1 /* Copyright (C) 2004 Viktor T. Toth <http://www.vttoth.com/>
\r
3 * This program is free software; you can redistribute it and/or
\r
4 * modify it under the terms of the GNU General Public License as
\r
5 * published by the Free Software Foundation; either version 2 of
\r
6 * the License, or (at your option) any later version.
\r
8 * This program is distributed in the hope that it will be
\r
9 * useful, but WITHOUT ANY WARRANTY; without even the implied
\r
10 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
\r
11 * PURPOSE. See the GNU General Public License for more details.
\r
13 * Derive the Schwarzschild solution in a tetrad base
\r
16 if get('ctensor,'version)=false then load(ctensor);
\r
19 Derive and verify Schwarzschild's solution in a tetrad base.")$
\r
21 ct_coords:[t,r,d,c]$
\r
22 ("We use dimension 4. The four base vectors arranged in matrix form:")$
\r
24 [sqrt(f(r)), 0, 0, 0],
\r
25 [0, sqrt(h(r)), 0, 0],
\r
27 [0, 0, 0,r*sin(d)]);
\r
28 ("The problem is simple enough for automatic simplification:")$
\r
29 (ctrgsimp:true,ratwtlvl:false,ratfac:true,cframe_flag:true)$
\r
31 ("Compute the Ricci rotation coefficients")$
\r
33 ("And the Riemann tensor in tetrad base")$
\r
35 ("Now compute the Ricci tensor")$
\r
37 ("For a vacuum metric, the components of the Ricci tensor must be 0")$
\r
38 ("We begin by adding ric1,1 and ric2,2 which yields a simple equation:")$
\r
40 ("Some algebraic manipulation yields a solution for f(r) in terms of h(r):")$
\r
48 ("We can choose the constant to be 1 by rescaling the metric:")$
\r
49 solf:subst(1,num(last(%th(2)[1])),last(%th(2)[1]));
\r
50 ("We substitute the solution for f(r) into ric3,3:")$
\r
52 ("Further algebraic manipulation helps get a solution for h(r):")$
\r
59 exp(first(%))=exp(last(%));
\r
61 ("We rename the constant to get the result in the usual form:")$
\r
62 solh:ratsimp(subst(1/2/m,exp(%c),last(%th(2)[1])));
\r
63 ("Now substitute the solutions back into our base vectors:")$
\r
64 subst(solf,f(r),fri);
\r
65 fri:subst(solh,h(r),%);
\r
66 ("And compute the metric, which is the standard Schwarzschild metric:")$
\r
68 ("We're done... now let us verify our solution.")$
\r
69 ("We begin with recomputing the Ricci rotation coefficients:")$
\r
71 ("And the Riemann tensor:")$
\r
73 ("And last, the Ricci tensor, which should indicate an empty spacetime:")$
\r
76 /* End of demo -- comment line needed by MAXIMA to resume demo menu */
\r