from the first. This formula is given in G&R,
1764 ;; 3.82, formula 12.
1766 ;; integrate(sin(x)^r/x^s,x) =
1767 ;; r*(r-1)/(s-1)/(s-2)*integrate(sin(x)^(r-2)/x^(s-2),x)
1768 ;; - r^2/(s-1)/(s-2)*integrate(sin(x)^r/x^(s-2),x)
1770 ;; (Limits are assumed to be 0 to inf.)
1772 ;; This recursion ends up with integrals with s = 1 or 2 and
1774 ;; integrate(sin(x)^p/x,x,0,inf) = integrate(sin(x)^(p-1),x,0,%pi/2)
1776 ;; with p > 0 and odd. This latter integral is known to maxima, and
1777 ;; it's value is beta(p/2,1/2)/2.
1779 ;; integrate(sin(x)^2/x^2,x,0,inf) = %pi/2*binomial(q-3/2,q-1)
1781 ;; where q >= 2.
1783 (defun scmp (c n)
1784 ;; Compute sign(r)*r^(n-1)*integrate(sin(y)^k/y^n,y,0,inf)
1785 (destructuring-bind (mult r k)
1787 (let ((recursion (sinsp k n)))
1788 (if recursion
1789 (m* mult
1790 (m^ r (m+ n -1))
1791 `((%signum) ,r)
1792 recursion)
1793 ;; Recursion failed. Return the integrand
1794 ;; The following code generates expressions with a missing simp flag
1795 ;; for the sin function. Use better simplifying code. (DK 02/2010)
1796 ; (let ((integrand (div (pow `((%sin) ,(m* r var))
1797 ; k)
1798 ; (pow var n))))
1799 (let ((integrand (div (power (take '(%sin) (mul r var))
1801 (power var n))))
1802 (m* mult
1803 `((%integrate) ,integrand ,var ,ll ,ul)))))))
1805 ;; integrate(sin(x)^n/x^2,x,0,inf) = pi/2*binomial(n-3/2,n-1).
1806 ;; Express in terms of Gamma functions, though.
1807 (defun sevn (n)
1808 (m* half%pi ($makegamma `((%binomial) ,(m+t (m+ n -1) '((rat) -1 2))
1809 ,(m+ n -1)))))
1812 ;; integrate(sin(x)^n/x,x,0,inf) = beta((n+1)/2,1/2)/2, for n odd and
1813 ;; n > 0.
1814 (defun sforx (n)
1815 (cond ((equal n 1.)
1816 half%pi)
1817 (t (bygamma (m+ n -1) 0.))))
1819 ;; This implements the recursion for computing
1820 ;; integrate(sin(y)^l/y^k,y,0,inf). (Note the change in notation from
1821 ;; the above!)
1822 (defun sinsp (l k)
1823 (let ((i ())
1824 (j ()))
1825 (cond ((eq ($sign (m+ l (m- (m+ k -1))))
1826 '$neg)
1827 ;; Integral diverges if l-(k-1) < 0.
1828 (diverg))
1829 ((not (even1 (m+ l k)))
1830 ;; If l + k is not even, return NIL. (Is this the right
1831 ;; thing to do?)
1832 nil)
1833 ((equal k 2.)
1834 ;; We have integrate(sin(y)^l/y^2). Use sevn to evaluate.
1835 (sevn (m// l 2.)))
1836 ((equal k 1.)
1837 ;; We have integrate(sin(y)^l/y,y)
1838 (sforx l))
1839 ((eq ($sign (m+ k -2.))
1840 '$pos)
1841 (setq i (m* (m+ k -1)
1842 (setq j (m+ k -2.))))
1843 ;; j = k-2, i = (k-1)*(k-2)
1846 ;; The main recursion:
1848 ;; i(sin(y)^l/y^k)
1849 ;; = l*(l-1)/(k-1)/(k-2)*i(sin(y)^(l-2)/y^k)
1850 ;; - l^2/(k-1)/(k-1)*i(sin(y)^l/y^(k-2))
1851 (m+ (m* l (m+ l -1)
1852 (m^t i -1)
1853 (sinsp (m+ l -2.) j))
1854 (m* (m- (m^ l 2))
1855 (m^t i -1)
1856 (sinsp l j)))))))
1858 ;; Returns the fractional part of a?
1859 (defun fpart (a)
1860 (cond ((null a) 0.)
1861 ((numberp a)
1862 ;; Why do we return 0 if a is a number? Perhaps we really
1863 ;; mean integer?
1865 ((mnump a)
1866 ;; If we're here, this basically assumes a is a rational.
1867 ;; Compute the remainder and return the result.
1868 (list (car a) (rem (cadr a) (caddr a)) (caddr a)))
1869 ((and (atom a) (abless1 a)) a)
1870 ((and (mplusp a)
1871 (null (cdddr a))
1872 (abless1 (caddr a)))
1873 (caddr a))))
1875 (defun thrad (e)
1876 (cond ((polyinx e var nil) 0.)
1877 ((and (mexptp e)
1878 (eq (cadr e) var)
1879 (mnump (caddr e)))
1880 (fpart (caddr e)))
1881 ((mtimesp e)
1882 (m+l (mapcar #'thrad e)))))
1885 ;;; THE FOLLOWING FUNCTION IS FOR TRIG FUNCTIONS OF THE FOLLOWING TYPE:
1886 ;;; LOWER LIMIT=0 B A MULTIPLE OF %PI SCA FUNCTION OF SIN (X) COS (X)
1887 ;;; B<=%PI2
1889 (defun period (p e var)
1890 (and (alike1 (no-err-sub var e) (setq e (no-err-sub (m+ p var) e)))
1891 ;; means there was no error
1892 (not (eq e t))))
1894 ; returns cons of (integer_part . fractional_part) of a
1895 (defun infr (a)
1896 ;; I think we really want to compute how many full periods are in a
1897 ;; and the remainder.
1898 (let* ((q (igprt (div a (mul 2 '$%pi))))
1899 (r (add a (mul -1 (mul q 2 '$%pi)))))
1900 (cons q r)))
1902 ; returns cons of (integer_part . fractional_part) of a
1903 (defun lower-infr (a)
1904 ;; I think we really want to compute how many full periods are in a
1905 ;; and the remainder.
1906 (let* (;(q (igprt (div a (mul 2 '$%pi))))
1907 (q (mfuncall '$ceiling (div a (mul 2 '$%pi))))
1908 (r (add a (mul -1 (mul q 2 '$%pi)))))
1909 (cons q r)))
1912 ;; Return the integer part of r.
1913 (defun igprt (r)
1914 ;; r - fpart(r)
1915 (mfuncall '$floor r))
1918 ;;;Try making exp(%i*var) --> yy, if result is rational then do integral
1919 ;;;around unit circle. Make corrections for limits of integration if possible.
1920 (defun scrat (sc b)
1921 (let* ((exp-form (sconvert sc)) ;Exponentialize
1922 (rat-form (maxima-substitute 'yy (m^t '$%e (m*t '$%i var))
1923 exp-form))) ;Try to make Rational fun.
1924 (cond ((and (ratp rat-form 'yy)
1925 (not (among var rat-form)))
1926 (cond ((alike1 b %pi2)
1927 (let ((ans (zto%pi2 rat-form 'yy)))
1928 (cond (ans ans)
1929 (t nil))))
1930 ((and (eq b '$%pi)
1931 (evenfn exp-form var))
1932 (let ((ans (zto%pi2 rat-form 'yy)))
1933 (cond (ans (m*t '((rat) 1. 2.) ans))
1934 (t nil))))
1935 ((and (alike1 b half%pi)
1936 (evenfn exp-form var)
1937 (alike1 rat-form
1938 (no-err-sub (m+t '$%pi (m*t -1 var))
1939 rat-form)))
1940 (let ((ans (zto%pi2 rat-form 'yy)))
1941 (cond (ans (m*t '((rat) 1. 4.) ans))
1942 (t nil)))))))))
1944 ;;; Do integrals of sin and cos. this routine makes sure lower limit
1945 ;;; is zero.
1946 (defun intsc1 (a b e)
1947 ;; integrate(e,var,a,b)
1948 (let ((trigarg (find-first-trigarg e))
1949 (var var)
1950 ($%emode t)
1951 ($trigsign t)
1952 (*sin-cos-recur* t)) ;recursion stopper
1953 (prog (ans d nzp2 l int-zero-to-d int-nzp2 int-zero-to-c limit-diff)
1954 (let* ((arg (simple-trig-arg trigarg)) ;; pattern match sin(cc*x + bb)
1955 (cc (cdras 'c arg))
1956 (bb (cdras 'b arg))
1957 (new-var (gensym "NEW-VAR-")))
1958 (when (or (not arg)
1959 (not (every-trigarg-alike e trigarg)))
1960 (return nil))
1961 (when (not (and (equal cc 1) (equal bb 0)))
1962 (setq e (div (maxima-substitute (div (sub new-var bb) cc)
1963 var e)
1964 cc))
1965 (setq var new-var) ;; change of variables to get sin(new-var)
1966 (setq a (add bb (mul a cc)))
1967 (setq b (add bb (mul b cc)))))
1968 (setq limit-diff (m+ b (m* -1 a)))
1969 (when (or (not (period %pi2 e var))
1970 (member a infinities)
1971 (member b infinities)
1972 (not (and ($constantp a)
1973 ($constantp b))))
1974 ;; Exit if b or a is not a constant or if the integrand
1975 ;; doesn't appear to have a period of 2 pi.
1976 (return nil))
1978 ;; Multiples of 2*%pi in limits.
1979 (cond ((integerp (setq d (let (($float nil))
1980 (m// limit-diff %pi2))))
1981 (cond ((setq ans (intsc e %pi2 var))
1982 (return (m* d ans)))
1983 (t (return nil)))))
1985 ;; The integral is not over a full period (2*%pi) or multiple
1986 ;; of a full period.
1988 ;; Wang p. 111: The integral integrate(f(x),x,a,b) can be
1989 ;; written as:
1991 ;; n * integrate(f,x,0,2*%pi) + integrate(f,x,0,c)
1992 ;; - integrate(f,x,0,d)
1994 ;; for some integer n and d >= 0, c < 2*%pi because there exist
1995 ;; integers p and q such that a = 2 * p *%pi + d and b = 2 * q
1996 ;; * %pi + c. Then n = q - p.
1998 ;; Compute q and c for the upper limit b.
1999 (setq b (infr b))
2000 (setq l a)
2001 (cond ((null l)
2002 (setq nzp2 (car b))
2003 (setq int-zero-to-d 0.)
2004 (go out)))
2005 ;; Compute p and d for the lower limit a.
