Add PUNT-TO-MEVAL for returning trivial translations
[maxima.git] / src / conjugate.lisp
blobcfe463850384d4e9c357708b54dc935a4a68fe60
1 ;; Copyright 2005, 2006, 2020, 2021 by Barton Willis
3 ;; This is free software; you can redistribute it and/or
4 ;; modify it under the terms of the GNU General Public License,
5 ;; http://www.gnu.org/copyleft/gpl.html.
7 ;; This software has NO WARRANTY, not even the implied warranty of
8 ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
10 (in-package :maxima)
12 (macsyma-module conjugate)
14 ($put '$conjugate 1 '$version)
15 ;; Let's remove built-in symbols from list for user-defined properties.
16 (setq $props (remove '$conjugate $props))
18 (defprop $conjugate tex-postfix tex)
19 (defprop $conjugate ("^\\star") texsym)
20 (defprop $conjugate 160. tex-lbp)
21 (defprop $conjugate simp-conjugate operators)
23 ;; Maybe $conjugate should have a msimpind property. But with some Maxima versions,
24 ;; kill(conjugate) eliminates the msimpind property; after that, conjugate gives rubbish.
25 ;; Until this is resolved, $conjugate doesn't have a msimpind property.
27 (eval-when
28 #+gcl (load eval)
29 #-gcl (:load-toplevel :execute)
30 (let (($context '$global) (context '$global))
31 (meval '(($declare) $conjugate $complex))
32 ;; Let's remove built-in symbols from list for user-defined properties.
33 (setq $props (remove '$conjugate $props))))
35 ;; When a function commutes with the conjugate, give the function the
36 ;; commutes-with-conjugate property. The log function commutes with
37 ;; the conjugate on all of C except on the negative real axis. Thus
38 ;; log does not get the commutes-with-conjugate property. Instead,
39 ;; log gets the conjugate-function property.
41 ;; What important functions have I missed?
43 ;; (1) Arithmetic operators
45 (setf (get 'mplus 'commutes-with-conjugate) t)
46 (setf (get 'mtimes 'commutes-with-conjugate) t)
47 ;(setf (get 'mnctimes 'commutes-with-conjugate) t) ;; generally I think users will want this
48 (setf (get '%signum 'commutes-with-conjugate) t) ;; x=/=0, conjugate(signum(x)) = conjugate(x/abs(x)) = signum(conjugate(x))
49 ;; Trig-like functions and other such functions
51 (setf (get '%cosh 'commutes-with-conjugate) t)
52 (setf (get '%sinh 'commutes-with-conjugate) t)
53 (setf (get '%tanh 'commutes-with-conjugate) t)
54 (setf (get '%sech 'commutes-with-conjugate) t)
55 (setf (get '%csch 'commutes-with-conjugate) t)
56 (setf (get '%coth 'commutes-with-conjugate) t)
57 (setf (get '%cos 'commutes-with-conjugate) t)
58 (setf (get '%sin 'commutes-with-conjugate) t)
59 (setf (get '%tan 'commutes-with-conjugate) t)
60 (setf (get '%sec 'commutes-with-conjugate) t)
61 (setf (get '%csc 'commutes-with-conjugate) t)
62 (setf (get '%cot 'commutes-with-conjugate) t)
63 (setf (get '$atan2 'commutes-with-conjugate) t)
65 (setf (get '%jacobi_cn 'commutes-with-conjugate) t)
66 (setf (get '%jacobi_sn 'commutes-with-conjugate) t)
67 (setf (get '%jacobi_dn 'commutes-with-conjugate) t)
69 (setf (get '%gamma 'commutes-with-conjugate) t)
70 (setf (get '$pochhammer 'commutes-with-conjugate) t)
72 ;; Collections
74 (setf (get '$matrix 'commutes-with-conjugate) t)
75 (setf (get 'mlist 'commutes-with-conjugate) t)
76 (setf (get '$set 'commutes-with-conjugate) t)
78 ;; Relations
80 (setf (get 'mequal 'commutes-with-conjugate) t)
81 (setf (get 'mnotequal 'commutes-with-conjugate) t)
82 (setf (get '%transpose 'commutes-with-conjugate) t)
84 ;; Oddball functions
86 (setf (get '$max 'commutes-with-conjugate) t)
87 (setf (get '$min 'commutes-with-conjugate) t)
89 ;; When a function has the conjugate-function property, use a non-generic function to conjugate it.
