translator: fix the finding of free lisp vars in LET forms
[maxima.git] / src / laplac.lisp
blob8cddcd2ca80777a2a46e5badeb6a28d67a19bf90
1 ;;; -*- Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- ;;;;
2 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3 ;;; The data in this file contains enhancments. ;;;;;
4 ;;; ;;;;;
5 ;;; Copyright (c) 1984,1987 by William Schelter,University of Texas ;;;;;
6 ;;; All rights reserved ;;;;;
7 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
8 ;;; (c) Copyright 1981 Massachusetts Institute of Technology ;;
9 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
11 (in-package :maxima)
13 (macsyma-module laplac)
15 (declare-top (special var $savefactors
16 checkfactors $ratfac $keepfloat *nounl* *nounsflag*
17 errcatch $errormsg))
19 ;;; The properties NOUN and VERB give correct linear display
21 (defprop $laplace %laplace verb)
22 (defprop %laplace $laplace noun)
24 (defprop $ilt %ilt verb)
25 (defprop %ilt $ilt noun)
27 (defun exponentiate (pow)
28 ;;;COMPUTES %E**Z WHERE Z IS AN ARBITRARY EXPRESSION TAKING SOME OF THE WORK AWAY FROM SIMPEXPT
29 (cond ((zerop1 pow) 1)
30 ((equal pow 1) '$%e)
31 (t (power '$%e pow))))
33 (defun fixuprest (rest)
34 ;;;REST IS A PRODUCT WITHOUT THE MTIMES.FIXUPREST PUTS BACK THE MTIMES
35 (cond ((null rest) 1)
36 ((cdr rest) (cons '(mtimes) rest))
37 (t (car rest))))
39 (defun isquadraticp (e x)
40 (let ((b (sdiff e x)))
41 (cond ((zerop1 b) (list 0 0 e))
42 ((freeof x b) (list 0 b (maxima-substitute 0 x e)))
43 ((setq b (islinear b x))
44 (list (div* (car b) 2) (cdr b) (maxima-substitute 0 x e))))))
46 ;;;INITIALIZES SOME GLOBAL VARIABLES THEN CALLS THE DISPATCHING FUNCTION
48 (defmfun $laplace (fun var parm)
49 (setq fun (mratcheck fun))
50 (cond ((or *nounsflag* (member '%laplace *nounl* :test #'eq))
51 (setq fun (remlaplace fun))))
52 (cond ((and (null (atom fun)) (eq (caar fun) 'mequal))
53 (list '(mequal)
54 (laplace (cadr fun) parm)
55 (laplace (caddr fun) parm)))
56 (t (laplace fun parm))))
58 ;;;LAMBDA BINDS SOME SPECIAL VARIABLES TO NIL AND DISPATCHES
60 (defun remlaplace (e)
61 (if (atom e)
63 (cons (delete 'laplace (append (car e) nil) :count 1 :test #'eq)
64 (mapcar #'remlaplace (cdr e)))))
66 (defun laplace (fun parm &optional (dvar nil))
67 (let ()
68 ;;; Handles easy cases and calls appropriate function on others.
69 (cond ((equal fun 0) 0)
70 ((equal fun 1)
71 (cond ((zerop1 parm) (simplify (list '($delta) 0)))
72 (t (power parm -1))))
73 ((alike1 fun var) (power parm -2))
74 ((or (atom fun) (freeof var fun))
75 (cond ((zerop1 parm) (mul2 fun (simplify (list '($delta) 0))))
76 (t (mul2 fun (power parm -1)))))
77 (t
78 (let ((op (caar fun)))
79 (let ((result ; We store the result of laplace for further work.