2006 (setq l (infr l))
2007 ;; avoid an extra trip around the circle - helps skip principal values
2008 (if (ratgreaterp (car b) (car l)) ; if q > p
2009 (setq l (cons (add 1 (car l)) ; p += 1
2010 (add (mul -1 %pi2) (cdr l))))) ; d -= 2*%pi
2012 ;; Compute -integrate(f,x,0,d)
2013 (setq int-zero-to-d
2014 (cond ((setq ans (try-intsc e (cdr l) var))
2015 (m*t -1 ans))
2016 (t nil)))
2017 ;; Compute n = q - p (stored in nzp2)
2018 (setq nzp2 (m+ (car b) (m- (car l))))
2020 ;; Compute n*integrate(f,x,0,2*%pi)
2021 (setq int-nzp2 (cond ((zerop1 nzp2)
2022 ;; n = 0
2024 ((setq ans (try-intsc e %pi2 var))
2025 ;; n is not zero, so compute
2026 ;; integrate(f,x,0,2*%pi)
2027 (m*t nzp2 ans))
2028 ;; Unable to compute integrate(f,x,0,2*%pi)
2029 (t nil)))
2030 ;; Compute integrate(f,x,0,c)
2031 (setq int-zero-to-c (try-intsc e (cdr b) var))
2033 (return (cond ((and int-zero-to-d int-nzp2 int-zero-to-c)
2034 ;; All three pieces succeeded.
2035 (add* int-zero-to-d int-nzp2 int-zero-to-c))
2036 ((ratgreaterp %pi2 limit-diff)
2037 ;; Less than 1 full period, so intsc can integrate it.
2038 ;; Apply the substitution to make the lower limit 0.
2039 ;; This is last resort because substitution often causes intsc to fail.
2040 (intsc (maxima-substitute (m+ a var) var e)
2041 limit-diff var))
2042 ;; nothing worked
2043 (t nil))))))
2045 ;; integrate(sc, var, 0, b), where sc is f(sin(x), cos(x)).
2046 ;; calls intsc with a wrapper to just return nil if integral is divergent,
2047 ;; rather than generating an error.
2048 (defun try-intsc (sc b var)
2049 (let* ((*nodiverg t)
2050 (ans (catch 'divergent (intsc sc b var))))
2051 (if (eq ans 'divergent)
2053 ans)))
2055 ;; integrate(sc, var, 0, b), where sc is f(sin(x), cos(x)). I (rtoy)
2056 ;; think this expects b to be less than 2*%pi.
2057 (defun intsc (sc b var)
2058 (if (zerop1 b)
2060 (multiple-value-bind (b sc)
2061 (cond ((eq ($sign b) '$neg)
2062 (values (m*t -1 b)
2063 (m* -1 (subin (m*t -1 var) sc))))
2065 (values b sc)))
2066 ;; Partition the integrand SC into the factors that do not
2067 ;; contain VAR (the car part) and the parts that do (the cdr
2068 ;; part).
2069 (setq sc (partition sc var 1))
2070 (cond ((setq b (intsc0 (cdr sc) b var))
2071 (m* (resimplify (car sc)) b))))))
2073 ;; integrate(sc, var, 0, b), where sc is f(sin(x), cos(x)).
2074 (defun intsc0 (sc b var)
2075 ;; Determine if sc is a product of sin's and cos's.
2076 (let ((nn* (scprod sc))
2077 (dn* ()))
2078 (cond (nn*
2079 ;; We have a product of sin's and cos's. We handle some
2080 ;; special cases here.
2081 (cond ((alike1 b half%pi)
2082 ;; Wang p. 110, formula (1):
2083 ;; integrate(sin(x)^m*cos(x)^n, x, 0, %pi/2) =
2084 ;; gamma((m+1)/2)*gamma((n+1)/2)/2/gamma((n+m+2)/2)
2085 (bygamma (car nn*) (cadr nn*)))
2086 ((eq b '$%pi)
2087 ;; Wang p. 110, near the bottom, says
2089 ;; int(f(sin(x),cos(x)), x, 0, %pi) =
2090 ;; int(f(sin(x),cos(x)) + f(sin(x),-cos(x)),x,0,%pi/2)
2091 (cond ((eq (real-branch (cadr nn*) -1) '$yes)
2092 (m* (m+ 1. (m^ -1 (cadr nn*)))
2093 (bygamma (car nn*) (cadr nn*))))))
2094 ((alike1 b %pi2)
2095 (cond ((or (and (eq (ask-integer (car nn*) '$even)
2096 '$yes)
2097 (eq (ask-integer (cadr nn*) '$even)
2098 '$yes))
2099 (and (ratnump (car nn*))
2100 (eq (real-branch (car nn*) -1)
2101 '$yes)
2102 (ratnump (cadr nn*))
2103 (eq (real-branch (cadr nn*) -1)
2104 '$yes)))
2105 (m* 4. (bygamma (car nn*) (cadr nn*))))
2106 ((or (eq (ask-integer (car nn*) '$odd) '$yes)
2107 (eq (ask-integer (cadr nn*) '$odd) '$yes))
2109 (t nil)))
2110 ((alike1 b half%pi3)
2111 ;; Wang, p. 111 says
2113 ;; int(f(sin(x),cos(x)),x,0,3*%pi/2) =
2114 ;; int(f(sin(x),cos(x)),x,0,%pi)
2115 ;; + int(f(-sin(x),-cos(x)),x,0,%pi/2)
2116 (m* (m+ 1. (m^ -1 (cadr nn*)) (m^ -1 (m+l nn*)))
2117 (bygamma (car nn*) (cadr nn*))))))
2119 ;; We don't have a product of sin's and cos's.
2120 (cond ((and (or (eq b '$%pi)
2121 (alike1 b %pi2)
2122 (alike1 b half%pi))
2123 (setq dn* (scrat sc b)))
2124 dn*)
2125 ((setq nn* (antideriv sc))
2126 (sin-cos-intsubs nn* var 0. b))
2127 (t ()))))))
2129 ;;;Is careful about substitution of limits where the denominator may be zero
2130 ;;;because of various assumptions made.
2131 (defun sin-cos-intsubs (exp var ll ul)
2132 (cond ((mplusp exp)
2133 (let ((l (mapcar #'sin-cos-intsubs1 (cdr exp))))
2134 (if (not (some #'null l))
2135 (m+l l))))
2136 (t (sin-cos-intsubs1 exp))))
2138 (defun sin-cos-intsubs1 (exp)
2139 (let* ((rat-exp ($rat exp))
2140 (denom (pdis (cddr rat-exp))))
2141 (cond ((equal ($csign denom) '$zero)
2142 '$und)
2143 (t (try-intsubs exp ll ul)))))
2145 (defun try-intsubs (exp ll ul)
2146 (let* ((*nodiverg t)
2147 (ans (catch 'divergent (intsubs exp ll ul))))
2148 (if (eq ans 'divergent)
2150 ans)))
2152 (defun try-defint (exp var ll ul)
2153 (let* ((*nodiverg t)
2154 (ans (catch 'divergent (defint exp var ll ul))))
2155 (if (eq ans 'divergent)
2157 ans)))
2159 ;; Determine whether E is of the form sin(x)^m*cos(x)^n and return the
2160 ;; list (m n).
2161 (defun scprod (e)
2162 (let ((great-minus-1 #'(lambda (temp)
2163 (ratgreaterp temp -1)))
2164 m n)
2165 (cond
2166 ((setq m (powerofx e `((%sin) ,var) great-minus-1 var))
2167 (list m 0.))
2168 ((setq n (powerofx e `((%cos) ,var) great-minus-1 var))
2169 (setq m 0.)
2170 (list 0. n))
2171 ((and (mtimesp e)
2172 (or (setq m (powerofx (cadr e) `((%sin) ,var) great-minus-1 var))
2173 (setq n (powerofx (cadr e) `((%cos) ,var) great-minus-1 var)))
2174 (cond
2175 ((null m)
2176 (setq m (powerofx (caddr e) `((%sin) ,var) great-minus-1 var)))
2177 (t (setq n (powerofx (caddr e) `((%cos) ,var) great-minus-1 var))))
2178 (null (cdddr e)))
2179 (list m n))
2180 (t ()))))
2182 (defun real-branch (exponent value)
2183 ;; Says wether (m^t value exponent) has at least one real branch.
2184 ;; Only works for values of 1 and -1 now. Returns $yes $no
2185 ;; $unknown.
2186 (cond ((equal value 1.)
2187 '$yes)
2188 ((eq (ask-integer exponent '$integer) '$yes)
2189 '$yes)
2190 ((ratnump exponent)
2191 (cond ((eq ($oddp (caddr exponent)) t)
2192 '$yes)
2193 (t '$no)))
2194 (t '$unknown)))
2196 ;; Compute beta((m+1)/2,(n+1)/2)/2.
2197 (defun bygamma (m n)
2198 (let ((one-half (m//t 1. 2.)))
2199 (m* one-half `(($beta) ,(m* one-half (m+t 1. m))
2200 ,(m* one-half (m+t 1. n))))))
2202 ;;Seems like Guys who call this don't agree on what it should return.
2203 (defun powerofx (e x p var)
2204 (setq e (cond ((not (among var e)) nil)
2205 ((alike1 e x) 1.)
2206 ((atom e) nil)
2207 ((and (mexptp e)
2208 (alike1 (cadr e) x)
2209 (not (among var (caddr e))))
2210 (caddr e))))
2211 (cond ((null e) nil)
2212 ((funcall p e) e)))
2215 ;; Check e for an expression of the form x^kk*(b*x^n+a)^l. If it
2216 ;; matches, Return the two values kk and (list l a n b).
2217 (defun bata0 (e)
2218 (let (k c)
2219 (cond ((atom e) nil)
2220 ((mexptp e)
2221 ;; We have f(x)^y. Look to see if f(x) has the desired
2222 ;; form. Then f(x)^y has the desired form too, with
2223 ;; suitably modified values.
2225 ;; XXX: Should we ask for the sign of f(x) if y is not an
2226 ;; integer? This transformation we're going to do requires
2227 ;; that f(x)^y be real.
2228 (destructuring-bind (mexp base power)
2230 (declare (ignore mexp))
2231 (multiple-value-bind (kk cc)
2232 (bata0 base)
2233 (when kk
2234 ;; Got a match. Adjust kk and cc appropriately.
2235 (destructuring-bind (l a n b)
2237 (values (mul kk power)
2238 (list (mul l power) a n b)))))))
2239 ((and (mtimesp e)
2240 (null (cdddr e))
2241 (or (and (setq k (findp (cadr e)))
2242 (setq c (bxm (caddr e) (polyinx (caddr e) var nil))))
2243 (and (setq k (findp (caddr e)))
2244 (setq c (bxm (cadr e) (polyinx (cadr e) var nil))))))
2245 (values k c))
2246 ((setq c (bxm e (polyinx e var nil)))
2247 (setq k 0.)