90 ;; The argument to a conjugate function for an operator op is the CL list of arguments to op. For
91 ;; example, the conjugate function for log gets the argument for log, not the expression log(x).
92 ;; It would be a bit more efficient if a conjugate function received the full expression--that
93 ;; way for a pure nounform return (for example, return conjugate(log(x))), a conjugate function
94 ;; would not not need to apply the operator to the argument to the conjugate function, instead it
95 ;; could simply paste ($conjugate simp) onto the expression.
97 ;; Not done: conjugate-functions for all the inverse trigonometric functions.
99 ;; Trig like and hypergeometric like functions
101 (setf (get '%log 'conjugate-function) 'conjugate-log)
102 (setf (get '%plog 'conjugate-function) 'conjugate-plog)
103 (setf (get 'mexpt 'conjugate-function) 'conjugate-mexpt)
104 (setf (get '%asin 'conjugate-function) 'conjugate-asin)
105 (setf (get '%acos 'conjugate-function) 'conjugate-acos)
106 (setf (get '%atan 'conjugate-function) 'conjugate-atan)
107 (setf (get '%atanh 'conjugate-function) 'conjugate-atanh)
108 (setf (get '%asec 'conjugate-function) 'conjugate-asec)
109 (setf (get '%acsc 'conjugate-function) 'conjugate-acsc)
111 (setf (get '%bessel_j 'conjugate-function) 'conjugate-bessel-j)
112 (setf (get '%bessel_y 'conjugate-function) 'conjugate-bessel-y)
113 (setf (get '%bessel_i 'conjugate-function) 'conjugate-bessel-i)
114 (setf (get '%bessel_k 'conjugate-function) 'conjugate-bessel-k)
116 (setf (get '%hankel_1 'conjugate-function) 'conjugate-hankel-1)
117 (setf (get '%hankel_2 'conjugate-function) 'conjugate-hankel-2)
118 (setf (get '%log_gamma 'conjugate-function) 'conjugate-log-gamma)
120 ;; conjugate of polylogarithm li & psi
121 (setf (get '$li 'conjugate-function) 'conjugate-li)
122 (setf (get '$psi 'conjugate-function) 'conjugate-psi)
123 ;; Other things:
125 (setf (get '%sum 'conjugate-function) 'conjugate-sum)
126 (setf (get '%product 'conjugate-function) 'conjugate-product)
128 ;; Return true iff Maxima can prove that z is not on the
129 ;; negative real axis.
131 (defun off-negative-real-axisp (z)
132 (setq z (trisplit z)) ; split into real and imaginary
133 (or (eql t (mnqp (cdr z) 0)) ; y # 0
134 (eql t (mgqp (car z) 0)))) ; x >= 0
136 (defun on-negative-real-axisp (z)
137 (setq z (trisplit z))
138 (and (eql t (meqp (cdr z) 0))
139 (eql t (mgrp 0 (car z)))))
141 (defun off-negative-one-to-onep (z)
142 (setq z (trisplit z)) ; split z into real and imaginary parts
144 (eq t (mnqp (cdr z) 0)) ; y # 0
145 (eq t (mgrp (car z) 1)) ; x > 1
146 (eq t (mgrp -1 (car z))))) ; -1 > x
148 (defun in-domain-of-asin (z)
149 (setq z (trisplit z)) ; split z into real and imaginary parts
150 (let ((x (car z)) (y (cdr z))) ;z = x+%i*y
152 (eq t (mnqp y 0)) ; y # 0
153 (and
154 (eq t (mgrp x -1)) ; x > -1
155 (eq t (mgrp 1 x)))))) ; x < 1
157 ;; Return conjugate(log(x)). Actually, x is a lisp list (x).
159 (defun conjugate-log (x)
160 (setq x (car x))
161 (cond ((off-negative-real-axisp x)
162 (take '(%log) (take '($conjugate) x)))
163 ((on-negative-real-axisp x)
164 (add (take '(%log) (neg x)) (mul -1 '$%i '$%pi)))
165 (t (list '($conjugate simp) (take '(%log) x)))))
168 ;; Return conjugate(plog(x)); again, x is the CL list (x).
