Add PUNT-TO-MEVAL for returning trivial translations
[maxima.git] / src / csimp2.lisp
blobe9da3382e74629489dfb037bd9e10a9b024abb5c
1 ;;; -*- Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- ;;;;
2 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3 ;;; The data in this file contains enhancments. ;;;;;
4 ;;; ;;;;;
5 ;;; Copyright (c) 1984,1987 by William Schelter,University of Texas ;;;;;
6 ;;; All rights reserved ;;;;;
7 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
8 ;;; (c) Copyright 1982 Massachusetts Institute of Technology ;;;
9 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
11 (in-package :maxima)
13 (macsyma-module csimp2)
15 (load-macsyma-macros rzmac)
17 (declare-top (special var %p%i varlist plogabs half%pi nn* dn* $factlim sign
18 $beta_expand))
20 (defmvar $gammalim 10000
21 "Controls simplification of gamma for rational number arguments.")
23 (defmvar $gamma_expand nil
24 "Expand gamma(z+n) for n an integer when T.")
26 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
28 ;;; Implementation of the plog function
30 (defun simpplog (x vestigial z)
31 (declare (ignore vestigial))
32 (prog (varlist dd check y)
33 (oneargcheck x)
34 (setq check x)
35 (setq x (simpcheck (cadr x) z))
36 (cond ((equal 0 x) (merror (intl:gettext "plog: plog(0) is undefined.")))
37 ((among var x) ;This is used in DEFINT. 1/19/81. -JIM
38 (return (eqtest (list '(%plog) x) check))))
39 (newvar x)
40 (cond
41 ((and (member '$%i varlist)
42 (not (some #'(lambda (v)
43 (and (atom v) (not (eq v '$%i))))
44 varlist)))
45 (setq dd (trisplit x))
46 (cond ((setq z (patan (car dd) (cdr dd)))
47 (return (add2* (simpln (list '(%log)
48 (simpexpt (list '(mexpt)
49 ($expand (list '(mplus)
50 (list '(mexpt) (car dd) 2)
51 (list '(mexpt) (cdr dd) 2)))
52 '((rat) 1 2)) 1 nil)) 1 t)
53 (list '(mtimes) z '$%i))))))
54 ((and (free x '$%i) (eq ($sign x) '$pnz))
55 (return (eqtest (list '(%plog) x) check)))
56 ((and (equal ($imagpart x) 0) (setq y ($asksign x)))
57 (cond ((eq y '$pos) (return (simpln (list '(%log) x) 1 t)))
58 ((and plogabs (eq y '$neg))
59 (return (simpln (list '(%log) (list '(mtimes) -1 x)) 1 nil)))
60 ((eq y '$neg)
61 (return (add2 %p%i
62 (simpln (list '(%log) (list '(mtimes) -1 x)) 1 nil))))
63 (t (merror (intl:gettext "plog: plog(0) is undefined.")))))
64 ((and (equal ($imagpart (setq z (div* x '$%i))) 0)
65 (setq y ($asksign z)))
66 (cond
67 ((equal y '$zero) (merror (intl:gettext "plog: plog(0) is undefined.")))
68 (t (cond ((eq y '$pos) (setq y 1))
69 ((eq y '$neg) (setq y -1)))
70 (return (add2* (simpln (list '(%log)
71 (list '(mtimes) y z)) 1 nil)
72 (list '(mtimes) y '((rat) 1 2) '$%i '$%pi)))))))
73 (return (eqtest (list '(%plog) x) check))))
75 (defun patan (r i)
76 (let (($numer $numer))
77 (prog (a b var)
78 (setq i (simplifya i nil) r (simplifya r nil))
79 (cond ((zerop1 r)
80 (if (floatp i) (setq $numer t))
81 (setq i ($asksign i))
82 (cond ((equal i '$pos) (return (simplify half%pi)))
83 ((equal i '$neg)
84 (return (mul2 -1 (simplify half%pi))))
85 (t (merror (intl:gettext "plog: encountered atan(0/0).")))))
86 ((zerop1 i)
87 (cond ((floatp r) (setq $numer t)))
88 (setq r ($asksign r))
89 (cond ((equal r '$pos) (return 0))
90 ((equal r '$neg) (return (simplify '$%pi)))
91 (t (merror (intl:gettext "plog: encountered atan(0/0).")))))
92 ((and (among '%cos r) (among '%sin i))
93 ;; genvar and varlist, used by the rational function system,
94 ;; are bound in order to prevent the symbol 'xz from leaking
95 ;; out of this function.