2248 (values k c)))))
2251 ;;(DEFUN BATAP (E)
2252 ;; (PROG (K C L)
2253 ;; (COND ((NOT (BATA0 E)) (RETURN NIL))
2254 ;; ((AND (EQUAL -1. (CADDDR C))
2255 ;; (EQ ($askSIGN (SETQ K (m+ 1. K)))
2256 ;; '$pos)
2257 ;; (EQ ($askSIGN (SETQ L (m+ 1. (CAR C))))
2258 ;; '$pos)
2259 ;; (ALIKE1 (CADR C)
2260 ;; (m^ UL (CADDR C)))
2261 ;; (SETQ E (CADR C))
2262 ;; (EQ ($askSIGN (SETQ C (CADDR C))) '$pos))
2263 ;; (RETURN (M// (m* (m^ UL (m+t K (m* C (m+t -1. L))))
2264 ;; `(($BETA) ,(SETQ NN* (M// K C))
2265 ;; ,(SETQ DN* L)))
2266 ;; C))))))
2269 ;; Integrals of the form i(log(x)^m*x^k*(a+b*x^n)^l,x,0,ul). There
2270 ;; are two cases to consider: One case has ul>0, b<0, a=-b*ul^n, k>-1,
2271 ;; l>-1, n>0, m a nonnegative integer. The second case has ul=inf, l < 0.
2273 ;; These integrals are essentially partial derivatives of the Beta
2274 ;; function (i.e. the Eulerian integral of the first kind). Note
2275 ;; that, currently, with the default setting intanalysis:true, this
2276 ;; function might not even be called for some of these integrals.
2277 ;; However, this can be palliated by setting intanalysis:false.
2279 (defun zto1 (e)
2280 (when (or (mtimesp e) (mexptp e))
2281 (let ((m 0)
2282 (log (list '(%log) var)))
2283 (flet ((set-m (p)
2284 (setq m p)))
2285 (find-if #'(lambda (fac)
2286 (powerofx fac log #'set-m var))
2287 (cdr e)))
2288 (when (and (freeof var m)
2289 (eq (ask-integer m '$integer) '$yes)
2290 (not (eq ($asksign m) '$neg)))
2291 (setq e (m//t e (list '(mexpt) log m)))
2292 (cond
2293 ((eq ul '$inf)
2294 (multiple-value-bind (kk s d r cc)
2295 (batap-inf e)
2296 ;; We have i(x^kk/(d+cc*x^r)^s,x,0,inf) =
2297 ;; beta(aa,bb)/(cc^aa*d^bb*r). Compute this, and then
2298 ;; differentiate it m times to get the log term
2299 ;; incorporated.
2300 (when kk
2301 (let* ((aa (div (add 1 var) r))
2302 (bb (sub s aa))
2303 (m (if (eq ($asksign m) '$zero)
2305 m)))
2306 (let ((res (div `(($beta) ,aa ,bb)
2307 (mul (m^t cc aa)
2308 (m^t d bb)
2309 r))))
2310 ($at ($diff res var m)
2311 (list '(mequal) var kk)))))))
2313 (multiple-value-bind
2314 (k/n l n b) (batap-new e)
2315 (when k/n
2316 (let ((beta (simplify (list '($beta) k/n l)))
2317 (m (if (eq ($asksign m) '$zero) 0 m)))
2318 ;; The result looks like B(k/n,l) ( ... ).
2319 ;; Perhaps, we should just $factor, instead of
2320 ;; pulling out beta like this.
2321 (m*t
2322 beta
2323 ($fullratsimp
2324 (m//t
2325 (m*t
2326 (m^t (m-t b) (m1-t l))
2327 (m^t ul (m*t n (m1-t l)))
2328 (m^t n (m-t (m1+t m)))
2329 ($at ($diff (m*t (m^t ul (m*t n var))
2330 (list '($beta) var l))
2331 var m)
2332 (list '(mequal) var k/n)))
2333 beta))))))))))))
2336 ;;; If e is of the form given below, make the obvious change
2337 ;;; of variables (substituting ul*x^(1/n) for x) in order to reduce
2338 ;;; e to the usual form of the integrand in the Eulerian
2339 ;;; integral of the first kind.
2340 ;;; N. B: The old version of ZTO1 completely ignored this
2341 ;;; substitution; the log(x)s were just thrown in, which,
2342 ;;; of course would give wrong results.
2344 (defun batap-new (e)
2345 ;; Parse e
2346 (multiple-value-bind (k c)
2347 (bata0 e)
2348 (when k
2349 ;; e=x^k*(a+b*x^n)^l
2350 (destructuring-bind (l a n b)
2352 (when (and (freeof var k)
2353 (freeof var n)
2354 (freeof var l)
2355 (alike1 a (m-t (m*t b (m^t ul n))))
2356 (eq ($asksign b) '$neg)
2357 (eq ($asksign (setq k (m1+t k))) '$pos)
2358 (eq ($asksign (setq l (m1+t l))) '$pos)
2359 (eq ($asksign n) '$pos))
2360 (values (m//t k n) l n b))))))
2363 ;; Wang p. 71 gives the following formula for a beta function:
2365 ;; integrate(x^(k-1)/(c*x^r+d)^s,x,0,inf)
2366 ;; = beta(a,b)/(c^a*d^b*r)
2368 ;; where a = k/r > 0, b = s - a > 0, s > k > 0, r > 0, c*d > 0.
2370 ;; This function matches this and returns k-1, d, r, c, a, b. And
2371 ;; also checks that all the conditions hold. If not, NIL is returned.
2373 (defun batap-inf (e)
2374 (multiple-value-bind (k c)
2375 (bata0 e)
2376 (when k
2377 (destructuring-bind (l d r cc)
2379 (let* ((s (mul -1 l))
2380 (kk (add k 1))
2381 (a (div kk r))
2382 (b (sub s a)))
2383 (when (and (freeof var k)
2384 (freeof var r)
2385 (freeof var l)
2386 (eq ($asksign kk) '$pos)
2387 (eq ($asksign a) '$pos)
2388 (eq ($asksign b) '$pos)
2389 (eq ($asksign (sub s k)) '$pos)
2390 (eq ($asksign r) '$pos)
2391 (eq ($asksign (mul cc d)) '$pos))
2392 (values k s d r cc)))))))
2395 ;; Handles beta integrals.
2396 (defun batapp (e)
2397 (cond ((not (or (equal ll 0)
2398 (eq ll '$minf)))
2399 (setq e (subin (m+ ll var) e))))
2400 (multiple-value-bind (k c)
2401 (bata0 e)
2402 (cond ((null k)
2403 nil)
2405 (destructuring-bind (l d al c)
2407 ;; e = x^k*(d+c*x^al)^l.
2408 (let ((new-k (m// (m+ 1 k) al)))
2409 (when (and (ratgreaterp al 0.)
2410 (eq ($asksign new-k) '$pos)
2411 (ratgreaterp (setq l (m* -1 l))
2412 new-k)
2413 (eq ($asksign (m* d c))
2414 '$pos))
2415 (setq l (m+ l (m*t -1 new-k)))
2416 (m// `(($beta) ,new-k ,l)
2417 (mul* al (m^ c new-k) (m^ d l))))))))))
2420 ;; Compute exp(d)*gamma((c+1)/b)/b/a^((c+1)/b). In essence, this is
2421 ;; the value of integrate(x^c*exp(d-a*x^b),x,0,inf).
2422 (defun gamma1 (c a b d)
2423 (m* (m^t '$%e d)
2424 (m^ (m* b (m^ a (setq c (m// (m+t c 1) b)))) -1)
2425 `((%gamma) ,c)))
2427 (defun zto%pi2 (grand var)
2428 (let ((result (unitcir (sratsimp (m// grand var)) var)))
2429 (cond (result (sratsimp (m* (m- '$%i) result)))
2430 (t nil))))
2432 ;; Evaluates the contour integral of GRAND around the unit circle
2433 ;; using residues.
2434 (defun unitcir (grand var)
2435 (numden grand)
2436 (let* ((sgn nil)
2437 (result (princip (res nn* dn*
2438 #'(lambda (pt)
2439 ;; Is pt stricly inside the unit circle?
2440 (setq sgn (let ((limitp nil))
2441 ($asksign (m+ -1 (cabs pt)))))
2442 (eq sgn '$neg))
2443 #'(lambda (pt)
2444 (declare (ignore pt))
2445 ;; Is pt on the unit circle? (Use
2446 ;; the cached value computed
2447 ;; above.)
2448 (prog1
2449 (eq sgn '$zero)
2450 (setq sgn nil)))))))
2451 (when result
2452 (m* '$%pi result))))
2455 (defun logx1 (exp ll ul)
2456 (let ((arg nil))
2457 (cond
2458 ((and (notinvolve exp '(%sin %cos %tan %atan %asin %acos))
2459 (setq arg (involve exp '(%log))))
2460 (cond ((eq arg var)
2461 (cond ((ratgreaterp 1. ll)
2462 (cond ((not (eq ul '$inf))
2463 (intcv1 (m^t '$%e (m- 'yx)) (m- `((%log) ,var))))
2464 (t (intcv1 (m^t '$%e 'yx) `((%log) ,var)))))))
2465 (t (intcv arg nil)))))))
2468 ;; Wang 81-83. Unfortunately, the pdf version has page 82 as all
2469 ;; black, so here is, as best as I can tell, what Wang is doing.
2470 ;; Fortunately, p. 81 has the necessary hints.
2472 ;; First consider integrate(exp(%i*k*x^n),x) around the closed contour
2473 ;; consisting of the real axis from 0 to R, the arc from the angle 0
2474 ;; to %pi/(2*n) and the ray from the arc back to the origin.
2476 ;; There are no poles in this region, so the integral must be zero.
2477 ;; But consider the integral on the three parts. The real axis is the
2478 ;; integral we want. The return ray is
2480 ;; exp(%i*%pi/2/n) * integrate(exp(%i*k*(t*exp(%i*%pi/2/n))^n),t,R,0)
2481 ;; = exp(%i*%pi/2/n) * integrate(exp(%i*k*t^n*exp(%i*%pi/2)),t,R,0)
2482 ;; = -exp(%i*%pi/2/n) * integrate(exp(-k*t^n),t,0,R)
2484 ;; As R -> infinity, this last integral is gamma(1/n)/k^(1/n)/n.
2486 ;; We assume the integral on the circular arc approaches 0 as R ->
2487 ;; infinity. (Need to prove this.)
2489 ;; Thus, we have
2491 ;; integrate(exp(%i*k*t^n),t,0,inf)
2492 ;; = exp(%i*%pi/2/n) * gamma(1/n)/k^(1/n)/n.
2494 ;; Equating real and imaginary parts gives us the desired results:
2496 ;; integrate(cos(k*t^n),t,0,inf) = G * cos(%pi/2/n)
2497 ;; integrate(sin(k*t^n),t,0,inf) = G * sin(%pi/2/n)
2499 ;; where G = gamma(1/n)/k^(1/n)/n.
2501 (defun scaxn (e)
2502 (let (ind s g)
2503 (cond ((atom e) nil)
2504 ((and (or (eq (caar e) '%sin)
2505 (eq (caar e) '%cos))
2506 (setq ind (caar e))
2507 (setq e (bx**n (cadr e))))
2508 ;; Ok, we have cos(b*x^n) or sin(b*x^n), and we set e = (n
2509 ;; b)
2510 (cond ((equal (car e) 1.)
2511 ;; n = 1. Give up. (Why not divergent?)
2512 nil)
2513 ((zerop (setq s (let ((sign ($asksign (cadr e))))
2514 (cond ((eq sign '$pos) 1)
2515 ((eq sign '$neg) -1)
2516 ((eq sign '$zero) 0)))))
2517 ;; s is the sign of b. Give up if it's zero.