169 (defun conjugate-plog (x)
170 (setq x (car x))
171 (cond ((off-negative-real-axisp x)
172 (take '(%plog) (take '($conjugate) x)))
173 ((on-negative-real-axisp x)
174 (add (take '(%plog) (neg x)) (mul -1 '$%i '$%pi)))
175 (t (list '($conjugate simp) (take '(%plog) x)))))
177 ;; Return conjugate(x^p), where e = (x, p). Suppose x isn't on the negative real axis.
178 ;; Then conjugate(x^p) == conjugate(exp(p * log(x))) == exp(conjugate(p) * conjugate(log(x)))
179 ;; == exp(conjugate(p) * log(conjugate(x)) = conjugate(x)^conjugate(p). Thus, when
180 ;; x is off the negative real axis, commute the conjugate with ^. Also if p is an integer
181 ;; ^ commutes with the conjugate.
183 ;; We don't need to call $ratdisrep before checking if p is a declared integer--the
184 ;; simpcheck at the top level of simp-conjugate does that for us. So we can call
185 ;; maxima-integerp on p instead of using $featurep.
187 ;; The rule that is commented out is, I think, correct, but I'm not sure how useful it is and
188 ;; the testsuite plus the share testsuite never use this rule. For now, let's keep
189 ;; it commented out.
191 ;; Running the testsuite plus the share testsuite calls conjugate-mexpt 63,441
192 ;; times. This is far more times than all the other conjugate functions. Of these
193 ;; calls, the exponent is an integer 63,374 times. So for efficiency, we check
194 ;; (maxima-integerp p) first.
196 ;; The case of a nounform return only happens 9 times. For the nounform return, the power has
197 ;; been simplified at the higher level. So at least for running the testsuite, we shouldn't
198 ;; worry all that much about re-simplifying the power for the nounform return.
200 (defun conjugate-mexpt (e)
201 (let ((x (first e)) (p (second e)))
202 (cond ((or (maxima-integerp p) (off-negative-real-axisp x))
203 (power (take '($conjugate) x) (take '($conjugate) p)))
204 ;((on-negative-real-axisp x) ;conjugate(x^p) = exp(-%i %pi conjugate(p)) (-x)^p
205 ; (setq p (take '($conjugate) p))
206 ; (mul (power '$%e (mul -1 '$%i '$%pi p)) (power (mul -1 x) p)))
208 (list '($conjugate simp) (power x p))))))
210 (defun conjugate-sum (e)
211 (if (and ($featurep (third e) '$real) ($featurep (fourth e) '$real))
212 (take '(%sum) (take '($conjugate) (first e)) (second e) (third e) (fourth e))
213 (list '($conjugate simp) (simplifya (cons '(%sum) e) t))))
215 (defun conjugate-product (e)
216 (if (and ($featurep (third e) '$real) ($featurep (fourth e) '$real))
217 (take '(%product) (take '($conjugate) (first e)) (second e) (third e) (fourth e))
218 (list '($conjugate simp) (simplifya (cons '(%product) e) t))))
220 (defun conjugate-asin (x)
221 (setq x (car x))
222 (if (in-domain-of-asin x) (take '(%asin) (take '($conjugate) x))
223 (list '($conjugate simp) (take '(%asin) x))))
225 (defun conjugate-acos (x)
226 (setq x (car x))
227 (if (in-domain-of-asin x) (take '(%acos) (take '($conjugate) x))
228 (list '($conjugate simp) (take '(%acos) x))))
230 (defun conjugate-acsc (x)
231 (setq x (car x))
232 (if (off-negative-one-to-onep x) (take '(%acsc) (take '($conjugate) x))
233 (list '($conjugate simp) (take '(%acsc) x))))
235 (defun conjugate-asec (x)
236 (setq x (car x))
237 (if (off-negative-one-to-onep x) (take '(%asec) (take '($conjugate) x))
238 (list '($conjugate simp) (take '(%asec) x))))
240 (defun conjugate-atan (x)
241 (let ((xx))
242 (setq x (car x))
243 (setq xx (mul '$%i x))
244 (if (in-domain-of-asin xx)
245 (take '(%atan) (take '($conjugate) x))
246 (list '($conjugate simp) (take '(%atan) x)))))