96 (let ((var 'xz) genvar varlist)
97 (numden (div* r i))
98 (cond ((and (eq (caar nn*) '%cos) (eq (caar dn*) '%sin))
99 (return (cadr nn*)))))))
100 (setq a ($sign r) b ($sign i))
101 (cond ((eq a '$pos) (setq a 1))
102 ((eq a '$neg) (setq a -1))
103 ((eq a '$zero) (setq a 0)))
104 (cond ((eq b '$pos) (setq b 1))
105 ((eq b '$neg) (setq b -1))
106 ((eq a '$zero) (setq b 0)))
107 (cond ((equal i 0)
108 (return (if (equal a 1) 0 (simplify '$%pi))))
109 ((equal r 0)
110 (return (cond ((equal b 1) (simplify half%pi))
111 (t (mul2 '((rat simp) -1 2)
112 (simplify '$%pi)))))))
113 (setq r (simptimes (list '(mtimes) a b (div* i r)) 1 nil))
114 (return (cond ((onep1 r)
115 (archk a b (list '(mtimes) '((rat) 1 4) '$%pi)))
116 ((alike1 r '((mexpt) 3 ((rat) 1 2)))
117 (archk a b (list '(mtimes) '((rat) 1 3) '$%pi)))
118 ((alike1 r '((mexpt) 3 ((rat) -1 2)))
119 (archk a b (list '(mtimes) '((rat) 1 6) '$%pi))))))))
121 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
123 ;;; Implementation of the Binomial coefficient
125 ;; Verb function for the Binomial coefficient
126 (defmfun $binomial (x y)
127 (simplify (list '(%binomial) x y)))
129 ;; Binomial has Mirror symmetry
130 (defprop %binomial t commutes-with-conjugate)
132 (defun simpbinocoef (x vestigial z)
133 (declare (ignore vestigial))
134 (twoargcheck x)
135 (let ((u (simpcheck (cadr x) z))
136 (v (simpcheck (caddr x) z))
137 (y))
138 (cond ((integerp v)
139 (cond ((minusp v)
140 (if (and (integerp u) (minusp u) (< v u))
141 (bincomp u (- u v))
143 ((or (zerop v) (equal u v)) 1)
144 ((and (integerp u) (not (minusp u)))
145 (bincomp u (min v (- u v))))
146 (t (bincomp u v))))
147 ((integerp (setq y (sub u v)))
148 (cond ((zerop1 y)
149 ;; u and v are equal, simplify not if argument can be negative
150 (if (member ($csign u) '($pnz $pn $neg $nz))
151 (eqtest (list '(%binomial) u v) x)
152 (bincomp u y)))
153 (t (bincomp u y))))
154 ((complex-float-numerical-eval-p u v)
155 ;; Numercial evaluation for real and complex floating point numbers.
156 (let (($numer t) ($float t))
157 ($rectform
158 ($float
159 ($makegamma (list '(%binomial) ($float u) ($float v)))))))
160 ((complex-bigfloat-numerical-eval-p u v)
161 ;; Numerical evaluation for real and complex bigfloat numbers.
162 ($rectform
163 ($bfloat
164 ($makegamma (list '(%binomial) ($bfloat u) ($bfloat v))))))
165 (t (eqtest (list '(%binomial) u v) x)))))
167 (defun bincomp (u v)
168 (cond ((minusp v) 0)
169 ((zerop v) 1)
170 ((mnump u) (binocomp u v))
171 (t (muln (bincomp1 u v) nil))))
173 (defun bincomp1 (u v)
174 (if (equal v 1)
175 (ncons u)
176 (list* u (list '(mexpt) v -1) (bincomp1 (add2 -1 u) (1- v)))))
178 (defun binocomp (u v)
179 (prog (ans)
180 (setq ans 1)
181 loop (if (zerop v) (return ans))
182 (setq ans (timesk (timesk u ans) (simplify (list '(rat) 1 v))))
183 (setq u (addk -1 u) v (1- v))
184 (go loop)))
186 ;;; gradient of binomial
188 (defprop %binomial
189 ((a b)
190 ((mtimes) -1 ((%binomial) a b)
191 ((mplus)
192 ((mtimes) -1
193 ((mqapply) (($psi array) 0) ((mplus) 1 a)))
194 ((mqapply) (($psi array) 0)
195 ((mplus) 1 a ((mtimes) -1 b)))))
197 ((mtimes) -1 ((%binomial) a b)
198 ((mplus)
199 ((mtimes) -1
200 ((mqapply) (($psi array) 0)
201 ((mplus) 1 a ((mtimes) -1 b))))
202 ((mqapply) (($psi array) 0) ((mplus) 1 b))))) grad)
204 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
206 ;;; Implementation of the Beta function
208 (declare-top (special $numer $gammalim))
210 (defmvar $beta_args_sum_to_integer nil)
212 ;;; The Beta function has mirror symmetry
213 (defprop $beta t commutes-with-conjugate)
215 (defun simpbeta (x vestigial z &aux check)
216 (declare (ignore vestigial))
217 (twoargcheck x)
218 (setq check x)
219 (let ((u (simpcheck (cadr x) z)) (v (simpcheck (caddr x) z)))
220 (cond ((or (zerop1 u) (zerop1 v))
221 (if errorsw
222 (throw 'errorsw t)
223 (merror
224 (intl:gettext "beta: expected nonzero arguments; found ~M, ~M")
225 u v)))
227 ;; Check for numerical evaluation in float precision
228 ((complex-float-numerical-eval-p u v)
229 (cond
230 ;; We use gamma(u)*gamma(v)/gamma(u+v) for numerical evaluation.