2518 nil)
2519 ((not (eq ($asksign (m+ -1 (car e))) '$pos))
2520 ;; Give up if n-1 <= 0. (Why give up? Isn't the
2521 ;; integral divergent?)
2522 nil)
2524 ;; We can apply our formula now. g = gamma(1/n)/n/b^(1/n)
2525 (setq g (gamma1 0. (m* s (cadr e)) (car e) 0.))
2526 (setq e (m* g `((,ind) ,(m// half%pi (car e)))))
2527 (m* (cond ((and (eq ind '%sin)
2528 (equal s -1))
2530 (t 1))
2531 e)))))))
2534 ;; this is the second part of the definite integral package
2536 (declare-top(special var plm* pl* rl* pl*1 rl*1))
2538 (defun p*lognxp (a s)
2539 (let (b)
2540 (cond ((not (among '%log a))
2542 ((and (polyinx (setq b (maxima-substitute 1. `((%log) ,var) a))
2543 var t)
2544 (eq ($sign (m+ s (m+ 1 (deg b))))
2545 '$pos)
2546 (evenfn b var)
2547 (setq a (lognxp (sratsimp (m// a b)))))
2548 (list b a)))))
2550 (defun lognxp (a)
2551 (cond ((atom a) nil)
2552 ((and (eq (caar a) '%log)
2553 (eq (cadr a) var)) 1.)
2554 ((and (mexptp a)
2555 (numberp (caddr a))
2556 (lognxp (cadr a)))
2557 (caddr a))))
2559 (defun logcpi0 (n d)
2560 (prog (pl dp)
2561 (setq pl (polelist d #'upperhalf #'(lambda (j)
2562 (cond ((zerop1 j) nil)
2563 ((equal ($imagpart j) 0)
2564 t)))))
2565 (cond ((null pl)
2566 (return nil)))
2567 (setq factors (car pl)
2568 pl (cdr pl))
2569 (cond ((or (cadr pl)
2570 (caddr pl))
2571 (setq dp (sdiff d var))))
2572 (cond ((setq plm* (car pl))
2573 (setq rlm* (residue n (cond (leadcoef factors)
2574 (t d))
2575 plm*))))
2576 (cond ((setq pl* (cadr pl))
2577 (setq rl* (res1 n dp pl*))))
2578 (cond ((setq pl*1 (caddr pl))
2579 (setq rl*1 (res1 n dp pl*1))))
2580 (return (m*t (m//t 1. 2.)
2581 (m*t '$%pi
2582 (princip
2583 (list (cond ((setq nn* (append rl* rlm*))
2584 (m+l nn*)))
2585 (cond (rl*1 (m+l rl*1))))))))))
2587 (defun lognx2 (nn dn pl rl)
2588 (do ((pl pl (cdr pl))
2589 (rl rl (cdr rl))
2590 (ans ()))
2591 ((or (null pl)
2592 (null rl)) ans)
2593 (setq ans (cons (m* dn (car rl) (m^ `((%plog) ,(car pl)) nn))
2594 ans))))
2596 (defun logcpj (n d i)
2597 (setq n (append
2598 (if plm*
2599 (list (mul* (m*t '$%i %pi2)
2600 (m+l
2601 (residue (m* (m^ `((%plog) ,var) i) n)
2603 plm*)))))
2604 (lognx2 i (m*t '$%i %pi2) pl* rl*)
2605 (lognx2 i %p%i pl*1 rl*1)))
2606 (if (null n)
2608 (simplify (m+l n))))
2610 ;; Handle integral(n(x)/d(x)*log(x)^m,x,0,inf). n and d are
2611 ;; polynomials.
2612 (defun log*rat (n d m)
2613 (declare (special *i* *j*))
2614 (setq *i* (make-array (1+ m)))
2615 (setq *j* (make-array (1+ m)))
2616 (setf (aref *j* 0) 0)
2617 (prog (leadcoef factors plm* pl* rl* pl*1 rl*1 rlm*)
2618 (dotimes (c m (return (logcpi n d m)))
2619 (setf (aref *i* c) (logcpi n d c))
2620 (setf (aref *j* c) (logcpj n factors c)))))
2622 (defun logcpi (n d c)
2623 (declare (special *j*))
2624 (if (zerop c)
2625 (logcpi0 n d)
2626 (m* '((rat) 1 2) (m+ (aref *j* c) (m* -1 (sumi c))))))
2628 (defun sumi (c)
2629 (declare (special *i*))
2630 (do ((k 1 (1+ k))
2631 (ans ()))
2632 ((= k c)
2633 (m+l ans))
2634 (push (mul* ($makegamma `((%binomial) ,c ,k))
2635 (m^t '$%pi k)
2636 (m^t '$%i k)
2637 (aref *i* (- c k)))
2638 ans)))
2640 (defun fan (p m a n b)
2641 (let ((povern (m// p n))
2642 (ab (m// a b)))
2643 (cond
2644 ((or (eq (ask-integer povern '$integer) '$yes)
2645 (not (equal ($imagpart ab) 0))) ())
2646 (t (let ((ind ($asksign ab)))
2647 (cond ((eq ind '$zero) nil)
2648 ((eq ind '$neg) nil)
2649 ((not (ratgreaterp m povern)) nil)
2650 (t (m// (m* '$%pi
2651 ($makegamma `((%binomial) ,(m+ -1 m (m- povern))
2652 ,(m+t -1 m)))
2653 `((mabs) ,(m^ a (m+ povern (m- m)))))
2654 (m* (m^ b povern)
2656 `((%sin) ,(m*t '$%pi povern)))))))))))
2659 ;;Makes a new poly such that np(x)-np(x+2*%i*%pi)=p(x).
2660 ;;Constructs general POLY of degree one higher than P with
2661 ;;arbitrary coeff. and then solves for coeffs by equating like powers
2662 ;;of the varibale of integration.
2663 ;;Can probably be made simpler now.
2665 (defun makpoly (p)
2666 (let ((n (deg p)) (ans ()) (varlist ()) (gp ()) (cl ()) (zz ()))
2667 (setq ans (genpoly (m+ 1 n))) ;Make poly with gensyms of 1 higher deg.
2668 (setq cl (cdr ans)) ;Coefficient list
2669 (setq varlist (append cl (list var))) ;Make VAR most important.
2670 (setq gp (car ans)) ;This is the poly with gensym coeffs.
2671 ;;;Now, poly(x)-poly(x+2*%i*%pi)=p(x), P is the original poly.
2672 (setq ans (m+ gp (subin (m+t (m*t '$%i %pi2) var) (m- gp)) (m- p)))
2673 (newvar ans)
2674 (setq ans (ratrep* ans)) ;Rational rep with VAR leading.
2675 (setq zz (coefsolve n cl (cond ((not (eq (caadr ans) ;What is Lead Var.
2676 (genfind (car ans) var)))
2677 (list 0 (cadr ans))) ;No VAR in ans.
2678 ((cdadr ans))))) ;The real Poly.
2679 (if (or (null zz) (null gp))
2681 ($substitute zz gp)))) ;Substitute Values for gensyms.
2683 (defun coefsolve (n cl e)
2684 (do (($breakup)
2685 (eql (ncons (pdis (ptterm e n))) (cons (pdis (ptterm e m)) eql))
2686 (m (m+ n -1) (m+ m -1)))
2687 ((signp l m) (solvex eql cl nil nil))))
2689 ;; Integrate(p(x)*f(exp(x))/g(exp(x)),x,minf,inf) by applying the
2690 ;; transformation y = exp(x) to get
2691 ;; integrate(p(log(y))*f(y)/g(y)/y,y,0,inf). This should be handled
2692 ;; by dintlog.
2693 (defun log-transform (p pe d)
2694 (let ((new-p (subst (list '(%log) var) var p))
2695 (new-pe (subst var 'z* (catch 'pin%ex (pin%ex pe))))
2696 (new-d (subst var 'z* (catch 'pin%ex (pin%ex d)))))
2697 (defint (div (div (mul new-p new-pe) new-d) var) var 0 ul)))
2699 ;; This implements Wang's algorithm in Chapter 5.2, pp. 98-100.
2701 ;; This is a very brief description of the algorithm. Basically, we
2702 ;; have integrate(R(exp(x))*p(x),x,minf,inf), where R(x) is a rational
2703 ;; function and p(x) is a polynomial.
2705 ;; We find a polynomial q(x) such that q(x) - q(x+2*%i*%pi) = p(x).
2706 ;; Then consider a contour integral of R(exp(z))*q(z) over a
2707 ;; rectangular contour. Opposite corners of the rectangle are (-R,
2708 ;; 2*%i*%pi) and (R, 0).
2710 ;; Wang shows that this contour integral, in the limit, is the
2711 ;; integral of R(exp(x))*q(x)-R(exp(x))*q(x+2*%i*%pi), which is
2712 ;; exactly the integral we're looking for.
2714 ;; Thus, to find the value of the contour integral, we just need the
2715 ;; residues of R(exp(z))*q(z). The only tricky part is that we want
2716 ;; the log function to have an imaginary part between 0 and 2*%pi
2717 ;; instead of -%pi to %pi.
2718 (defun rectzto%pi2 (p pe d)
2719 ;; We have R(exp(x))*p(x) represented as p(x)*pe(exp(x))/d(exp(x)).
2720 (prog (dp n pl a b c denom-exponential)
2721 (if (not (and (setq denom-exponential (catch 'pin%ex (pin%ex d)))
2722 (%e-integer-coeff pe)
2723 (%e-integer-coeff d)))
2724 (return ()))
2725 ;; At this point denom-exponential has converted d(exp(x)) to the
2726 ;; polynomial d(z), where z = exp(x).
2727 (setq n (m* (cond ((null p) -1)
2728 (t ($expand (m*t '$%i %pi2 (makpoly p)))))
2729 pe))
2730 (let ((var 'z*)
2731 (leadcoef ()))
2732 ;; Find the poles of the denominator. denom-exponential is the
2733 ;; denominator of R(x).
2735 ;; It seems as if polelist returns a list of several items.
2736 ;; The first element is a list consisting of the pole and (z -
2737 ;; pole). We don't care about this, so we take the rest of the
2738 ;; result.
2739 (setq pl (cdr (polelist denom-exponential
2740 #'(lambda (j)
2741 ;; The imaginary part is nonzero,
2742 ;; or the realpart is negative.
2743 (or (not (equal ($imagpart j) 0))
2744 (eq ($asksign ($realpart j)) '$neg)))
2745 #'(lambda (j)
2746 ;; The realpart is not zero.
2747 (not (eq ($asksign ($realpart j)) '$zero)))))))
2748 ;; Not sure what this does.
2749 (cond ((null pl)
2750 ;; No roots at all, so return
2751 (return nil))
2752 ((or (cadr pl)
2753 (caddr pl))
2754 ;; We have simple roots or roots in REGION1
2755 (setq dp (sdiff d var))))
2756 (cond ((cadr pl)
2757 ;; The cadr of pl is the list of the simple poles of
2758 ;; denom-exponential. Take the log of them to find the
2759 ;; poles of the original expression. Then compute the
2760 ;; residues at each of these poles and sum them up and put
2761 ;; the result in B. (If no simple poles set B to 0.)
