Add PUNT-TO-MEVAL for returning trivial translations
[maxima.git] / src / rat3b.lisp
blob08d6fc162c2bc43b4be3258c15d10d64247531a7
1 ;;; -*- Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- ;;;;
2 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3 ;;; The data in this file contains enhancments. ;;;;;
4 ;;; ;;;;;
5 ;;; Copyright (c) 1984,1987 by William Schelter,University of Texas ;;;;;
6 ;;; All rights reserved ;;;;;
7 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
8 ;;; (c) Copyright 1980 Massachusetts Institute of Technology ;;;
9 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
11 (in-package :maxima)
13 (macsyma-module rat3b)
15 ;; THIS IS THE NEW RATIONAL FUNCTION PACKAGE PART 2.
16 ;; IT INCLUDES RATIONAL FUNCTIONS ONLY.
18 (declare-top (special $algebraic $ratfac $keepfloat $float))
20 (defmvar $ratwtlvl nil)
21 (defmvar $ratalgdenom t) ;If T then denominator is rationalized.
23 (defun ralgp (r) (or (palgp (car r)) (palgp (cdr r))))
25 (defun palgp (poly)
26 (cond ((pcoefp poly) nil)
27 ((alg poly) t)
28 (t (do ((p (cdr poly) (cddr p)))
29 ((null p))
30 (and (palgp (cadr p)) (return t))))))
33 (defun ratdx (e *x*)
34 (declare (special *x*))
35 (prog (varlist flag v* genvar *a a trunclist)
36 (declare (special v* *a flag trunclist))
37 (and (member 'trunc (car e) :test #'eq) (setq trunclist (cadddr (cdar e))))
38 (cond ((not (eq (caar e) (quote mrat))) (setq e (ratf e))))
39 (setq varlist (caddar e))
40 (setq genvar (car (cdddar e)))
41 ;; Next cond could be flushed if genvar would shrink with varlist
42 (cond ((> (length genvar) (length varlist))
43 ;; Presumably this produces a copy of GENVAR which has the
44 ;; same length as VARLIST. Why not rplacd?
45 (setq genvar (mapcar #'(lambda (a b) (declare (ignore a)) b)
46 varlist genvar))))
47 (setq *x* (fullratsimp *x*))
48 (newvar *x*)
49 (setq a (mapcan #'(lambda (z)
50 (prog (ff)
51 (newvar
52 (setq ff (fullratsimp (sdiff z *x*))))
53 (orderpointer varlist)
54 (return (list z ff)))) varlist))
55 (setq *a (cons nil a))
56 (mapc #'(lambda(z b)
57 (cond ((null (old-get *a z))(putprop b (rzero) 'diff))
58 ((and(putprop b(cdr (ratf (old-get *a z))) 'diff)
59 (alike1 z *x*))
60 (setq v* b))
61 (t (setq flag t)))) varlist genvar)
63 ;;; causing lisp error - [ 2010843 ] diff of Taylor poly
64 ;;(cond ((and (signp n (cdr (old-get trunclist v*)))
65 ;; (car (old-get trunclist v*))) (return 0)))
67 (and trunclist
68 (return (cons (list 'mrat 'simp varlist genvar trunclist 'trunc)
69 (cond (flag (psdp (cdr e)))
70 (t (psderivative (cdr e) v*))))))
71 (return (cons (list 'mrat 'simp varlist genvar)
72 (cond (flag (ratdx1 (cadr e) (cddr e)))
73 (t (ratderivative (cdr e) v*)))))))