231 ;; Therefore u, v or u+v can not be a negative integer or a
232 ;; floating point representation of a negative integer.
233 ((and (or (not (numberp u))
234 (> u 0)
235 (not (= (nth-value 1 (truncate u)) 0)))
236 (and (or (not (numberp v))
237 (> v 0)
238 (not (= (nth-value 1 (truncate v)) 0)))
239 (and (or (not (numberp (add u v)))
240 (> (add v u) 0)
241 (not (= (nth-value 1 ($truncate (add u v))) 0))))))
242 ($rectform
243 (power ($float '$%e)
244 (add ($log_gamma ($float u))
245 ($log_gamma ($float v))
246 (mul -1 ($log_gamma ($float (add u v))))))))
247 ((or (and (numberp u)
248 (> u 0)
249 (= (nth-value 1 (truncate u)) 0)
250 (not (and (mnump v)
251 (eq ($sign (sub ($truncate v) v)) '$zero)
252 (eq ($sign v) '$neg)
253 (eq ($sign (add u v)) '$pos)))
254 (setq u (truncate u)))
255 (and (numberp v)
256 (> v 0)
257 (= (nth-value 1 (truncate u)) 0)
258 (not (and (mnump u)
259 (eq ($sign (sub ($truncate u) u)) '$zero)
260 (eq ($sign u) '$neg)
261 (eq ($sign (add u v)) '$pos)))
262 (setq v (truncate v))))
263 ;; One value is representing a negative integer, the other a
264 ;; positive integer and the sum is negative. Expand.
265 ($rectform ($float (beta-expand-integer u v))))
267 (eqtest (list '($beta) u v) check))))
269 ;; Check for numerical evaluation in bigfloat precision
270 ((complex-bigfloat-numerical-eval-p u v)
271 (let (($ratprint nil))
272 (cond
273 ((and (or (not (mnump u))
274 (eq ($sign u) '$pos)
275 (not (eq ($sign (sub ($truncate u) u)) '$zero)))
276 (or (not (mnump v))
277 (eq ($sign v) '$pos)
278 (not (eq ($sign (sub ($truncate v) v)) '$zero)))
279 (or (not (mnump (add u v)))
280 (eq ($sign (add u v)) '$pos)
281 (not (eq ($sign (sub ($truncate (add u v))
282 (add u v)))
283 '$zero))))
284 ($rectform
285 (power ($bfloat'$%e)
286 (add ($log_gamma ($bfloat u))
287 ($log_gamma ($bfloat v))
288 (mul -1 ($log_gamma ($bfloat (add u v))))))))
289 ((or (and (mnump u)
290 (eq ($sign u) '$pos)
291 (eq ($sign (sub ($truncate u) u)) '$zero)
292 (not (and (mnump v)
293 (eq ($sign (sub ($truncate v) v)) '$zero)
294 (eq ($sign v) '$neg)
295 (eq ($sign (add u v)) '$pos)))
296 (setq u ($truncate u)))
297 (and (mnump v)
298 (eq ($sign v) '$pos)
299 (eq ($sign (sub ($truncate v) v)) '$zero)
300 (not (and (mnump u)
301 (eq ($sign (sub ($truncate u) u)) '$zero)
302 (eq ($sign u) '$neg)
303 (eq ($sign (add u v)) '$pos)))
304 (setq v ($truncate v))))
305 ($rectform ($bfloat (beta-expand-integer u v))))
307 (eqtest (list '($beta) u v) check)))))
309 ((or (and (and (integerp u)
310 (plusp u))
311 (not (and (mnump v)
312 (eq ($sign (sub ($truncate v) v)) '$zero)
313 (eq ($sign v) '$neg)
314 (eq ($sign (add u v)) '$pos))))
315 (and (and (integerp v)
316 (plusp v))
317 (not (and (mnump u)
318 (eq ($sign (sub ($truncate u) u)) '$zero)
319 (eq ($sign u) '$neg)
320 (eq ($sign (add u v)) '$pos)))))
321 ;; Expand for a positive integer. But not if the other argument is
322 ;; a negative integer and the sum of the integers is not negative.