2762 (setq b (mapcar #'log-imag-0-2%pi (cadr pl)))
2763 (setq b (res1 n dp b))
2764 (setq b (m+l b)))
2765 (t (setq b 0.)))
2766 (cond ((caddr pl)
2767 ;; I think this handles the case of poles outside the
2768 ;; regions. The sum of these residues are placed in C.
2769 (let ((temp (mapcar #'log-imag-0-2%pi (caddr pl))))
2770 (setq c (append temp (mapcar #'(lambda (j)
2771 (m+ (m*t '$%i %pi2) j))
2772 temp)))
2773 (setq c (res1 n dp c))
2774 (setq c (m+l c))))
2775 (t (setq c 0.)))
2776 (cond ((car pl)
2777 ;; We have the repeated poles of deonom-exponential, so we
2778 ;; need to convert them to the actual pole values for
2779 ;; R(exp(x)), by taking the log of the value of poles.
2780 (let ((poles (mapcar #'(lambda (p)
2781 (log-imag-0-2%pi (car p)))
2782 (car pl)))
2783 (exp (m// n (subst (m^t '$%e var) 'z* denom-exponential))))
2784 ;; Compute the residues at all of these poles and sum
2785 ;; them up.
2786 (setq a (mapcar #'(lambda (j)
2787 ($residue exp var j))
2788 poles))
2789 (setq a (m+l a))))
2790 (t (setq a 0.)))
2791 (return (sratsimp (m+ a b (m* '((rat) 1. 2.) c))))))
2793 (defun genpoly (i)
2794 (do ((i i (m+ i -1))
2795 (c (gensym) (gensym))
2796 (cl ())
2797 (ans ()))
2798 ((zerop i)
2799 (cons (m+l ans) cl))
2800 (setq ans (cons (m* c (m^t var i)) ans))
2801 (setq cl (cons c cl))))
2803 ;; Check to see if each term in exp that is of the form exp(k*x) has
2804 ;; an integer value for k.
2805 (defun %e-integer-coeff (exp)
2806 (cond ((mapatom exp) t)
2807 ((and (mexptp exp)
2808 (eq (cadr exp) '$%e))
2809 (eq (ask-integer ($coeff (caddr exp) var) '$integer)
2810 '$yes))
2811 (t (every '%e-integer-coeff (cdr exp)))))
2813 (defun wlinearpoly (e var)
2814 (cond ((and (setq e (polyinx e var t))
2815 (equal (deg e) 1))
2816 (subin 1 e))))
2818 ;; Test to see if exp is of the form f(exp(x)), and if so, replace
2819 ;; exp(x) with 'z*. That is, basically return f(z*).
2820 (defun pin%ex (exp)
2821 (declare (special $exponentialize))
2822 (pin%ex0 (cond ((notinvolve exp '(%sinh %cosh %tanh))
2823 exp)
2825 (let (($exponentialize t))
2826 (setq exp ($expand exp)))))))
2828 (defun pin%ex0 (e)
2829 ;; Does e really need to be special here? Seems to be ok without
2830 ;; it; testsuite works.
2831 #+nil
2832 (declare (special e))
2833 (cond ((not (among var e))
2835 ((atom e)
2836 (throw 'pin%ex nil))
2837 ((and (mexptp e)
2838 (eq (cadr e) '$%e))
2839 (cond ((eq (caddr e) var)
2840 'z*)
2841 ((let ((linterm (wlinearpoly (caddr e) var)))
2842 (and linterm
2843 (m* (subin 0 e) (m^t 'z* linterm)))))
2845 (throw 'pin%ex nil))))
2846 ((mtimesp e)
2847 (m*l (mapcar #'pin%ex0 (cdr e))))
2848 ((mplusp e)
2849 (m+l (mapcar #'pin%ex0 (cdr e))))
2851 (throw 'pin%ex nil))))
2853 ;; Test to see if exp is of the form p(x)*f(exp(x)). If so, set p* to
2854 ;; be p(x) and set pe* to f(exp(x)).
2855 (defun p*pin%ex (nd*)
2856 (setq nd* ($factor nd*))
2857 (cond ((polyinx nd* var nil)
2858 (setq p* (cons nd* p*)) t)
2859 ((catch 'pin%ex (pin%ex nd*))
2860 (setq pe* (cons nd* pe*)) t)
2861 ((mtimesp nd*)
2862 (andmapcar #'p*pin%ex (cdr nd*)))))
2864 (defun findsub (p)
2865 (cond ((findp p) nil)
2866 ((setq nd* (bx**n p))
2867 (m^t var (car nd*)))
2868 ((setq p (bx**n+a p))
2869 (m* (caddr p) (m^t var (cadr p))))))
2871 ;; I think this is looking at f(exp(x)) and tries to find some
2872 ;; rational function R and some number k such that f(exp(x)) =
2873 ;; R(exp(k*x)).
2874 (defun funclogor%e (e)
2875 (prog (ans arg nvar r)
2876 (cond ((or (ratp e var)
2877 (involve e '(%sin %cos %tan))
2878 (not (setq arg (xor (and (setq arg (involve e '(%log)))
2879 (setq r '%log))
2880 (%einvolve e)))))
2881 (return nil)))
2882 ag (setq nvar (cond ((eq r '%log) `((%log) ,arg))
2883 (t (m^t '$%e arg))))
2884 (setq ans (maxima-substitute (m^t 'yx -1) (m^t nvar -1) (maxima-substitute 'yx nvar e)))
2885 (cond ((not (among var ans)) (return (list (subst var 'yx ans) nvar)))
2886 ((and (null r)
2887 (setq arg (findsub arg)))
2888 (go ag)))))
2890 ;; Integration by parts.
2892 ;; integrate(u(x)*diff(v(x),x),x,a,b)
2893 ;; |b
2894 ;; = u(x)*v(x)| - integrate(v(x)*diff(u(x),x))
2895 ;; |a
2897 (defun dintbypart (u v a b)
2898 ;;;SINCE ONLY CALLED FROM DINTLOG TO get RID OF LOGS - IF LOG REMAINS, QUIT
2899 (let ((ad (antideriv v)))
2900 (cond ((or (null ad)
2901 (involve ad '(%log)))
2902 nil)
2903 (t (let ((p1 (m* u ad))
2904 (p2 (m* ad (sdiff u var))))
2905 (let ((p1-part1 (get-limit p1 var b '$minus))
2906 (p1-part2 (get-limit p1 var a '$plus)))
2907 (cond ((or (null p1-part1)
2908 (null p1-part2))
2909 nil)
2910 (t (let ((p2 (let ((*def2* t))
2911 (defint p2 var a b))))
2912 (cond (p2 (add* p1-part1
2913 (m- p1-part2)
2914 (m- p2)))
2915 (t nil)))))))))))
2917 ;; integrate(f(exp(k*x)),x,a,b), where f(z) is rational.
2919 ;; See Wang p. 96-97.
2921 ;; If the limits are minf to inf, we use the substitution y=exp(k*x)
2922 ;; to get integrate(f(y)/y,y,0,inf)/k. If the limits are 0 to inf,
2923 ;; use the substitution s+1=exp(k*x) to get
2924 ;; integrate(f(s+1)/(s+1),s,0,inf).
2925 (defun dintexp (exp ignored &aux ans)
2926 (declare (ignore ignored))
2927 (let ((*dintexp-recur* t)) ;recursion stopper
2928 (cond ((and (sinintp exp var) ;To be moved higher in the code.
2929 (setq ans (antideriv exp))
2930 (setq ans (intsubs ans ll ul)))
2931 ;; If we can integrate it directly, do so and take the
2932 ;; appropriate limits.
2934 ((setq ans (funclogor%e exp))
2935 ;; ans is the list (f(x) exp(k*x)).
2936 (cond ((and (equal ll 0.)
2937 (eq ul '$inf))
2938 ;; Use the substitution s + 1 = exp(k*x). The
2939 ;; integral becomes integrate(f(s+1)/(s+1),s,0,inf)
2940 (setq ans (m+t -1 (cadr ans))))
2942 ;; Use the substitution y=exp(k*x) because the
2943 ;; limits are minf to inf.
2944 (setq ans (cadr ans))))
2945 ;; Apply the substitution and integrate it.
2946 (intcv ans nil)))))
2948 ;; integrate(log(g(x))*f(x),x,0,inf)
2949 (defun dintlog (exp arg)
2950 (let ((*dintlog-recur* (1+ *dintlog-recur*))) ;recursion stopper
2951 (prog (ans d)
2952 (cond ((and (eq ul '$inf)
2953 (equal ll 0.)
2954 (eq arg var)
2955 (equal 1 (sratsimp (m// exp (m* (m- (subin (m^t var -1)
2956 exp))
2957 (m^t var -2))))))
2958 ;; Make the substitution y=1/x. If the integrand has
2959 ;; exactly the same form, the answer has to be 0.
2960 (return 0.))
2961 ((and (setq ans (let (($gamma_expand t)) (logx1 exp ll ul)))
2962 (free ans '%limit))
2963 (return ans))
2964 ((setq ans (antideriv exp))
2965 ;; It's easy if we have the antiderivative.
2966 ;; but intsubs sometimes gives results containing %limit
2967 (return (intsubs ans ll ul))))
2968 ;; Ok, the easy cases didn't work. We now try integration by
2969 ;; parts. Set ANS to f(x).
2970 (setq ans (m// exp `((%log) ,arg)))
2971 (cond ((involve ans '(%log))
2972 ;; Bad. f(x) contains a log term, so we give up.
2973 (return nil))
2974 ((and (eq arg var)
2975 (equal 0. (no-err-sub 0. ans))
2976 (setq d (let ((*def2* t))
2977 (defint (m* ans (m^t var '*z*))
2978 var ll ul))))
2979 ;; The arg of the log function is the same as the
2980 ;; integration variable. We can do something a little
2981 ;; simpler than integration by parts. We have something
2982 ;; like f(x)*log(x). Consider f(x)*x^z. If we
2983 ;; differentiate this wrt to z, the integrand becomes
2984 ;; f(x)*log(x)*x^z. When we evaluate this at z = 0, we
2985 ;; get the desired integrand.
2987 ;; So we need f(0) to be 0 at 0. If we can integrate
2988 ;; f(x)*x^z, then we differentiate the result and
2989 ;; evaluate it at z = 0.
2990 (return (derivat '*z* 1. d 0.)))
2991 ((setq ans (dintbypart `((%log) ,arg) ans ll ul))
2992 ;; Try integration by parts.
2993 (return ans))))))
2995 ;; Compute diff(e,var,n) at the point pt.
2996 (defun derivat (var n e pt)
2997 (subin pt (apply '$diff (list e var n))))
2999 ;;; GGR and friends
3001 ;; MAYBPC returns (COEF EXPO CONST)
3003 ;; This basically picks off b*x^n+a and returns the list
3004 ;; (b n a). It may also set the global *zd*.