80 (cond ((eq op 'mplus)
81 (laplus fun parm))
82 ((eq op 'mtimes)
83 (laptimes (cdr fun) parm))
84 ((eq op 'mexpt)
85 (lapexpt fun nil parm))
86 ((eq op '%sin)
87 (lapsin fun nil nil parm))
88 ((eq op '%cos)
89 (lapsin fun nil t parm))
90 ((eq op '%sinh)
91 (lapsinh fun nil nil parm))
92 ((eq op '%cosh)
93 (lapsinh fun nil t parm))
94 ((eq op '%log)
95 (laplog fun parm))
96 ((eq op '%derivative)
97 (lapdiff fun parm))
98 ((eq op '%integrate)
99 (lapint fun parm dvar))
100 ((eq op '%sum)
101 (list '(%sum)
102 (laplace (cadr fun) parm)
103 (caddr fun)
104 (cadddr fun)
105 (car (cddddr fun))))
106 ((eq op '%erf)
107 (laperf fun parm))
108 ((and (eq op '%ilt)(eq (cadddr fun) var))
109 (cond ((eq parm (caddr fun))(cadr fun))
110 (t (subst parm (caddr fun)(cadr fun)))))
111 ((eq op '$delta)
112 (lapdelta fun nil parm))
113 ((setq op ($get op '$laplace))
114 (mcall op fun var parm))
115 (t (lapdefint fun parm)))))
116 (when (isinop result '%integrate)
117 ;; Laplace has not found a result but returns a definit
118 ;; integral. This integral can contain internal integration
119 ;; variables. Replace such a result with the noun form.
120 (setq result (list '(%laplace) fun var parm)))
121 ;; Check if we have a result, when not call $specint.
122 (check-call-to-$specint result fun parm)))))))
124 ;;; Check if laplace has found a result, when not try $specint.
126 (defun check-call-to-$specint (result fun parm)
127 (cond
128 ((or (isinop result '%laplace)
129 (isinop result '%limit) ; Try $specint for incomplete results
130 (isinop result '%at)) ; which contain %limit or %at too.
131 ;; laplace returns a noun form or a result which contains %limit or %at.
132 ;; We pass the function to $specint to look for more results.
133 (let (res)
134 ;; laplace assumes the parameter s to be positive and does a
135 ;; declaration before an integration is done. Therefore we declare
136 ;; the parameter of the Laplace transform to be positive before
137 ;; we call $specint too.
138 (with-new-context (context)
139 (meval `(($assume) ,@(list (list '(mgreaterp) parm 0))))
140 (setq res ($specint (mul fun (power '$%e (mul -1 var parm))) var)))
141 (if (or (isinop res '%specint) ; Both symobls are possible, that is
142 (isinop res '$specint)) ; not consistent! Check it! 02/2009
143 ;; $specint has not found a result.
144 result
145 ;; $specint has found a result
146 res)))
147 (t result)))
149 (defun laplus (fun parm)
150 (simplus (cons '(mplus) (mapcar #'(lambda (e) (laplace e parm)) (cdr fun))) 1 t))
152 (defun laptimes (fun parm)
153 ;;;EXPECTS A LIST (PERHAPS EMPTY) OF FUNCTIONS MULTIPLIED TOGETHER WITHOUT THE MTIMES
154 ;;;SEES IF IT CAN APPLY THE FIRST AS A TRANSFORMATION ON THE REST OF THE FUNCTIONS
155 (cond ((null fun) (list '(mexpt) parm -1.))
156 ((null (cdr fun)) (laplace (car fun) parm))
157 ((freeof var (car fun))
158 (simptimes (list '(mtimes)
159 (car fun)
160 (laptimes (cdr fun) parm))
163 ((eq (car fun) var)
164 (simptimes (list '(mtimes) -1 (sdiff (laptimes (cdr fun) parm) parm))
168 (let ((op (caaar fun)))
169 (cond ((eq op 'mexpt)
170 (lapexpt (car fun) (cdr fun) parm))
171 ((eq op 'mplus)
172 (laplus ($multthru (fixuprest (cdr fun)) (car fun)) parm))
173 ((eq op '%sin)
174 (lapsin (car fun) (cdr fun) nil parm))
175 ((eq op '%cos)
176 (lapsin (car fun) (cdr fun) t parm))
177 ((eq op '%sinh)
178 (lapsinh (car fun) (cdr fun) nil parm))
179 ((eq op '%cosh)
180 (lapsinh (car fun) (cdr fun) t parm))
181 ((eq op '$delta)
182 (lapdelta (car fun) (cdr fun) parm))