323 (beta-expand-integer u v))
325 ;;; At this point both integers are negative. This code does not work for
326 ;;; negative integers. The factorial function is not defined.
327 ; ((and (integerp u) (integerp v))
328 ; (mul2* (div* (list '(mfactorial) (1- u))
329 ; (list '(mfactorial) (+ u v -1)))
330 ; (list '(mfactorial) (1- v))))
332 ((or (and (ratnump u) (ratnump v) (integerp (setq x (addk u v))))
333 (and $beta_args_sum_to_integer
334 (integerp (setq x (expand1 (add2 u v) 1 1)))))
335 (let ((w (if (symbolp v) v u)))
336 (div* (mul2* '$%pi
337 (list '(%binomial)
338 (add2 (1- x) (neg w))
339 (1- x)))
340 `((%sin) ((mtimes) ,w $%pi)))))
342 ((and $beta_expand (mplusp u) (integerp (cadr u)))
343 ;; Expand beta(a+n,b) where n is an integer.
344 (let ((n (cadr u))
345 (u (simplify (cons '(mplus) (cddr u)))))
346 (beta-expand-add-integer n u v)))
348 ((and $beta_expand (mplusp v) (integerp (cadr v)))
349 ;; Expand beta(a,b+n) where n is an integer.
350 (let ((n (cadr v))
351 (v (simplify (cons '(mplus) (cddr v)))))
352 (beta-expand-add-integer n v u)))
354 (t (eqtest (list '($beta) u v) check)))))
356 (defun beta-expand-integer (u v)
357 ;; One of the arguments is a positive integer. Do an expansion.
358 ;; BUT for a negative integer as second argument the expansion is only
359 ;; possible when the sum of the integers is negative too.
360 ;; This routine expects that the calling routine has checked this.
361 (let ((x (add u v)))
362 (power
363 (mul (sub x 1)
364 (simplify
365 (list '(%binomial)
366 (sub x 2)
367 (sub (if (and (integerp u) (plusp u)) u v) 1))))
368 -1)))
370 (defun beta-expand-add-integer (n u v)
371 (if (plusp n)
372 (mul (simplify (list '($pochhammer) u n))
373 (power (simplify (list '($pochhammer) (add u v) n)) -1)
374 (simplify (list '($beta) u v)))
375 (mul (simplify (list '($pochhammer) (add u v n) (- n)))
376 (power (simplify (list '($pochhammer) (add u n) (- n))) -1)
377 (simplify (list '($beta) u v)))))
379 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
381 ;;; Implementation of the Gamma function
383 (defun simpgamma (x vestigial z)
384 (declare (ignore vestigial))
385 (oneargcheck x)
386 (let ((j (simpcheck (cadr x) z)))
387 (cond ((and (floatp j)
388 (or (zerop j)
389 (and (< j 0)
390 (zerop (nth-value 1 (truncate j))))))
391 (merror (intl:gettext "gamma: gamma(~:M) is undefined.") j))
392 ((float-numerical-eval-p j) (gammafloat ($float j)))
393 ((and ($bfloatp j)
394 (or (zerop1 j)
395 (and (eq ($sign j) '$neg)
396 (zerop1 (sub j ($truncate j))))))
397 (merror (intl:gettext "gamma: gamma(~:M) is undefined.") j))
398 ((bigfloat-numerical-eval-p j)
399 ;; Adding 4 digits in the call to bffac. For $fpprec up to about 256
400 ;; and an argument up to about 500.0 the accuracy of the result is
401 ;; better than 10^(-$fpprec).
402 (let ((z (bigfloat:to ($bfloat j))))
403 (cond
404 ((bigfloat:<= (bigfloat:abs z) (bigfloat:sqrt (bigfloat:epsilon z)))
405 ;; For small z, use gamma(z) = gamma(z+1)/z = z!/z
406 (div (mfuncall '$bffac
407 ($bfloat j)
408 (+ $fpprec 4))
409 ($bfloat j)))
411 (let ((result (mfuncall '$bffac (m+ ($bfloat j) -1) (+ $fpprec 4))))
412 ;; bigfloatp will round the result to the correct fpprec
413 (bigfloatp result))))))
414 ((complex-float-numerical-eval-p j)
415 (complexify (gamma-lanczos (complex ($float ($realpart j))
416 ($float ($imagpart j))))))
417 ((complex-bigfloat-numerical-eval-p j)
418 (let ((z (bigfloat:to ($bfloat j))))
419 (cond
420 ((bigfloat:<= (bigfloat:abs z)
421 (bigfloat:sqrt (bigfloat:epsilon z)))
422 ;; For small z, use gamma(z) = gamma(z+1)/z = z!/z
423 (to (bigfloat:/ (bigfloat:to (mfuncall '$cbffac
424 (to z)
425 (+ $fpprec 4)))
426 z)))
428 ;; Adding 4 digits in the call to cbffac. See comment above.