3005 (defun maybpc (e var)
3006 (declare (special *zd*))
3007 (cond (*mtoinf* (throw 'ggrm (linpower0 e var)))
3008 ((and (not *mtoinf*)
3009 (null (setq e (bx**n+a e)))) ;bx**n+a --> (a n b) or nil.
3010 nil) ;with var being x.
3011 ;; At this point, e is of the form (a n b)
3012 ((and (among '$%i (caddr e))
3013 (zerop1 ($realpart (caddr e)))
3014 (setq zn ($imagpart (caddr e)))
3015 (eq ($asksign (cadr e)) '$pos))
3016 ;; If we're here, b is complex, and n > 0. zn = imagpart(b).
3018 ;; Set var to the same sign as zn.
3019 (cond ((eq ($asksign zn) '$neg)
3020 (setq var -1)
3021 (setq zn (m- zn)))
3022 (t (setq var 1)))
3023 ;; zd = exp(var*%i*%pi*(1+nd)/(2*n). (ZD is special!)
3024 (setq *zd* (m^t '$%e (m// (mul* var '$%i '$%pi (m+t 1 nd*))
3025 (m*t 2 (cadr e)))))
3026 ;; Return zn, n, a.
3027 `(,(caddr e) ,(cadr e) ,(car e)))
3028 ((and (or (eq (setq var ($asksign ($realpart (caddr e)))) '$neg)
3029 (equal var '$zero))
3030 (equal ($imagpart (cadr e)) 0)
3031 (ratgreaterp (cadr e) 0.))
3032 ;; We're here if realpart(b) <= 0, and n >= 0. Then return -b, n, a.
3033 `(,(caddr e) ,(cadr e) ,(car e)))))
3035 ;; Integrate x^m*exp(b*x^n+a), with realpart(m) > -1.
3037 ;; See Wang, pp. 84-85.
3039 ;; I believe the formula Wang gives is incorrect. The derivation is
3040 ;; correct except for the last step.
3042 ;; Let J = integrate(x^m*exp(%i*k*x^n),x,0,inf), with real k.
3044 ;; Consider the case for k < 0. Take a sector of a circle bounded by
3045 ;; the real line and the angle -%pi/(2*n), and by the radii, r and R.
3046 ;; Since there are no poles inside this contour, the integral
3048 ;; integrate(z^m*exp(%i*k*z^n),z) = 0
3050 ;; Then J = exp(-%pi*%i*(m+1)/(2*n))*integrate(R^m*exp(k*R^n),R,0,inf)
3052 ;; because the integral along the boundary is zero except for the part
3053 ;; on the real axis. (Proof?)
3055 ;; Wang seems to say this last integral is gamma(s/n/(-k)^s) where s =
3056 ;; (m+1)/n. But that seems wrong. If we use the substitution R =
3057 ;; (y/(-k))^(1/n), we end up with the result:
3059 ;; integrate(y^((m+1)/n-1)*exp(-y),y,0,inf)/(n*k^((m+1)/n).
3061 ;; or gamma((m+1)/n)/k^((m+1)/n)/n.
3063 ;; Note that this also handles the case of
3065 ;; integrate(x^m*exp(-k*x^n),x,0,inf);
3067 ;; where k is positive real number. A simple change of variables,
3068 ;; y=k*x^n, gives
3070 ;; integrate(y^((m+1)/n-1)*exp(-y),y,0,inf)/(n*k^((m+1)/n))
3072 ;; which is the same form above.
3073 (defun ggr (e ind)
3074 (prog (c *zd* zn nn* dn* nd* dosimp $%emode)
3075 (declare (special *zd*))
3076 (setq nd* 0.)
3077 (cond (ind (setq e ($expand e))
3078 (cond ((and (mplusp e)
3079 (let ((*nodiverg t))
3080 (setq e (catch 'divergent
3081 (andmapcar
3082 #'(lambda (j)
3083 (ggr j nil))
3084 (cdr e))))))
3085 (cond ((eq e 'divergent) nil)
3086 (t (return (sratsimp (cons '(mplus) e)))))))))
3087 (setq e (rmconst1 e))
3088 (setq c (car e))
3089 (setq e (cdr e))
3090 (cond ((setq e (ggr1 e var))
3091 ;; e = (m b n a). That is, the integral is of the form
3092 ;; x^m*exp(b*x^n+a). I think we want to compute
3093 ;; gamma((m+1)/n)/b^((m+1)/n)/n.
3095 ;; FIXME: If n > m + 1, the integral converges. We need
3096 ;; to check for this.
3097 (destructuring-bind (m b n a)
3099 (when (and (not (zerop1 ($realpart b)))
3100 (not (zerop1 ($imagpart b))))
3101 ;; The derivation only holds if b is purely real or
3102 ;; purely imaginary. Give up if it's not.
3103 (return nil))
3104 ;; Check for convergence. If b is complex, we need n -
3105 ;; m > 1. If b is real, we need b < 0.
3106 (when (and (zerop1 ($imagpart b))
3107 (not (eq ($asksign b) '$neg)))
3108 (diverg))
3109 (when (and (not (zerop1 ($imagpart b)))
3110 (not (eq ($asksign (sub n (add m 1))) '$pos)))
3111 (diverg))
3113 (setq e (gamma1 m (cond ((zerop1 ($imagpart b))
3114 ;; If we're here, b must be negative.
3115 (neg b))
3117 ;; Complex b. Take the imaginary part
3118 `((mabs) ,($imagpart b))))
3119 n a))
3120 ;; NOTE: *zd* (Ick!) is special and might be set by maybpc.
3121 (when *zd*
3122 ;; FIXME: Why do we set %emode here? Shouldn't we just
3123 ;; bind it? And why do we want it bound to T anyway?
3124 ;; Shouldn't the user control that? The same goes for
3125 ;; dosimp.
3126 ;;(setq $%emode t)
3127 (setq dosimp t)
3128 (setq e (m* *zd* e))))))
3129 (cond (e (return (m* c e))))))
3132 ;; Match x^m*exp(b*x^n+a). If it does, return (list m b n a).
3133 (defun ggr1 (e var)
3134 (cond ((atom e) nil)
3135 ((and (mexptp e)
3136 (eq (cadr e) '$%e))
3137 ;; We're looking at something like exp(f(var)). See if it's
3138 ;; of the form b*x^n+a, and return (list 0 b n a). (The 0 is
3139 ;; so we can graft something onto it if needed.)
3140 (cond ((setq e (maybpc (caddr e) var))
3141 (cons 0. e))))
3142 ((and (mtimesp e)
3143 ;; E should be the product of exactly 2 terms
3144 (null (cdddr e))
3145 ;; Check to see if one of the terms is of the form
3146 ;; var^p. If so, make sure the realpart of p > -1. If
3147 ;; so, check the other term has the right form via
3148 ;; another call to ggr1.
3149 (or (and (setq dn* (xtorterm (cadr e) var))
3150 (ratgreaterp (setq nd* ($realpart dn*))
3151 -1.)
3152 (setq nn* (ggr1 (caddr e) var)))
3153 (and (setq dn* (xtorterm (caddr e) var))
3154 (ratgreaterp (setq nd* ($realpart dn*))
3155 -1.)
3156 (setq nn* (ggr1 (cadr e) var)))))
3157 ;; Both terms have the right form and nn* contains the arg of
3158 ;; the exponential term. Put dn* as the car of nn*. The
3159 ;; result is something like (m b n a) when we have the
3160 ;; expression x^m*exp(b*x^n+a).
3161 (rplaca nn* dn*))))
3164 ;; Match b*x^n+a. If a match is found, return the list (a n b).
3165 ;; Otherwise, return NIL
3166 (defun bx**n+a (e)
3167 (cond ((eq e var)
3168 (list 0 1 1))
3169 ((or (atom e)
3170 (mnump e)) ())
3171 (t (let ((a (no-err-sub 0. e)))
3172 (cond ((null a) ())
3173 (t (setq e (m+ e (m*t -1 a)))
3174 (cond ((setq e (bx**n e))
3175 (cons a e))
3176 (t ()))))))))
3178 ;; Match b*x^n. Return the list (n b) if found or NIL if not.
3179 (defun bx**n (e)
3180 (let ((n ()))
3181 (and (setq n (xexponget e var))
3182 (not (among var
3183 (setq e (let (($maxposex 1)
3184 ($maxnegex 1))
3185 ($expand (m// e (m^t var n)))))))
3186 (list n e))))
3188 (defun xexponget (e nn*)
3189 (cond ((atom e) (cond ((eq e var) 1.)))
3190 ((mnump e) nil)
3191 ((and (mexptp e)
3192 (eq (cadr e) nn*)
3193 (not (among nn* (caddr e))))
3194 (caddr e))
3195 (t (some #'(lambda (j) (xexponget j nn*)) (cdr e)))))
3198 ;;; given (b*x^n+a)^m returns (m a n b)
3199 (defun bxm (e ind)
3200 (let (m r)
3201 (cond ((or (atom e)
3202 (mnump e)
3203 (involve e '(%log %sin %cos %tan))
3204 (%einvolve e)) nil)
3205 ((mtimesp e) nil)
3206 ((mexptp e) (cond ((among var (caddr e)) nil)
3207 ((setq r (bx**n+a (cadr e)))
3208 (cons (caddr e) r))))
3209 ((setq r (bx**n+a e)) (cons 1. r))
3210 ((not (null ind))
3211 ;;;Catches Unfactored forms.
3212 (setq m (m// (sdiff e var) e))
3213 (numden m)
3214 (setq m nn*)
3215 (setq r dn*)
3216 (cond
3217 ((and (setq r (bx**n+a (sratsimp r)))
3218 (not (among var (setq m (m// m (m* (cadr r) (caddr r)
3219 (m^t var (m+t -1 (cadr r))))))))
3220 (setq e (m// (subin 0. e) (m^t (car r) m))))
3221 (cond ((equal e 1.)
3222 (cons m r))
3223 (t (setq e (m^ e (m// 1. m)))
3224 (list m (m* e (car r)) (cadr r)
3225 (m* e (caddr r))))))))
3226 (t ()))))
3228 ;;;Is E = VAR raised to some power? If so return power or 0.
3229 (defun findp (e)
3230 (cond ((not (among var e)) 0.)
3231 (t (xtorterm e var))))
3233 (defun xtorterm (e var1)
3234 ;;;Is E = VAR1 raised to some power? If so return power.
3235 (cond ((alike1 e var1) 1.)