184 (lapshift (car fun) (cdr fun) parm)))))))
186 (defun lapexpt (fun rest parm)
187 ;;;HANDLES %E**(A*T+B)*REST(T), %E**(A*T**2+B*T+C),
188 ;;; 1/SQRT(A*T+B), OR T**K*REST(T)
189 (prog (ab base-of-fun power result)
190 (setq base-of-fun (cadr fun) power (caddr fun))
191 (cond
192 ((and
193 (freeof var base-of-fun)
194 (setq
196 (isquadraticp
197 (cond ((eq base-of-fun '$%e) power)
198 (t (simptimes (list '(mtimes)
199 power
200 (list '(%log)
201 base-of-fun))
203 nil)))
204 var)))
205 (cond ((equal (car ab) 0) (go %e-case-lin))
206 ((null rest) (go %e-case-quad))
207 (t (go noluck))))
208 ((and (eq base-of-fun var) (freeof var power))
209 (go var-case))
210 ((and (alike1 '((rat) -1 2) power) (null rest)
211 (setq ab (islinear base-of-fun var)))
212 (setq result (div* (cdr ab) (car ab)))
213 (return (simptimes
214 (list '(mtimes)
215 (list '(mexpt)
216 (div* '$%pi
217 (list '(mtimes)
218 (car ab)
219 parm))
220 '((rat) 1 2))
221 (exponentiate (list '(mtimes) result parm))
222 (list '(mplus)
224 (list '(mtimes)
226 (list '(%erf)
227 (list '(mexpt)
228 (list '(mtimes)
229 result
230 parm)
231 '((rat) 1 2)))
232 ))) 1 nil)))
233 (t (go noluck)))
234 %e-case-lin
235 (setq result
236 (cond
237 (rest (sratsimp ($at (laptimes rest parm)
238 (list '(mequal)
239 parm
240 (list '(mplus)
241 parm
242 (afixsign (cadr ab)
243 nil))))))
244 (t (list '(mexpt)
245 (list '(mplus)
246 parm
247 (afixsign (cadr ab) nil))
248 -1))))
249 (return (simptimes (list '(mtimes)
250 (exponentiate (caddr ab))
251 result)
253 nil))
254 %e-case-quad
255 (setq result (afixsign (car ab) nil))
256 (setq
257 result
258 (list
259 '(mtimes)
260 (div* (list '(mexpt)
261 (div* '$%pi result)
262 '((rat) 1 2))
264 (exponentiate (div* (list '(mexpt) parm 2)
265 (list '(mtimes) 4 result)))
266 (list '(mplus)
268 (list '(mtimes)
270 (list '(%erf)
271 (div* parm
272 (list '(mtimes)
274 (list '(mexpt)
275 result
276 '((rat) 1 2)))))
277 ))))
278 (and (null (equal (cadr ab) 0))
279 (setq result
280 (maxima-substitute (list '(mplus)
281 parm
282 (list '(mtimes)
284 (cadr ab)))
285 parm
286 result)))
287 (return (simptimes (list '(mtimes)
288 (exponentiate (caddr ab))
289 result) 1 nil))
290 var-case
291 (cond ((or (null rest) (freeof var (fixuprest rest)))
292 (go var-easy-case)))
293 (cond ((posint power)
294 (return (afixsign (apply '$diff
295 (list (laptimes rest parm)
296 parm
297 power))
298 (even power))))
299 ((negint power)
300 (return (mydefint (hackit power rest parm)
301 (createname parm (- power))
302 parm parm)))
303 (t (go noluck)))
304 var-easy-case
305 (setq power
306 (simplus (list '(mplus) 1 power) 1 t))
307 (or (eq (asksign power) '$positive) (go noluck))
308 (setq result (list (list '(%gamma) power)
309 (list '(mexpt)
310 parm
311 (afixsign power nil))))
312 (and rest (setq result (nconc result rest)))
313 (return (simptimes (cons '(mtimes) result) 1 nil))
314 noluck
315 (return
316 (cond
317 ((and (posint power)
318 (member (caar base-of-fun)
319 '(mplus %sin %cos %sinh %cosh) :test #'eq))
320 (laptimes (cons base-of-fun
321 (cons (cond ((= power 2) base-of-fun)
322 (t (list '(mexpt)
323 base-of-fun
324 (1- power))))
325 rest)) parm))
326 (t (lapshift fun rest parm))))))
328 ;;;INTEGRAL FROM A TO INFINITY OF F(X)
329 (defun mydefint (f x a parm)
330 (let ((tryint (and (not ($unknown f))
331 ;; We don't want any errors thrown by $defint to propagate,
332 ;; so we set errset, errcatch, $errormsg and *mdebug*. If
333 ;; $defint throws a error, then no error message is printed
334 ;; and errset simply returns nil below.