429 (let ((result
430 (mfuncall '$cbffac
431 (add -1 ($bfloat ($realpart j))
432 (mul '$%i ($bfloat ($imagpart j))))
433 (+ $fpprec 4))))
434 (add (bigfloatp ($realpart result))
435 (mul '$%i (bigfloatp ($imagpart result)))))))))
436 ((taylorize (mop x) (cadr x)))
437 ((eq j '$inf) '$inf) ; Simplify to $inf to be more consistent.
438 ((and $gamma_expand
439 (mplusp j)
440 (integerp (cadr j)))
441 ;; Expand gamma(z+n) for n an integer.
442 (let ((n (cadr j))
443 (z (simplify (cons '(mplus) (cddr j)))))
444 (cond
445 ((> n 0)
446 (mul (simplify (list '($pochhammer) z n))
447 (simplify (list '(%gamma) z))))
448 ((< n 0)
449 (setq n (- n))
450 (div (mul (power -1 n) (simplify (list '(%gamma) z)))
451 ;; We factor to get the order (z-1)*(z-2)*...
452 ;; and not (1-z)*(2-z)*...
453 ($factor
454 (simplify (list '($pochhammer) (sub 1 z) n))))))))
455 ((integerp j)
456 (cond ((> j 0)
457 (cond ((<= j $factlim)
458 ;; Positive integer less than $factlim. Evaluate.
459 (simplify (list '(mfactorial) (1- j))))
460 ;; Positive integer greater $factlim. Noun form.
461 (t (eqtest (list '(%gamma) j) x))))
462 ;; Negative integer. Throw a Maxima error.
463 (errorsw (throw 'errorsw t))
464 (t (merror (intl:gettext "gamma: gamma(~:M) is undefined.") j))))
465 ((alike1 j '((rat) 1 2))
466 (list '(mexpt simp) '$%pi j))
467 ((and (mnump j)
468 (ratgreaterp $gammalim (simplify (list '(mabs) j)))
469 (or (ratgreaterp j 1) (ratgreaterp 0 j)))
470 ;; Expand for rational numbers less than $gammalim.
471 (gammared j))
472 (t (eqtest (list '(%gamma) j) x)))))
474 ;; A sign function for gamma(x); when x > 0 return pos; when x < 0 or x > 0, return pn;
475 ;;; otherwise, return pnz (that is, nothing known).
476 (defun gamma-sign (x)
477 (let ((sgn ($csign (second x)))) ;; careful! x = ((%gamma) XXX)
478 (setq sign
479 (cond ((eql sgn '$pos) '$pos)
480 ((or (eql sgn '$neg) (eql sgn '$pn)) '$pn)
481 (t '$pnz)))))
483 (putprop '%gamma #'gamma-sign 'sign-function)
485 (defun gamma (y) ;;; numerical evaluation for 0 < y < 1
486 (prog (sum coefs)
487 (setq coefs (list 0.035868343 -0.193527817 0.48219939
488 -0.75670407 0.91820685 -0.89705693
489 0.98820588 -0.57719165))
490 (unless (atom y) (setq y (fpcofrat y)))
491 (setq sum (car coefs) coefs (cdr coefs))
492 loop (setq sum (+ (* sum y) (car coefs)))
493 (when (setq coefs (cdr coefs)) (go loop))
494 (return (+ (/ y) sum))))
496 (defun gammared (a) ;A is assumed to
497 (prog (m q n) ;be '((RAT) M N)
498 (cond ((floatp a) (return (gammafloat a))))
499 (setq m (cadr a) ;Numerator
500 n (caddr a) ;denominator
501 q (abs (truncate m n))) ;integer part
502 (cond ((minusp m)
503 (setq q (1+ q) m (+ m (* n q)))
504 (return
505 (simptimes (list '(mtimes)
506 (list '(mexpt) n q)
507 (simpgamma (list '(%gamma)
508 (list '(rat) m n))
510 nil)
511 (list '(mexpt) (gammac m n q) -1))
513 nil))))
514 (return (m* (gammac m n q)
515 (simpgamma (list '(%gamma)
516 (list '(rat) (rem m n) n))
517 1 nil)
518 (m^ n (- q))))))
520 (defun gammac (m n q)
521 (do ((ans 1))
522 ((< q 1) ans)
523 (setq q (1- q) m (- m n) ans (* m ans))))
526 ;; This implementation is based on Lanczos convergent formula for the
527 ;; gamma function for Re(z) > 0. We can use the reflection formula
529 ;; -z*Gamma(z)*Gamma(-z) = pi/sin(pi*z)
531 ;; to handle the case of Re(z) <= 0.