3236 ((atom e) nil)
3237 ((and (mexptp e)
3238 (alike1 (cadr e) var1)
3239 (not (among var (caddr e))))
3240 (caddr e))))
3242 (defun tbf (l)
3243 (m^ (m* (m^ (caddr l) '((rat) 1 2))
3244 (m+ (cadr l) (m^ (m* (car l) (caddr l))
3245 '((rat) 1 2))))
3246 -1))
3248 (defun radbyterm (d l)
3249 (do ((l l (cdr l))
3250 (ans ()))
3251 ((null l)
3252 (m+l ans))
3253 (destructuring-let (((const . integrand) (rmconst1 (car l))))
3254 (setq ans (cons (m* const (dintrad0 integrand d))
3255 ans)))))
3257 (defun sqdtc (e ind)
3258 (prog (a b c varlist)
3259 (setq varlist (list var))
3260 (newvar e)
3261 (setq e (cdadr (ratrep* e)))
3262 (setq c (pdis (ptterm e 0)))
3263 (setq b (m*t (m//t 1 2) (pdis (ptterm e 1))))
3264 (setq a (pdis (ptterm e 2)))
3265 (cond ((and (eq ($asksign (m+ b (m^ (m* a c)
3266 '((rat) 1 2))))
3267 '$pos)
3268 (or (and ind
3269 (not (eq ($asksign a) '$neg))
3270 (eq ($asksign c) '$pos))
3271 (and (eq ($asksign a) '$pos)
3272 (not (eq ($asksign c) '$neg)))))
3273 (return (list a b c))))))
3275 (defun difap1 (e pwr var m pt)
3276 (m// (mul* (cond ((eq (ask-integer m '$even) '$yes)
3278 (t -1))
3279 `((%gamma) ,pwr)
3280 (derivat var m e pt))
3281 `((%gamma) ,(m+ pwr m))))
3283 (defun sqrtinvolve (e)
3284 (cond ((atom e) nil)
3285 ((mnump e) nil)
3286 ((and (mexptp e)
3287 (and (mnump (caddr e))
3288 (not (numberp (caddr e)))
3289 (equal (caddr (caddr e)) 2.))
3290 (among var (cadr e)))
3291 (cadr e))
3292 (t (some #'sqrtinvolve (cdr e)))))
3294 (defun bydif (r s d)
3295 (let ((b 1) p)
3296 (setq d (m+ (m*t '*z* var) d))
3297 (cond ((or (zerop1 (setq p (m+ s (m*t -1 r))))
3298 (and (zerop1 (m+ 1 p))
3299 (setq b var)))
3300 (difap1 (dintrad0 b (m^ d '((rat) 3 2)))
3301 '((rat) 3 2) '*z* r 0))
3302 ((eq ($asksign p) '$pos)
3303 (difap1 (difap1 (dintrad0 1 (m^ (m+t 'z** d)
3304 '((rat) 3 2)))
3305 '((rat) 3 2) '*z* r 0)
3306 '((rat) 3 2) 'z** p 0)))))
3308 (defun dintrad0 (n d)
3309 (let (l r s)
3310 (cond ((and (mexptp d)
3311 (equal (deg (cadr d)) 2.))
3312 (cond ((alike1 (caddr d) '((rat) 3. 2.))
3313 (cond ((and (equal n 1.)
3314 (setq l (sqdtc (cadr d) t)))
3315 (tbf l))
3316 ((and (eq n var)
3317 (setq l (sqdtc (cadr d) nil)))
3318 (tbf (reverse l)))))
3319 ((and (setq r (findp n))
3320 (or (eq ($asksign (m+ -1. (m- r) (m*t 2.
3321 (caddr d))))
3322 '$pos)
3323 (diverg))
3324 (setq s (m+ '((rat) -3. 2.) (caddr d)))
3325 (eq ($asksign s) '$pos)
3326 (eq (ask-integer s '$integer) '$yes))
3327 (bydif r s (cadr d)))
3328 ((polyinx n var nil)
3329 (radbyterm d (cdr n))))))))
3332 ;;;Looks at the IMAGINARY part of a log and puts it in the interval 0 2*%pi.
3333 (defun log-imag-0-2%pi (x)
3334 (let ((plog (simplify ($rectform `((%plog) ,x)))))
3335 ;; We take the $rectform above to make sure that the log is
3336 ;; expanded out for the situations where simplifying plog itself
3337 ;; doesn't do it. This should probably be considered a bug in the
3338 ;; plog simplifier and should be fixed there.
3339 (cond ((not (free plog '%plog))
3340 (subst '%log '%plog plog))
3342 (destructuring-let (((real . imag) (trisplit plog)))
3343 (cond ((eq ($asksign imag) '$neg)
3344 (setq imag (m+ imag %pi2)))
3345 ((eq ($asksign (m- imag %pi2)) '$pos)
3346 (setq imag (m- imag %pi2)))
3347 (t t))
3348 (m+ real (m* '$%i imag)))))))
3351 ;;; Temporary fix for a lacking in taylor, which loses with %i in denom.
3352 ;;; Besides doesn't seem like a bad thing to do in general.
3353 (defun %i-out-of-denom (exp)
3354 (let ((denom ($denom exp)))
3355 (cond ((among '$%i denom)
3356 ;; Multiply the denominator by it's conjugate to get rid of
3357 ;; %i.
3358 (let* ((den-conj (maxima-substitute (m- '$%i) '$%i denom))
3359 (num ($num exp))
3360 (new-denom (sratsimp (m* denom den-conj))))
3361 ;; If the new denominator still contains %i, just give
3362 ;; up. Otherwise, multiply the numerator by the
3363 ;; conjugate and divide by the new denominator.
3364 (if (among '$%i new-denom)
3366 (setq exp (m// (m* num den-conj) new-denom)))))
3367 (t exp))))
3369 ;;; LL and UL must be real otherwise this routine return $UNKNOWN.
3370 ;;; Returns $no $unknown or a list of poles in the interval (ll ul)
3371 ;;; for exp w.r.t. var.
3372 ;;; Form of list ((pole . multiplicity) (pole1 . multiplicity) ....)
3373 (defun poles-in-interval (exp var ll ul)
3374 (let* ((denom (cond ((mplusp exp)
3375 ($denom (sratsimp exp)))
3376 ((and (mexptp exp)
3377 (free (caddr exp) var)
3378 (eq ($asksign (caddr exp)) '$neg))
3379 (m^ (cadr exp) (m- (caddr exp))))
3380 (t ($denom exp))))
3381 (roots (real-roots denom var))
3382 (ll-pole (limit-pole exp var ll '$plus))
3383 (ul-pole (limit-pole exp var ul '$minus)))
3384 (cond ((or (eq roots '$failure)
3385 (null ll-pole)
3386 (null ul-pole)) '$unknown)
3387 ((and (or (eq roots '$no)
3388 (member ($csign denom) '($pos $neg $pn)))
3389 ;; this clause handles cases where we can't find the exact roots,
3390 ;; but we know that they occur outside the interval of integration.
3391 ;; example: integrate ((1+exp(t))/sqrt(t+exp(t)), t, 0, 1);
3392 (eq ll-pole '$no)
3393 (eq ul-pole '$no)) '$no)
3394 (t (cond ((equal roots '$no)
3395 (setq roots ())))
3396 (do ((dummy roots (cdr dummy))
3397 (pole-list (cond ((not (eq ll-pole '$no))
3398 `((,ll . 1)))
3399 (t nil))))
3400 ((null dummy)
3401 (cond ((not (eq ul-pole '$no))
3402 (sort-poles (push `(,ul . 1) pole-list)))
3403 ((not (null pole-list))
3404 (sort-poles pole-list))
3405 (t '$no)))
3406 (let* ((soltn (caar dummy))
3407 ;; (multiplicity (cdar dummy)) (not used? -- cwh)
3408 (root-in-ll-ul (in-interval soltn ll ul)))
3409 (cond ((eq root-in-ll-ul '$no) '$no)
3410 ((eq root-in-ll-ul '$yes)
3411 (let ((lim-ans (is-a-pole exp soltn)))
3412 (cond ((null lim-ans)
3413 (return '$unknown))
3414 ((equal lim-ans 0)
3415 '$no)
3416 (t (push (car dummy)
3417 pole-list))))))))))))
3420 ;;;Returns $YES if there is no pole and $NO if there is one.
3421 (defun limit-pole (exp var limit direction)
3422 (let ((ans (cond ((member limit '($minf $inf) :test #'eq)
3423 (cond ((eq (special-convergent-formp exp limit) '$yes)
3424 '$no)
3425 (t (get-limit (m* exp var) var limit direction))))
3426 (t '$no))))
3427 (cond ((eq ans '$no) '$no)
3428 ((null ans) nil)
3429 ((eq ans '$und) '$no)
3430 ((equal ans 0.) '$no)
3431 (t '$yes))))
3433 ;;;Takes care of forms that the ratio test fails on.
3434 (defun special-convergent-formp (exp limit)
3435 (cond ((not (oscip exp)) '$no)
3436 ((or (eq (sc-converg-form exp limit) '$yes)
3437 (eq (exp-converg-form exp limit) '$yes))
3438 '$yes)
3439 (t '$no)))
3441 (defun exp-converg-form (exp limit)
3442 (let (exparg)
3443 (setq exparg (%einvolve exp))
3444 (cond ((or (null exparg)
3445 (freeof '$%i exparg))
3446 '$no)
3447 (t (cond
3448 ((and (freeof '$%i
3449 (%einvolve
3450 (setq exp
3451 (sratsimp (m// exp (m^t '$%e exparg))))))
3452 (equal (get-limit exp var limit) 0))
3453 '$yes)
3454 (t '$no))))))
3456 (defun sc-converg-form (exp limit)
3457 (prog (scarg trigpow)
3458 (setq exp ($expand exp))
3459 (setq scarg (involve (sin-sq-cos-sq-sub exp) '(%sin %cos)))
3460 (cond ((null scarg) (return '$no))
3461 ((and (polyinx scarg var ())
3462 (eq ($asksign (m- ($hipow scarg var) 1)) '$pos)) (return '$yes))
3463 ((not (freeof var (sdiff scarg var)))
3464 (return '$no))
3465 ((and (setq trigpow ($hipow exp `((%sin) ,scarg)))
3466 (eq (ask-integer trigpow '$odd) '$yes)
3467 (equal (get-limit (m// exp `((%sin) ,scarg)) var limit)
3469 (return '$yes))
3470 ((and (setq trigpow ($hipow exp `((%cos) ,scarg)))
3471 (eq (ask-integer trigpow '$odd) '$yes)
3472 (equal (get-limit (m// exp `((%cos) ,scarg)) var limit)
3474 (return '$yes))
3475 (t (return '$no)))))
3477 (defun is-a-pole (exp soltn)
3478 (get-limit ($radcan
3479 (m* (maxima-substitute (m+ 'epsilon soltn) var exp)
3480 'epsilon))
3481 'epsilon 0 '$plus))
3483 (defun in-interval (place ll ul)
3484 ;; real values for ll and ul; place can be imaginary.
3485 (let ((order (ask-greateq ul ll)))
3486 (cond ((eq order '$yes))
3487 ((eq order '$no) (let ((temp ul)) (setq ul ll ll temp)))
3488 (t (merror (intl:gettext "defint: failed to order limits of integration:~%~M")
3489 (list '(mlist simp) ll ul)))))
3490 (if (not (equal ($imagpart place) 0))
3491 '$no
3492 (let ((lesseq-ul (ask-greateq ul place))
3493 (greateq-ll (ask-greateq place ll)))
3494 (if (and (eq lesseq-ul '$yes) (eq greateq-ll '$yes)) '$yes '$no))))
3496 ;; returns true or nil
3497 (defun strictly-in-interval (place ll ul)
3498 ;; real values for ll and ul; place can be imaginary.