335 (with-new-context (context)
336 (meval `(($assume) ,@(list (list '(mgreaterp) parm 0))))
337 (meval `(($assume) ,@(list (list '(mgreaterp) x 0))))
338 (meval `(($assume) ,@(list (list '(mgreaterp) a 0))))
339 (let ((errset nil)
340 (errcatch t)
341 ($errormsg nil)
342 (*mdebug* nil))
343 (errset ($defint f x a '$inf)))))))
344 (if tryint
345 (car tryint)
346 (list '(%integrate) f x a '$inf))))
348 ;;;CREATES UNIQUE NAMES FOR VARIABLE OF INTEGRATION
349 (defun createname (head tail)
350 (intern (format nil "~S~S" head tail)))
352 ;;;REDUCES LAPLACE(F(T)/T**N,T,S) CASE TO LAPLACE(F(T)/T**(N-1),T,S) CASE
353 (defun hackit (exponent rest parm)
354 (cond ((equal exponent -1)
355 (let ((parm (createname parm 1)))
356 (laptimes rest parm)))
357 (t (mydefint (hackit (1+ exponent) rest parm)
358 (createname parm (- -1 exponent))
359 (createname parm (- exponent)) parm))))
361 (defun afixsign (funct signswitch)
362 ;;;MULTIPLIES FUNCT BY -1 IF SIGNSWITCH IS NIL
363 (cond (signswitch funct)
364 (t (simptimes (list '(mtimes) -1 funct) 1 t))))
366 (defun lapshift (fun rest parm)
367 (cond ((atom fun) (merror "LAPSHIFT: expected a cons, not ~M" fun))
368 ((or (member 'laplace (car fun) :test #'eq) (null rest))
369 (lapdefint (cond (rest (simptimes (cons '(mtimes)
370 (cons fun rest)) 1 t))
371 (t fun)) parm))
372 (t (laptimes (append rest
373 (ncons (cons (append (car fun)
374 '(laplace))
375 (cdr fun)))) parm))))
377 ;;;COMPUTES %E**(W*B*%I)*F(S-W*A*%I) WHERE W=-1 IF SIGN IS T ELSE W=1
378 (defun mostpart (f parm sign a b)
379 (let ((substinfun ($at f
380 (list '(mequal)
381 parm
382 (list '(mplus) parm (afixsign (list '(mtimes) a '$%i) sign))))))
383 (if (zerop1 b)
384 substinfun
385 (list '(mtimes)
386 (exponentiate (afixsign (list '(mtimes) b '$%i) (null sign)))
387 substinfun))))
389 ;;;IF WHICHSIGN IS NIL THEN SIN TRANSFORM ELSE COS TRANSFORM
390 (defun compose (fun parm whichsign a b)
391 (let ((result (list '((rat) 1 2)
392 (list '(mplus)
393 (mostpart fun parm t a b)
394 (afixsign (mostpart fun parm nil a b)
395 whichsign)))))
396 (sratsimp (simptimes (cons '(mtimes)
397 (if whichsign
398 result
399 (cons '$%i result)))
400 1 nil))))
402 ;;;FUN IS OF THE FORM SIN(A*T+B)*REST(T) OR COS
403 (defun lapsin (fun rest trigswitch parm)
404 (let ((ab (islinear (cadr fun) var)))
405 (cond (ab
406 (cond (rest
407 (compose (laptimes rest parm)
408 parm
409 trigswitch
410 (car ab)
411 (cdr ab)))
413 (simptimes
414 (list '(mtimes)
415 (cond ((zerop1 (cdr ab))
416 (if trigswitch parm (car ab)))
418 (cond (trigswitch
419 (list '(mplus)
420 (list '(mtimes)
421 parm
422 (list '(%cos) (cdr ab)))
423 (list '(mtimes)
425 (car ab)
426 (list '(%sin) (cdr ab)))))
428 (list '(mplus)
429 (list '(mtimes)
430 parm
431 (list '(%sin) (cdr ab)))