533 ;; See http://my.fit.edu/~gabdo/gamma.m for some matlab code to
534 ;; compute this and http://my.fit.edu/~gabdo/gamma.txt for a nice
535 ;; discussion of Lanczos method and an improvement of Lanczos method.
538 ;; The document says this should give about 15 digits of accuracy for
539 ;; double-precision IEEE floats. The document also indicates how to
540 ;; compute a new set of coefficients if you need more range or
541 ;; accuracy.
543 (defun gamma-lanczos (z)
544 (declare (type (complex flonum) z)
545 (optimize (safety 3)))
546 (let ((c (make-array 15 :element-type 'flonum
547 :initial-contents
548 '(0.99999999999999709182
549 57.156235665862923517
550 -59.597960355475491248
551 14.136097974741747174
552 -0.49191381609762019978
553 .33994649984811888699e-4
554 .46523628927048575665e-4
555 -.98374475304879564677e-4
556 .15808870322491248884e-3
557 -.21026444172410488319e-3
558 .21743961811521264320e-3
559 -.16431810653676389022e-3
560 .84418223983852743293e-4
561 -.26190838401581408670e-4
562 .36899182659531622704e-5))))
563 (declare (type (simple-array flonum (15)) c))
564 (cond
565 ((minusp (realpart z))
566 ;; Use the reflection formula
567 ;; -z*Gamma(z)*Gamma(-z) = pi/sin(pi*z)
568 ;; or
569 ;; Gamma(z) = pi/z/sin(pi*z)/Gamma(-z)
571 ;; If z is a negative integer, Gamma(z) is infinity. Should
572 ;; we test for this? Throw an error?
573 ;; The test must be done by the calling routine.
574 (/ (float pi)
575 (* (- z) (sin (* (float pi) z))
576 (gamma-lanczos (- z)))))
577 ((<= (abs z) (sqrt flonum-epsilon))
578 ;; For |z| small, use Gamma(z) = Gamma(z+1)/z
579 (/ (gamma-lanczos (+ 1 z))
582 (let* ((z (- z 1))
583 (zh (+ z 1/2))
584 (zgh (+ zh 607/128))
585 (ss
586 (do ((sum 0.0)
587 (pp (1- (length c)) (1- pp)))
588 ((< pp 1)
589 sum)
590 (incf sum (/ (aref c pp) (+ z pp))))))
591 (let ((result
592 ;; We check for an overflow. The last positive value in
593 ;; double-float precicsion for which Maxima can calculate
594 ;; gamma is ~171.6243 (CLISP 2.46 and GCL 2.6.8)
595 (ignore-errors
596 (let ((zp (expt zgh (/ zh 2))))
597 (* (sqrt (float (* 2 pi)))
598 (+ ss (aref c 0))
599 (* (/ zp (exp zgh)) zp))))))
600 (cond ((null result)
601 ;; No result. Overflow.
602 (merror (intl:gettext "gamma: overflow in GAMMA-LANCZOS.")))
603 ((or (float-nan-p (realpart result))
604 (float-inf-p (realpart result)))
605 ;; Result, but beyond extreme values. Overflow.
606 (merror (intl:gettext "gamma: overflow in GAMMA-LANCZOS.")))
607 (t result))))))))
609 (defun gammafloat (a)
610 (let ((a (float a)))
611 (cond ((minusp a)
612 ;; Reflection formula to make it positive: gamma(x) =
613 ;; %pi/sin(%pi*x)/x/gamma(-x)
614 (/ (float (- pi))
615 (* a (sin (* (float pi) a)))
616 (gammafloat (- a))))
617 ((<= a (sqrt flonum-epsilon))
618 ;; Use gamma(x) = gamma(1+x)/x when x is very small
619 (/ (gammafloat (+ 1 a))
621 ((< a 10)
622 (slatec::dgamma a))
624 (let ((result
625 (let ((c (* (sqrt (* 2 (float pi)))
626 (exp (slatec::d9lgmc a)))))
627 (let ((v (expt a (- (* .5e0 a) 0.25e0))))
628 (* v
629 (/ v (exp a))
630 c)))))
631 (if (or (float-nan-p result)
632 (float-inf-p result))
633 (merror (intl:gettext "gamma: overflow in GAMMAFLOAT."))