75 (defun ratdx1 (u v)
76 (ratquotient (ratdif (rattimes (cons v 1) (ratdp u) t)
77 (rattimes (cons u 1) (ratdp v) t))
78 (cons (pexpt v 2) 1)))
80 (defun ratdp (p)
81 (cond ((pcoefp p) (rzero))
82 ((rzerop (get (car p) 'diff))
83 (ratdp1 (cons (list (car p) 'foo 1) 1) (cdr p)))
84 (t (ratdp2 (cons (list (car p) 'foo 1) 1)
85 (get (car p) 'diff)
86 (cdr p)))))
88 (defun ratdp1 (x v)
89 (cond ((null v) (rzero))
90 ((equal (car v) 0) (ratdp (cadr v)))
91 (t (ratplus (rattimes (subst (car v) 'foo x) (ratdp (cadr v)) t)
92 (ratdp1 x (cddr v))))))
94 (defun ratdp2 (x dx v)
95 (cond ((null v) (rzero))
96 ((equal (car v) 0) (ratdp (cadr v)))
97 ((equal (car v) 1)
98 (ratplus (ratdp2 x dx (cddr v))
99 (ratplus (rattimes dx (cons (cadr v) 1) t)
100 (rattimes (subst 1 'foo x)
101 (ratdp (cadr v)) t))))
102 (t (ratplus (ratdp2 x dx (cddr v))
103 (ratplus (rattimes dx
104 (rattimes (subst (1- (car v))
105 'foo
107 (cons (ptimes (car v)
108 (cadr v))
112 (rattimes (ratdp (cadr v))
113 (subst (car v) (quote foo) x)
114 t))))))
116 (defun ratderivative (rat var)
117 (let ((num (car rat))
118 (denom (cdr rat)))
119 (cond ((equal 1 denom) (cons (pderivative num var) 1))
120 (t (setq denom (pgcdcofacts denom (pderivative denom var)))
121 (setq num (ratreduce (pdifference (ptimes (cadr denom)
122 (pderivative num var))
123 (ptimes num (caddr denom)))
124 ;RATREDUCE ONLY NEEDS TO BE DONE WITH CONTENT OF GCD WRT VAR.
125 (car denom)))
126 (cond ((pzerop (car num)) num)
127 (t (rplacd num (ptimes (cdr num)
128 (pexpt (cadr denom) 2)))))))))
130 (defun ratdif (x y)
131 (ratplus x (ratminus y)))
133 (defun ratfact (x fn)
134 (cond ((and $keepfloat (or (pfloatp (car x)) (pfloatp (cdr x)))
135 (setq fn 'floatfact) nil))
136 ((not (equal (cdr x) 1))
137 (nconc (funcall fn (car x)) (fixmult (funcall fn (cdr x)) -1)))
138 (t (funcall fn (car x)))))
140 (defun floatfact (p)
141 (destructuring-let (((cont primp) (ptermcont p)))
142 (setq cont (monom->facl cont))
143 (cond ((equal primp 1) cont)
144 (t (append cont (list primp 1))))))
146 (defun ratinvert (y)
147 (ratalgdenom
148 (cond ((pzerop (car y)) (rat-error "`quotient' by `zero'"))
149 ((and modulus (pcoefp (car y)))
150 (cons (pctimes (crecip (car y)) (cdr y)) 1))
151 ((and $keepfloat (floatp (car y)))
152 (cons (pctimes (/ (car y)) (cdr y)) 1))
153 ((pminusp (car y)) (cons (pminus (cdr y)) (pminus (car y))))
154 (t (cons (cdr y) (car y))))))
156 (defun ratminus (x)
157 (cons (pminus (car x)) (cdr x)))
159 (defun ratalgdenom (x)
160 (cond ((not $ratalgdenom) x)
161 ((pcoefp (cdr x)) x)
162 ((and (alg (cdr x))
163 (ignore-rat-err
164 (rattimes (cons (car x) 1)
165 (rainv (cdr x)) t))))
166 (t x)))