432 (list '(mtimes)
433 (car ab)
434 (list '(%cos) (cdr ab))))))))
435 (list '(mexpt)
436 (list '(mplus)
437 (list '(mexpt) parm 2)
438 (list '(mexpt) (car ab) 2))
439 -1))
440 1 nil))))
442 (lapshift fun rest parm)))))
444 ;;;FUN IS OF THE FORM SINH(A*T+B)*REST(T) OR IS COSH
445 (defun lapsinh (fun rest switch parm)
446 (cond ((islinear (cadr fun) var)
447 (sratsimp
448 (laplus
449 (simplus
450 (list '(mplus)
451 (nconc (list '(mtimes)
452 (list '(mexpt)
453 '$%e
454 (cadr fun))
455 '((rat) 1 2))
456 rest)
457 (afixsign (nconc (list '(mtimes)
458 (list '(mexpt)
459 '$%e
460 (afixsign (cadr fun)
461 nil))
462 '((rat) 1 2))
463 rest)
464 switch))
466 nil) parm)))
467 (t (lapshift fun rest parm))))
469 ;;;FUN IS OF THE FORM LOG(A*T)
470 (defun laplog (fun parm)
471 (let ((ab (islinear (cadr fun) var)))
472 (cond ((and ab (zerop1 (cdr ab)))
473 (simptimes (list '(mtimes)
474 (list '(mplus)
475 (subfunmake '$psi '(0) (ncons 1))
476 (list '(%log) (car ab))
477 (list '(mtimes) -1 (list '(%log) parm)))
478 (list '(mexpt) parm -1))
479 1 nil))
481 (lapdefint fun parm)))))
483 (defun raiseup (fbase exponent)
484 (if (equal exponent 1)
485 fbase
486 (list '(mexpt) fbase exponent)))
488 ;;TAKES TRANSFORM OF DELTA(A*T+B)*F(T)
489 (defun lapdelta (fun rest parm)
490 (let ((ab (islinear (cadr fun) var))
491 (sign nil)
492 (recipa nil))
493 (cond (ab
494 (setq recipa (power (car ab) -1) ab (div (cdr ab) (car ab)))
495 (setq sign (asksign ab) recipa (simplifya (list '(mabs) recipa) nil))
496 (simplifya (cond ((eq sign '$positive)
498 ((eq sign '$zero)
499 (list '(mtimes)
500 (maxima-substitute 0 var (fixuprest rest))
501 recipa))
503 (list '(mtimes)
504 (maxima-substitute (neg ab) var (fixuprest rest))
505 (list '(mexpt) '$%e (cons '(mtimes) (cons parm (ncons ab))))
506 recipa)))
507 nil))
509 (lapshift fun rest parm)))))
511 (defun laperf (fun parm)
512 (let ((ab (islinear (cadr fun) var)))
513 (cond ((and ab (equal (cdr ab) 0))
514 (simptimes (list '(mtimes)
515 (div* (exponentiate (div* (list '(mexpt) parm 2)
516 (list '(mtimes)
518 (list '(mexpt) (car ab) 2))))
519 parm)
520 (list '(mplus)
522 (list '(mtimes)
524 (list '(%erf) (div* parm (list '(mtimes) 2 (car ab)))))))
526 nil))
528 (lapdefint fun parm)))))
530 (defun lapdefint (fun parm)
531 (prog (tryint mult)
532 (and ($unknown fun)(go skip))
533 (setq mult (simptimes (list '(mtimes) (exponentiate
534 (list '(mtimes) -1 var parm)) fun) 1 nil))
535 (with-new-context (context)
536 (meval `(($assume) ,@(list (list '(mgreaterp) parm 0))))
537 (setq tryint
538 ;; We don't want any errors thrown by $defint to propagate,
539 ;; so we set errset, errcatch, $errormsg and *mdebug*. If
540 ;; $defint throws a error, then no error message is printed
541 ;; and errset simply returns nil below.