634 result))))))
636 (declare-top (special $numer $trigsign))
638 (defmfun $zeromatrix (m n) ($ematrix m n 0 1 1))
640 (defmfun $ematrix (m n var i j)
641 (prog (ans row)
642 (cond ((equal m 0) (return (ncons '($matrix simp))))
643 ((and (equal n 0) (fixnump m) (> m 0))
644 (return (cons '($matrix simp) (list-of-mlists m))))
645 ((not (and (fixnump m) (fixnump n)
646 (fixnump i) (fixnump j)
647 (> m 0) (> n 0) (> i 0) (> j 0)))
648 (merror (intl:gettext "ematrix: arguments must be positive integers; found ~M")
649 (list '(mlist simp) m n i j) )))
650 loop (cond ((= m i) (setq row (onen j n var 0)) (go on))
651 ((zerop m) (return (cons '($matrix) (mxc ans)))))
652 (setq row nil)
653 (do ((n n (1- n))) ((zerop n)) (setq row (cons 0 row)))
654 on (setq ans (cons row ans) m (1- m))
655 (go loop)))
657 (defun list-of-mlists (n)
658 (do ((n n (1- n))
659 (l nil (cons (ncons '(mlist simp)) l)))
660 ((= n 0) l)))
662 (declare-top (special $ratmx))
664 (defmfun $coefmatrix (eql varl) (coefmatrix eql varl nil))
666 (defmfun $augcoefmatrix (eql varl) (coefmatrix eql varl t))
668 (defun coefmatrix (eql varl ind)
669 (prog (ans row a b elem)
670 (if (not ($listp eql)) (improper-arg-err eql '$coefmatrix))
671 (if (not ($listp varl)) (improper-arg-err varl '$coefmatrix))
672 (dolist (v (cdr varl))
673 (if (and (not (atom v)) (member (caar v) '(mplus mtimes) :test #'eq))
674 (merror (intl:gettext "coefmatrix: variables cannot be '+' or '*' expressions; found ~M") v)))
675 (setq eql (nreverse (mapcar #'meqhk (cdr eql)))
676 varl (reverse (cdr varl)))
677 loop1(if (null eql) (return (cons '($matrix) (mxc ans))))
678 (setq a (car eql) eql (cdr eql) row nil)
679 (if ind (setq row (cons (const1 a varl) row)))
680 (setq b varl)
681 loop2(setq elem (ratcoef a (car b)))
682 (setq row (cons (if $ratmx elem (ratdisrep elem)) row))
683 (if (setq b (cdr b)) (go loop2))
684 (setq ans (cons row ans))
685 (go loop1)))
687 (defun const1 (e varl)
688 (dolist (v varl) (setq e (maxima-substitute 0 v e))) e)
690 (defmfun $entermatrix (rows columns)
691 (prog (row column vector matrix sym symvector)
692 (cond ((or (not (fixnump rows))
693 (not (fixnump columns)))
694 (merror (intl:gettext "entermatrix: arguments must be integers; found ~M, ~M") rows columns)))
695 (setq row 0)
696 (unless (= rows columns) (setq sym nil) (go oloop))
697 quest (format t "~%Is the matrix 1. Diagonal 2. Symmetric 3. Antisymmetric 4. General~%")
698 (setq sym (retrieve "Answer 1, 2, 3 or 4 : " nil))
699 (unless (member sym '(1 2 3 4)) (go quest))
700 oloop (cond ((> (incf row) rows)
701 (format t "~%Matrix entered.~%")
702 (return (cons '($matrix) (mxc matrix)))))
703 (cond ((equal sym 1)
704 (setq column row)
705 (let ((prompt (format nil "Row ~a Column ~a: " row column)))
706 (setq matrix
707 (nconc matrix
708 (ncons (onen row columns
709 (meval (retrieve prompt nil)) 0)))))
710 (go oloop))
711 ((equal sym 2)
712 (setq column (1- row))
713 (cond ((equal row 1) (go iloop)))
714 (setq symvector
715 (cons (nthcdr column vector) symvector)
716 vector (nreverse (mapcar 'car symvector))
717 symvector (mapcar 'cdr symvector))
718 (go iloop))
719 ((equal sym 3)
720 (setq column row)
721 (cond ((equal row 1) (setq vector (ncons 0)) (go iloop)))
722 (setq symvector
723 (cons (mapcar #'neg (nthcdr (1- column) vector))
724 symvector)
725 vector (nreconc (mapcar 'car symvector) (ncons 0))
726 symvector (mapcar 'cdr symvector))
727 (go iloop)))
728 (setq column 0 vector nil)
729 iloop (cond ((> (incf column) columns)
730 (setq matrix (nconc matrix (ncons vector)))
731 (go oloop)))
732 (let ((prompt (format nil "Row ~a Column ~a: " row column)))