248 ;; atanh and asin are entire on the same set; DLMF http://dlmf.nist.gov/4.37.F1 and
249 ;; http://dlmf.nist.gov/4.23.F1
251 (defun conjugate-atanh (x)
252 (setq x (car x))
253 (if (in-domain-of-asin x) (take '(%atanh) (take '($conjugate) x))
254 (list '($conjugate simp) (take '(%atanh) x))))
256 ;; Integer order Bessel functions are entire; thus they commute with the
257 ;; conjugate (Schwartz refection principle). But non-integer order Bessel
258 ;; functions are not analytic along the negative real axis. Notice that DLMF
259 ;; http://dlmf.nist.gov/10.11.E9 isn't correct; we have, for example
260 ;; conjugate(bessel_j(1/2,-1)) =/= bessel_j(1/2,conjugate(-1))
262 (defun conjugate-bessel-j (z)
263 (let ((n (first z)) (x (second z)))
264 (if (or ($featurep n '$integer) (off-negative-real-axisp x))
265 (take '(%bessel_j) (take '($conjugate) n) (take '($conjugate) x))
266 (list '($conjugate simp) (simplifya (cons '(%bessel_j) z) t)))))
268 (defun conjugate-bessel-y (z)
269 (let ((n (first z)) (x (second z)))
270 (if (off-negative-real-axisp x)
271 (take '(%bessel_y) (take '($conjugate) n) (take '($conjugate) x))
272 (list '($conjugate simp) (simplifya (cons '(%bessel_y) z) t)))))
274 (defun conjugate-bessel-i (z)
275 (let ((n (first z)) (x (second z)))
276 (if (or ($featurep n '$integer) (off-negative-real-axisp x))
277 (take '(%bessel_i) (take '($conjugate) n) (take '($conjugate) x))
278 (list '($conjugate simp) (simplifya (cons '(%bessel_i) z) t)))))
280 (defun conjugate-bessel-k (z)
281 (let ((n (first z)) (x (second z)))
282 (if (off-negative-real-axisp x)
283 (take '(%bessel_k) (take '($conjugate) n) (take '($conjugate) x))
284 (list '($conjugate simp) (simplifya (cons '(%bessel_k) z) t)))))
286 (defun conjugate-hankel-1 (z)
287 (let ((n (first z)) (x (second z)))
288 (if (off-negative-real-axisp x)
289 (take '(%hankel_2) (take '($conjugate) n) (take '($conjugate) x))
290 (list '($conjugate simp) (simplifya (cons '(%hankel_1) z) t)))))
292 (defun conjugate-hankel-2 (z)
293 (let ((n (first z)) (x (second z)))
294 (if (off-negative-real-axisp x)
295 (take '(%hankel_1) (take '($conjugate) n) (take '($conjugate) x))
296 (list '($conjugate simp) (simplifya (cons '(%hankel_2) z) t)))))
298 (defun conjugate-log-gamma (z)
299 (setq z (first z))
300 (if (off-negative-real-axisp z)
301 (take '(%log_gamma) (take '($conjugate) z))
302 (list '($conjugate simp) (take '(%log_gamma) z))))
304 ;; conjugate of polylogarithm li[s](x), where z = (s,x). We have li[s](x) = x+x^2/2^s+x^3/3^s+...
305 ;; Since for all integers k, we have conjugate(x^k/k^s) = conjugate(x)^k/k^conjugate(s), we
306 ;; commute conjugate with li.
307 (defun conjugate-li (z)
308 (let ((s (take '($conjugate) (first z))) (x (take '($conjugate) (second z))))
309 (take '(mqapply) `(($li array) ,s) x)))
311 (defun conjugate-psi (z)
312 (let ((s (take '($conjugate) (first z))) (x (take '($conjugate) (second z))))
313 (take '(mqapply) `(($psi array) ,s) x)))
315 ;; When all derivative variables & orders are real, commute the derivative with
316 ;; the conjugate.
317 (defun conjugate-derivative (z)
318 (cond ((every #'manifestly-real-p (cdr z))
319 (setq z (cons (take '($conjugate) (car z)) (cdr z)))
320 (simplifya (cons (list '%derivative) z) t))
322 (list '($conjugate simp) (simplifya (cons (list '%derivative) z) t)))))
324 (setf (get '%derivative 'conjugate-function) #'conjugate-derivative)
326 ;; When a function maps "everything" into the reals, put real-valued on the
327 ;; property list of the function name. This duplicates some knowledge that
328 ;; $rectform has. So it goes.