542 (let ((errset nil)
543 (errcatch t)
544 ($errormsg nil)
545 (*mdebug* nil))
546 (errset ($defint mult var 0 '$inf)))))
547 (and tryint (not (eq (and (listp (car tryint))
548 (caaar tryint))
549 '%integrate))
550 (return (car tryint)))
551 skip (return (list '(%laplace) fun var parm))))
554 (defun lapdiff (fun parm)
555 ;;;FUN IS OF THE FORM DIFF(F(T),T,N) WHERE N IS A POSITIVE INTEGER
556 (prog (difflist degree frontend resultlist newdlist order arg2)
557 (setq newdlist (setq difflist (copy-tree (cddr fun))))
558 (setq arg2 (list '(mequal) var 0))
559 a (cond ((null difflist)
560 (return (cons '(%derivative)
561 (cons (list '(%laplace)
562 (cadr fun)
564 parm)
565 newdlist))))
566 ((eq (car difflist) var)
567 (setq degree (cadr difflist)
568 difflist (cddr difflist))
569 (go out)))
570 (setq difflist (cdr (setq frontend (cdr difflist))))
571 (go a)
572 out (cond ((null (posint degree))
573 (return (list '(%laplace) fun var parm))))
574 (cond (frontend (rplacd frontend difflist))
575 (t (setq newdlist difflist)))
576 (cond (newdlist (setq fun (cons '(%derivative)
577 (cons (cadr fun)
578 newdlist))))
579 (t (setq fun (cadr fun))))
580 (setq order 0)
581 loop (decf degree)
582 (setq resultlist
583 (cons (list '(mtimes)
584 (raiseup parm degree)
585 ($at ($diff fun var order) arg2))
586 resultlist))
587 (incf order)
588 (and (> degree 0) (go loop))
589 (setq resultlist (cond ((cdr resultlist)
590 (cons '(mplus)
591 resultlist))
592 (t (car resultlist))))
593 (return (simplus (list '(mplus)
594 (list '(mtimes)
595 (raiseup parm order)
596 (laplace fun parm))
597 (list '(mtimes)
599 resultlist))
600 1 nil))))
602 ;;;FUN IS OF THE FORM INTEGRATE(F(X)*G(T)*H(T-X),X,0,T)
603 (defun lapint (fun parm dvar)
604 (prog (newfun parm-list f var-list var-parm-list)
605 (and dvar (go convolution))
606 (setq dvar (cadr (setq newfun (cdr fun))))
607 (and (cddr newfun)
608 (zerop1 (caddr newfun))
609 (eq (cadddr newfun) var)
610 (go convolutiontest))
611 notcon
612 (setq newfun (cdr fun))
613 (cond ((cddr newfun)
614 (cond ((and (freeof var (caddr newfun))
615 (freeof var (cadddr newfun)))
616 (return (list '(%integrate)
617 (laplace (car newfun) parm dvar)
618 dvar
619 (caddr newfun)
620 (cadddr newfun))))
621 (t (go giveup))))
622 (t (return (list '(%integrate)
623 (laplace (car newfun) parm dvar)
624 dvar))))
625 giveup
626 (return (list '(%laplace) fun var parm))
627 convolutiontest
628 (setq newfun ($factor (car newfun)))
629 (cond ((eq (caar newfun) 'mtimes)
630 (setq f (cadr newfun) newfun (cddr newfun)))
631 (t (setq f newfun newfun nil)))
632 gothrulist
633 (cond ((freeof dvar f)
634 (setq parm-list (cons f parm-list)))
635 ((freeof var f) (setq var-list (cons f var-list)))
636 ((freeof dvar
637 (sratsimp (maxima-substitute (list '(mplus)
639 dvar)
641 f)))
642 (setq var-parm-list (cons f var-parm-list)))
643 (t (go notcon)))
644 (cond (newfun (setq f (car newfun) newfun (cdr newfun))
645 (go gothrulist)))
646 (and
647 parm-list
648 (return
649 (laplace
650 (cons
651 '(mtimes)
652 (nconc parm-list
653 (ncons (list '(%integrate)
654 (cons '(mtimes)
655 (append var-list
656 var-parm-list))
657 dvar
659 var)))) parm dvar)))