168 (defun ratreduce (x y &aux b)
169 (cond ((pzerop y) (rat-error "`quotient' by `zero'"))
170 ((pzerop x) (rzero))
171 ((equal y 1) (cons x 1))
172 ((and $keepfloat (pcoefp y) (or $float (floatp y) (pfloatp x)))
173 (cons (pctimes (quotient 1.0 y) x) 1))
174 (t (setq b (pgcdcofacts x y))
175 (setq b (ratalgdenom (rplacd (cdr b) (caddr b))))
176 (cond ((and modulus (pcoefp (cdr b)))
177 (cons (pctimes (crecip (cdr b)) (car b)) 1))
178 ((pminusp (cdr b))
179 (cons (pminus (car b)) (pminus (cdr b))))
180 (t b)))))
182 (defun ptimes* (p q)
183 (cond ($ratwtlvl (wtptimes p q 0))
184 (t (ptimes p q))))
186 (defun rattimes (x y gcdsw)
187 (cond ($ratfac (facrtimes x y gcdsw))
188 ((and $algebraic gcdsw (ralgp x) (ralgp y))
189 (let ((w (rattimes x y nil)))
190 (ratreduce (car w) (cdr w))))
191 ((equal 1 (cdr x))
192 (cond ((equal 1 (cdr y)) (cons (ptimes* (car x) (car y)) 1))
193 (t (cond (gcdsw (rattimes (ratreduce (car x) (cdr y))
194 (cons (car y) 1) nil))
195 (t (cons (ptimes* (car x) (car y)) (cdr y)))))))
196 ((equal 1 (cdr y)) (rattimes y x gcdsw))
197 (t (cond (gcdsw (rattimes (ratreduce (car x) (cdr y))
198 (ratreduce (car y) (cdr x)) nil))
199 (t (cons (ptimes* (car x) (car y))
200 (ptimes* (cdr x) (cdr y))))))))
202 (defun ratexpt (x n)
203 (cond ((equal n 0) '(1 . 1))
204 ((equal n 1) x)
205 ((minusp n) (ratinvert (ratexpt x (- n))))
206 ($ratwtlvl (ratreduce (wtpexpt (car x) n) (wtpexpt (cdr x) n)))
207 ($algebraic (ratreduce (pexpt (car x) n) (pexpt (cdr x) n)))
208 (t (cons (pexpt (car x) n) (pexpt (cdr x) n)))))
210 (defun ratplus (x y &aux q n)
211 (cond ($ratfac (facrplus x y))
212 ($ratwtlvl
213 (ratreduce
214 (pplus (wtptimes (car x) (cdr y) 0)
215 (wtptimes (car y) (cdr x) 0))
216 (wtptimes (cdr x) (cdr y) 0)))
217 ((and $algebraic (ralgp x) (ralgp y))
218 (ratreduce
219 (pplus (ptimeschk (car x) (cdr y))
220 (ptimeschk (car y) (cdr x)))
221 (ptimeschk (cdr x) (cdr y))))
222 ((equal 1 (cdr x))
223 (cond ((equal 0 (car x)) y)
224 ((equal 1 (cdr y)) (cons (pplus (car x) (car y)) 1))
225 (t (cons (pplus (ptimes (car x) (cdr y)) (car y)) (cdr y)))))
226 ((equal 1 (cdr y))
227 (cond ((equal 0 (car y)) x)
228 (t (cons (pplus (ptimes (car y) (cdr x)) (car x)) (cdr x)))))
229 (t (setq q (pgcdcofacts (cdr x) (cdr y)))
230 (setq n (pplus (ptimes (car x)(caddr q))
231 (ptimes (car y)(cadr q))))
232 (if (cadddr q) ; denom factor from algebraic gcd
233 (setq n (ptimes n (cadddr q))))
234 (ratreduce n
235 (ptimes (car q)
236 (ptimes (cadr q) (caddr q)))))))
238 (defun ratquotient (x y)
239 (rattimes x (ratinvert y) t))
241 ;; THIS IS THE END OF THE NEW RATIONAL FUNCTION PACKAGE PART 2.
242 ;; IT INCLUDES RATIONAL FUNCTIONS ONLY.