330 (setf (get '%imagpart 'real-valued) t)
331 (setf (get 'mabs 'real-valued) t)
332 (setf (get '%realpart 'real-valued) t)
333 (setf (get '%carg 'real-valued) t)
334 (setf (get '$ceiling 'real-valued) t)
335 (setf (get '$floor 'real-valued) t)
336 (setf (get '$mod 'real-valued) t)
337 (setf (get '$unit_step 'real-valued) t)
338 (setf (get '$charfun 'real-valued) t)
341 ;; The function manifestly-real-p makes some effort to determine if its input is
342 ;; real valued.
344 ;; manifestly-real-p isn't a great name, but it's OK. Since (manifestly-real-p '$inf) --> true
345 ;; it might be called manifestly-extended-real-p. A nonscalar isn't real.
347 ;; There might be some advantage to requiring that the subscripts to a $subvarp
348 ;; all be real. Why? Well li[n] maps reals to reals when n is real, but li[n] does
349 ;; not map the reals to reals when n is nonreal.
351 (defun manifestly-real-p (e)
352 (let (($inflag t))
354 ($numberp e)
355 (and ($mapatom e)
356 (not (manifestly-pure-imaginary-p e))
357 (not (manifestly-complex-p e))
358 (not (manifestly-nonreal-p e)))
359 (and (consp e) (consp (car e)) (get (caar e) 'real-valued)) ;F(xxx), where F is declared real-valued
360 (and ($subvarp e) (manifestly-real-p ($op e)))))) ;F[n], where F is declared real-valued
362 ;; The function manifestly-pure-imaginary-p makes some effort to determine if its input is
363 ;; a multiple of %i.
365 (defun manifestly-pure-imaginary-p (e)
366 (let (($inflag t))
367 (or
368 (and ($mapatom e)
370 (eq e '$%i)
371 (and (symbolp e) (kindp e '$imaginary) (not ($nonscalarp e)))
372 (and ($subvarp e) (manifestly-pure-imaginary-p ($op e)))))
373 ;; For now, let's use $csign on constant expressions only; once $csign improves,
374 ;; the ban on nonconstant expressions can be removed.
375 (and ($constantp e) (not (eq '$und e)) (not (eq '$ind e)) (eq '$imaginary ($csign e))))))
377 ;; Don't use (kindp e '$complex)!
379 (defun manifestly-complex-p (e)
380 (let (($inflag t))
381 (or (and (symbolp e) (decl-complexp e) (not ($nonscalarp e)))
382 (eq e '$infinity)
383 (and ($subvarp e) (manifestly-complex-p ($op e)) (not ($nonscalarp e))))))
385 (defun manifestly-nonreal-p (e)
386 (and (symbolp e) (or (member e `($und $ind t nil)) ($nonscalarp e))))
388 ;; We could make commutes_with_conjugate and maps_to_reals features. But I
389 ;; doubt it would get much use.
391 (defun simp-conjugate (e f z)
392 (oneargcheck e)
393 (setq e (simpcheck (cadr e) z)) ; simp and disrep if necessary
395 (cond ((complexp e) (conjugate e)) ; never happens, but might someday.
396 ((manifestly-real-p e) e)
397 ((manifestly-pure-imaginary-p e) (mul -1 e))
398 ((or (manifestly-nonreal-p e) ($mapatom e))
399 (list '($conjugate simp) e))
401 ((op-equalp e '$conjugate) (car (margs e)))
403 ((and (symbolp (mop e)) (get (mop e) 'real-valued)) e)
405 ((and (symbolp (mop e)) (get (mop e) 'commutes-with-conjugate))
406 (simplify (cons (list (mop e)) (mapcar #'(lambda (s) (take '($conjugate) s)) (margs e)))))
408 ((setq f (and (symbolp (mop e)) (get (mop e) 'conjugate-function)))
409 (funcall f (margs e)))
411 ;;subscripted functions
412 ((setq f (and ($subvarp (mop e)) (get (caar (mop e)) 'conjugate-function)))
413 (funcall f (append (margs (mop e)) (margs e))))
416 (list '($conjugate simp) e))))