660 convolution
661 (return
662 (simptimes
663 (list
664 '(mtimes)
665 (laplace ($expand (maxima-substitute var
666 dvar
667 (fixuprest var-list))) parm dvar)
668 (laplace
669 ($expand (maxima-substitute 0 dvar (fixuprest var-parm-list))) parm dvar))
671 t))))
673 (declare-top (special varlist ratform ils ilt))
675 (defmfun $ilt (exp ils ilt)
676 ;;;EXP IS F(S)/G(S) WHERE F AND G ARE POLYNOMIALS IN S AND DEGR(F) < DEGR(G)
677 (let (varlist ($savefactors t) checkfactors $ratfac $keepfloat)
678 ;;; MAKES ILS THE MAIN VARIABLE
679 (setq varlist (list ils))
680 (newvar exp)
681 (orderpointer varlist)
682 (setq var (caadr (ratrep* ils)))
683 (cond ((and (null (atom exp))
684 (eq (caar exp) 'mequal))
685 (list '(mequal)
686 ($ilt (cadr exp) ils ilt)
687 ($ilt (caddr exp) ils ilt)))
688 ((zerop1 exp) 0)
689 ((freeof ils exp)
690 (list '(%ilt) exp ils ilt))
691 (t (ilt0 exp)))))
693 (defun maxima-rationalp (le v)
694 (cond ((null le))
695 ((and (null (atom (car le))) (null (freeof v (car le))))
696 nil)
697 (t (maxima-rationalp (cdr le) v))))
699 ;;;THIS FUNCTION DOES THE PARTIAL FRACTION DECOMPOSITION
700 (defun ilt0 (exp)
701 (prog (wholepart frpart num denom y content real factor
702 apart bpart parnumer ratarg ratform)
703 (and (mplusp exp)
704 (return (simplus (cons '(mplus)
705 (mapcar #'(lambda (f) ($ilt f ils ilt)) (cdr exp))) 1 t)))
706 (and (null (atom exp))
707 (eq (caar exp) '%laplace)
708 (eq (cadddr exp) ils)
709 (return (cond ((eq (caddr exp) ilt) (cadr exp))
710 (t (subst ilt
711 (caddr exp)
712 (cadr exp))))))
713 (setq ratarg (ratrep* exp))
714 (or (maxima-rationalp varlist ils)
715 (return (list '(%ilt) exp ils ilt)))
716 (setq ratform (car ratarg))
717 (setq denom (ratdenominator (cdr ratarg)))
718 (setq frpart (pdivide (ratnumerator (cdr ratarg)) denom))
719 (setq wholepart (car frpart))
720 (setq frpart (ratqu (cadr frpart) denom))
721 (cond ((not (zerop1 (car wholepart)))
722 (return (list '(%ilt) exp ils ilt)))
723 ((zerop1 (car frpart)) (return 0)))
724 (setq num (car frpart) denom (cdr frpart))
725 (setq y (oldcontent denom))
726 (setq content (car y))
727 (setq real (cadr y))
728 (setq factor (pfactor real))
729 loop (cond ((null (cddr factor))
730 (setq apart real
731 bpart 1
732 y '((0 . 1) 1 . 1))
733 (go skip)))
734 (setq apart (pexpt (car factor) (cadr factor)))
735 (setq bpart (car (ratqu real apart)))
736 (setq y (bprog apart bpart))
737 skip (setq frpart
738 (cdr (ratdivide (ratti (ratnumerator num)
739 (cdr y)
741 (ratti (ratdenominator num)
742 (ratti content apart t)
743 t))))
744 (setq
745 parnumer
746 (cons (ilt1 (ratqu (ratnumerator frpart)
747 (ratti (ratdenominator frpart)
748 (ratti (ratdenominator num)
749 content
752 (car factor)
753 (cadr factor))
754 parnumer))
755 (setq factor (cddr factor))
756 (cond ((null factor)
757 (return (simplus (cons '(mplus) parnumer) 1 t))))
758 (setq num (cdr (ratdivide (ratti num (car y) t)
759 (ratti content bpart t))))
760 (setq real bpart)
761 (go loop)))
763 (declare-top (special q z))
765 (defun ilt1 (p q k)
766 (let (z)
767 (cond ((onep1 k) (ilt3 p ))
768 (t (setq z (bprog q (pderivative q var)))
769 (ilt2 p k)))))
772 ;;;INVERTS P(S)/Q(S)**K WHERE Q(S) IS IRREDUCIBLE