3499 (and (equal ($imagpart place) 0)
3500 (or (eq ul '$inf)
3501 (eq ($asksign (m+ ul (m- place))) '$pos))
3502 (or (eq ll '$minf)
3503 (eq ($asksign (m+ place (m- ll))) '$pos))))
3505 (defun real-roots (exp var)
3506 (let (($solvetrigwarn (cond (defintdebug t) ;Rest of the code for
3507 (t ()))) ;TRIGS in denom needed.
3508 ($solveradcan (cond ((or (among '$%i exp)
3509 (among '$%e exp)) t)
3510 (t nil)))
3511 *roots *failures) ;special vars for solve.
3512 (cond ((not (among var exp)) '$no)
3513 (t (solve exp var 1)
3514 ;; If *failures is set, we may have missed some roots.
3515 ;; We still return the roots that we have found.
3516 (do ((dummy *roots (cddr dummy))
3517 (rootlist))
3518 ((null dummy)
3519 (cond ((not (null rootlist))
3520 rootlist)
3521 (t '$no)))
3522 (cond ((equal ($imagpart (caddar dummy)) 0)
3523 (setq rootlist
3524 (cons (cons
3525 ($rectform (caddar dummy))
3526 (cadr dummy))
3527 rootlist)))))))))
3529 (defun ask-greateq (x y)
3530 ;;; Is x > y. X or Y can be $MINF or $INF, zeroA or zeroB.
3531 (let ((x (cond ((among 'zeroa x)
3532 (subst 0 'zeroa x))
3533 ((among 'zerob x)
3534 (subst 0 'zerob x))
3535 ((among 'epsilon x)
3536 (subst 0 'epsilon x))
3537 ((or (among '$inf x)
3538 (among '$minf x))
3539 ($limit x))
3540 (t x)))
3541 (y (cond ((among 'zeroa y)
3542 (subst 0 'zeroa y))
3543 ((among 'zerob y)
3544 (subst 0 'zerob y))
3545 ((among 'epsilon y)
3546 (subst 0 'epsilon y))
3547 ((or (among '$inf y)
3548 (among '$minf y))
3549 ($limit y))
3550 (t y))))
3551 (cond ((eq x '$inf)
3552 '$yes)
3553 ((eq x '$minf)
3554 '$no)
3555 ((eq y '$inf)
3556 '$no)
3557 ((eq y '$minf)
3558 '$yes)
3559 (t (let ((ans ($asksign (m+ x (m- y)))))
3560 (cond ((member ans '($zero $pos) :test #'eq)
3561 '$yes)
3562 ((eq ans '$neg)
3563 '$no)
3564 (t '$unknown)))))))
3566 (defun sort-poles (pole-list)
3567 (sort pole-list #'(lambda (x y)
3568 (cond ((eq (ask-greateq (car x) (car y))
3569 '$yes)
3570 nil)
3571 (t t)))))
3573 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3575 ;;; Integrate Definite Integrals involving log and exp functions. The algorithm
3576 ;;; are taken from the paper "Evaluation of CLasses of Definite Integrals ..."
3577 ;;; by K.O.Geddes et. al.
3579 ;;; 1. CASE: Integrals generated by the Gamma function.
3581 ;;; inf
3582 ;;; /
3583 ;;; [ w m s - m - 1
3584 ;;; I t log (t) expt(- t ) dt = s signum(s)
3585 ;;; ]
3586 ;;; /
3587 ;;; 0
3588 ;;; !
3589 ;;; m !
3590 ;;; d !
3591 ;;; (--- (gamma(z))! )
3592 ;;; m !
3593 ;;; dz ! w + 1
3594 ;;; !z = -----
3595 ;;; s
3597 ;;; The integral converges for:
3598 ;;; s # 0, m = 0, 1, 2, ... and realpart((w+1)/s) > 0.
3599 ;;;
3600 ;;; 2. CASE: Integrals generated by the Incomplete Gamma function.
3602 ;;; inf !
3603 ;;; / m !
3604 ;;; [ w m s d s !
3605 ;;; I t log (t) exp(- t ) dt = (--- (gamma_incomplete(a, x ))! )
3606 ;;; ] m !
3607 ;;; / da ! w + 1
3608 ;;; x !z = -----
3609 ;;; s
3610 ;;; - m - 1
3611 ;;; s signum(s)
3613 ;;; The integral converges for:
3614 ;;; s # 0, m = 0, 1, 2, ... and realpart((w+1)/s) > 0.
3615 ;;; The shown solution is valid for s>0. For s<0 gamma_incomplete has to be
3616 ;;; replaced by gamma(a) - gamma_incomplete(a,x^s).
3618 ;;; 3. CASE: Integrals generated by the beta function.
3620 ;;; 1
3621 ;;; /
3622 ;;; [ m s r n
3623 ;;; I log (1 - t) (1 - t) t log (t) dt =
3624 ;;; ]
3625 ;;; /
3626 ;;; 0
3627 ;;; !
3628 ;;; ! !
3629 ;;; n m ! !
3630 ;;; d d ! !
3631 ;;; --- (--- (beta(z, w))! )!
3632 ;;; n m ! !
3633 ;;; dz dw ! !
3634 ;;; !w = s + 1 !
3635 ;;; !z = r + 1
3637 ;;; The integral converges for:
3638 ;;; n, m = 0, 1, 2, ..., s > -1 and r > -1.
3639 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3641 (defvar *debug-defint-log* nil)
3643 ;;; Recognize c*z^w*log(z)^m*exp(-t^s)
3645 (defun m2-log-exp-1 (expr)
3646 (when *debug-defint-log*
3647 (format t "~&M2-LOG-EXP-1 with ~A~%" expr))
3648 (m2 expr
3649 '((mtimes)
3650 (c freevar)
3651 ((mexpt) (z varp) (w freevar))
3652 ((mexpt) $%e ((mtimes) -1 ((mexpt) (z varp) (s freevar0))))
3653 ((mexpt) ((%log) (z varp)) (m freevar)))))
3655 ;;; Recognize c*z^r*log(z)^n*(1-z)^s*log(1-z)^m
3657 (defun m2-log-exp-2 (expr)
3658 (when *debug-defint-log*
3659 (format t "~&M2-LOG-EXP-2 with ~A~%" expr))
3660 (m2 expr
3661 '((mtimes)
3662 (c freevar)
3663 ((mexpt) (z varp) (r freevar))
3664 ((mexpt) ((%log) (z varp)) (n freevar))
3665 ((mexpt) ((mplus) 1 ((mtimes) -1 (z varp))) (s freevar))
3666 ((mexpt) ((%log) ((mplus) 1 ((mtimes)-1 (z varp)))) (m freevar)))))
3668 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3670 (defun defint-log-exp (expr var ll ul)
3671 (let ((x nil)
3672 (result nil)
3673 (var1 (gensym)))
3675 ;; var1 is used as a parameter for differentiation. Add var1>0 to the
3676 ;; database, to get the desired simplification of the differentiation of
3677 ;; the gamma_incomplete function.
3678 (setq *global-defint-assumptions*
3679 (cons (assume `((mgreaterp) ,var1 0))
3680 *global-defint-assumptions*))
3682 (cond
3683 ((and (eq ul '$inf)
3684 (setq x (m2-log-exp-1 expr)))
3685 ;; The integrand matches the cases 1 and 2.
3686 (let ((c (cdras 'c x))
3687 (w (cdras 'w x))
3688 (m (cdras 'm x))
3689 (s (cdras 's x))
3690 ($gamma_expand nil)) ; No expansion of Gamma functions.
3692 (when *debug-defint-log*
3693 (format t "~&DEFINT-LOG-EXP-1:~%")
3694 (format t "~& : c = ~A~%" c)
3695 (format t "~& : w = ~A~%" w)
3696 (format t "~& : m = ~A~%" m)
3697 (format t "~& : s = ~A~%" s))
3699 (cond ((and (zerop1 ll)
3700 (integerp m)
3701 (>= m 0)
3702 (not (eq ($sign s) '$zero))
3703 (eq ($sign (div (add w 1) s)) '$pos))
3704 ;; Case 1: Generated by the Gamma function.
3705 (setq result
3706 (mul c
3707 (simplify (list '(%signum) s))
3708 (power s (mul -1 (add m 1)))
3709 ($at ($diff (list '(%gamma) var1) var1 m)
3710 (list '(mequal)
3711 var1
3712 (div (add w 1) s))))))
3713 ((and (member ($sign ll) '($pos $pz))
3714 (integerp m)
3715 (or (= m 0) (= m 1)) ; Exclude m>1, because Maxima can not
3716 ; derivate the involved hypergeometric
3717 ; functions.
3718 (or (and (eq ($sign s) '$neg)
3719 (eq ($sign (div (add 1 w) s)) '$pos))
3720 (and (eq ($sign s) '$pos)
3721 (eq ($sign (div (add 1 w) s)) '$pos))))
3722 ;; Case 2: Generated by the Incomplete Gamma function.
3723 (let ((f (if (eq ($sign s) '$pos)
3724 (list '(%gamma_incomplete) var1 (power ll s))
3725 (sub (list '(%gamma) var1)
3726 (list '(%gamma_incomplete) var1 (power ll s))))))
3727 (setq result
3728 (mul c
3729 (simplify (list '(%signum) s))
3730 (power s (mul -1 (add m 1)))
3731 ($at ($diff f var1 m)
3732 (list '(mequal) var1 (div (add 1 w) s)))))))
3734 (setq result nil)))))
3735 ((and (zerop1 ll)
3736 (onep1 ul)
3737 (setq x (m2-log-exp-2 expr)))
3738 ;; Case 3: Generated by the Beta function.
3739 (let ((c (cdras 'c x))
3740 (r (cdras 'r x))
3741 (n (cdras 'n x))
3742 (s (cdras 's x))
3743 (m (cdras 'm x))
3744 (var1 (gensym))
3745 (var2 (gensym)))
3747 (when *debug-defint-log*
3748 (format t "~&DEFINT-LOG-EXP-2:~%")
3749 (format t "~& : c = ~A~%" c)
3750 (format t "~& : r = ~A~%" r)
3751 (format t "~& : n = ~A~%" n)
3752 (format t "~& : s = ~A~%" s)
3753 (format t "~& : m = ~A~%" m))
3755 (cond ((and (integerp m)
3756 (>= m 0)
3757 (integerp n)
3758 (>= n 0)
3759 (eq ($sign (add 1 r)) '$pos)
3760 (eq ($sign (add 1 s)) '$pos))
3761 (setq result
3762 (mul c
3763 ($at ($diff ($at ($diff (list '($beta) var1 var2)
3764 var2 m)
3765 (list '(mequal) var2 (add 1 s)))
3766 var1 n)
3767 (list '(mequal) var1 (add 1 r))))))
3769 (setq result nil)))))
3771 (setq result nil)))
3772 ;; Simplify result and set $gamma_expand to global value
3773 (let (($gamma_expand $gamma_expand)) (sratsimp result))))
3775 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;