733 (setq vector (nconc vector (ncons (meval (retrieve prompt nil))))))
734 (go iloop)))
736 (declare-top (special sn* sd* rsn*))
738 (defmfun $xthru (e)
739 (cond ((atom e) e)
740 ((mtimesp e) (muln (mapcar '$xthru (cdr e)) nil))
741 ((mplusp e) (simplify (comdenom (mapcar '$xthru (cdr e)) t)))
742 ((mexptp e) (power ($xthru (cadr e)) (caddr e)))
743 ((mbagp e) (cons (car e) (mapcar '$xthru (cdr e))))
744 (t e)))
746 (defun comdenom (l ind)
747 (prog (n d)
748 (prodnumden (car l))
749 (setq n (m*l sn*) sn* nil)
750 (setq d (m*l sd*) sd* nil)
751 loop (setq l (cdr l))
752 (cond ((null l)
753 (return (cond (ind (div* (cond (rsn* ($ratsimp n))
754 (t n))
756 (t (list n d))))))
757 (prodnumden (car l))
758 (setq d (comdenom1 n d (m*l sn*) (m*l sd*)))
759 (setq n (car d))
760 (setq d (cadr d))
761 (go loop)))
763 (defun prodnumden (e)
764 (cond ((atom e) (prodnd (list e)))
765 ((eq (caar e) 'mtimes) (prodnd (cdr e)))
766 (t (prodnd (list e)))))
768 (defun prodnd (l)
769 (prog (e)
770 (setq l (reverse l))
771 (setq sn* nil sd* nil)
772 loop (cond ((null l) (return nil)))
773 (setq e (car l))
774 (cond ((atom e) (setq sn* (cons e sn*)))
775 ((ratnump e)
776 (cond ((not (equal 1 (cadr e)))
777 (setq sn* (cons (cadr e) sn*))))
778 (setq sd* (cons (caddr e) sd*)))
779 ((and (eq (caar e) 'mexpt)
780 (mnegp (caddr e)))
781 (setq sd* (cons (power (cadr e)
782 (timesk -1 (caddr e)))
783 sd*)))
784 (t (setq sn* (cons e sn*))))
785 (setq l (cdr l))
786 (go loop)))
788 (defun comdenom1 (a b c d)
789 (prog (b1 c1)
790 (prodnumden (div* b d))
791 (setq b1 (m*l sn*) sn* nil)
792 (setq c1 (m*l sd*) sd* nil)
793 (return
794 (list (add2 (m* a c1) (m* c b1))
795 (mul2 d b1)))))
797 (declare-top (special $globalsolve $backsubst $dispflag
798 $linsolve_params $%rnum_list ax *linelabel* $linechar
799 $linenum *mosesflag))
801 (defun xrutout (ax n m varl ind)
802 (let (($linsolve_params (and $backsubst $linsolve_params)))
803 (prog (ix imin ans zz m-1 sol tim chk zzz)
804 (setq ax (get-array-pointer ax) tim 0)
805 (if $linsolve_params (setq $%rnum_list (list '(mlist))))
806 (setq imin (min (setq m-1 (1- m)) n))
807 (setq ix (max imin (length varl)))
808 loop (if (zerop ix) (if ind (go out) (return (cons '(mlist) zz))))
809 (when (or (> ix imin) (equal (car (aref ax ix ix)) 0))
810 (setf (aref ax 0 ix)
811 (rform (if $linsolve_params (make-param) (ith varl ix))))
812 (if $linsolve_params (go saval) (go next)))
813 (setq ans (aref ax ix m))
814 (setf (aref ax ix m) nil)
815 (do ((j (1+ ix) (1+ j)))
816 ((> j m-1))
817 (setq ans (ratdif ans (rattimes (aref ax ix j) (aref ax 0 j) t)))
818 (setf (aref ax ix j) nil))
819 (setf (aref ax 0 ix) (ratquotient ans (aref ax ix ix)))
820 (setf (aref ax ix ix) nil)
821 (setq ans nil)
822 saval (push (cond (*mosesflag (aref ax 0 ix))
823 (t (list (if $globalsolve '(msetq) '(mequal))
824 (ith varl ix)
825 (simplify (rdis (aref ax 0 ix))))))
827 (if (not $backsubst)
828 (setf (aref ax 0 ix) (rform (ith varl ix))))
829 (and $globalsolve (meval (car zz)))
830 next (decf ix)
831 (go loop)
833 (cond ($dispflag (mtell (intl:gettext "Solution:~%"))))
834 (setq sol (list '(mlist)) chk (checklabel $linechar))
835 (do ((ll zz (cdr ll)))
836 ((null ll))
837 (setq zzz (car ll))
838 (setq zzz (list '(mlabel)
839 (progn
840 (if chk
841 (setq chk nil)
842 (incf $linenum))
843 (let (($nolabels nil))
844 (makelabel $linechar))
845 *linelabel*)
846 (setf (symbol-value *linelabel*) zzz)))
847 (nconc sol (ncons *linelabel*))
848 (cond ($dispflag
849 (setq tim (get-internal-run-time))
850 (mtell-open "~%~M" zzz)
851 (timeorg tim))
853 (putprop *linelabel* t 'nodisp))))
854 (return sol))))