773 ;;;DOESN'T CALL ILT3 IF Q(S) IS LINEAR
774 (defun ilt2 (p k)
775 (prog (y a b)
776 (and (onep1 k) (return (ilt3 p)))
777 (decf k)
778 (setq a (ratti p (car z) t))
779 (setq b (ratti p (cdr z) t))
780 (setq y (pexpt q k))
781 (cond
782 ((or (null (equal (pdegree q var) 1))
783 (> (pdegree (car p) var) 0))
784 (return
785 (simplus
786 (list
787 '(mplus)
788 (ilt2
789 (cdr (ratdivide (ratplus a (ratqu (ratderivative b var) k)) y))
791 ($multthru (simptimes (list '(mtimes)
793 (power k -1)
794 (ilt2 (cdr (ratdivide b y)) k))
796 t)))
798 t))))
799 (setq a (disrep (polcoef q 1))
800 b (disrep (polcoef q 0)))
801 (return
802 (simptimes (list '(mtimes)
803 (disrep p)
804 (raiseup ilt k)
805 (simpexpt (list '(mexpt)
806 '$%e
807 (list '(mtimes)
811 (list '(mexpt) a -1)))
813 nil)
814 (list '(mexpt)
816 (- -1 k))
817 (list '(mexpt)
818 (factorial k)
819 -1))
821 nil))))
823 ;;(DEFUN COEF MACRO (POL) (SUBST (CADR POL) (QUOTE DEG)
824 ;; '(DISREP (RATQU (POLCOEF (CAR P) DEG) (CDR P)))))
826 (defmacro coef (pol)
827 `(disrep (ratqu (polcoef (car p) ,pol) (cdr p))))
829 (defun lapsum (&rest args)
830 (cons '(mplus) args))
832 (defun lapprod (&rest args)
833 (cons '(mtimes) args))
835 (defun expo (&rest args)
836 (cons '(mexpt) args))
838 ;;;INVERTS P(S)/Q(S) WHERE Q(S) IS IRREDUCIBLE
839 (defun ilt3 (p)
840 (prog (discrim sign a c d e b1 b0 r term1 term2 degr)
841 (setq e (disrep (polcoef q 0))
842 d (disrep (polcoef q 1))
843 degr (pdegree q var))
844 (and (equal degr 1)
845 (return
846 (simptimes (lapprod
847 (disrep p)
848 (expo d -1)
849 (expo '$%e (lapprod -1 ilt e (expo d -1))))
851 nil)))
852 (setq c (disrep (polcoef q 2)))
853 (and (equal degr 2) (go quadratic))
854 (and (equal degr 3) (zerop1 c) (zerop1 d)
855 (go cubic))
856 (return (list '(%ilt) (div* (disrep p)(disrep q)) ils ilt))
857 cubic (setq a (disrep (polcoef q 3))
858 r (simpnrt (div* e a) 3))
859 (setq d (div* (disrep p)(lapprod a (lapsum
860 (expo ils 3)(expo '%r 3)))))
861 (return (ilt0 (maxima-substitute r '%r ($partfrac d ils))))
862 quadratic (setq b0 (coef 0) b1 (coef 1))
864 (setq discrim
865 (simplus (lapsum
866 (lapprod 4 e c)
867 (lapprod -1 d d))
869 nil))
870 (setq sign (cond ((free discrim '$%i) (asksign discrim)) (t '$positive))
871 term1 '(%cos)
872 term2 '(%sin))
873 (setq degr (expo '$%e (lapprod ilt d (power c -1) '((rat) -1 2))))
874 (cond ((eq sign '$zero)
875 (return (simptimes (lapprod degr (lapsum (div* b1 c)
876 (lapprod
877 (div* (lapsum (lapprod 2 b0 c) (lapprod -1 b1 d))
878 (lapprod 2 c c)) ilt))) 1 nil))
879 ) ((eq sign '$negative)
880 (setq term1 '(%cosh)
881 term2 '(%sinh)
882 discrim (simptimes (lapprod -1 discrim) 1 t))))
883 (setq discrim (simpnrt discrim 2))
884 (setq sign
885 (simptimes
886 (lapprod
887 (lapsum
888 (lapprod 2 b0 c)
889 (lapprod -1 b1 d))
890 (expo discrim -1))
892 nil))
893 (setq c (power c -1))
894 (setq discrim (simptimes (lapprod
895 discrim
897 '((rat) 1 2)
901 (return
902 (simptimes
903 (lapprod c degr
904 (lapsum
905 (lapprod b1 (list term1 discrim))
906 (lapprod sign (list term2 discrim))))
908 nil))))
910 (declare-top (unspecial ils ilt *nounl* q ratform var
911 varlist z))