Add PUNT-TO-MEVAL for returning trivial translations
[maxima.git] / src / ratout.lisp
blob2b25d76fce99c591659686774d8837130c17defd
1 ;;; -*- Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- ;;;;
2 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3 ;;; The data in this file contains enhancments. ;;;;;
4 ;;; ;;;;;
5 ;;; Copyright (c) 1984,1987 by William Schelter,University of Texas ;;;;;
6 ;;; All rights reserved ;;;;;
7 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
8 ;;; (c) Copyright 1982 Massachusetts Institute of Technology ;;;
9 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
11 (in-package :maxima)
13 (macsyma-module ratout)
15 ;; THIS IS THE OUT-OF-CORE SEGMENT OF THE RATIONAL FUNCTION PACKAGE.
17 (declare-top (special $algebraic varlist ss *y* f $factorflag modulus
18 genvar *alpha *x* *p *max *var *res *chk *l
19 $ratfac u* $ratwtlvl *ratweights $ratweights))
21 (declare-top (special xv bigf1 bigf2
22 gcd $factorflag))
24 ;; NEWGCD (X,Y) RETURNS A LIST OF THREE ITEMS,
25 ;; (GCD, X/GCD, Y/GCD)
27 (defun newgcd (x y modulus)
28 (set-modulus modulus)
29 (let ((a (cond ((pcoefp x)
30 (cond ((zerop x) y)
31 ((pcoefp y) (cgcd x y))
32 (t (pcontent1 (cdr y) x))))
33 ((pcoefp y) (cond ((zerop y) x) (t (pcontent1 (cdr x) y))))
34 ((pointergp (p-var x) (p-var y)) (oldcontent1 (cdr x) y))
35 ((pointergp (p-var y) (p-var x)) (oldcontent1 (cdr y) x))
36 (t nil))))
37 (cond (a (list a (pquotient x a) (pquotient y a)))
38 (modulus (pgcdp x y modulus))
39 (t (pgcdm x y)))))
41 ;;;*** PMODCONTENT COMPUTES CONTENT OF
42 ;;; P IN
43 ;; Z [X ] [X , X , ..., X ]
44 ;; P V 1 2 V-1
46 ;; PMODCONTENT OF 3*A*X IS A, IF MAINVAR IS X (=X )
47 ;; V
49 (defun pmodcontent (p)
50 (prog (*var *chk *res *max gcd)
51 (setq *chk (car p))
52 (setq *max 0)
53 (setq *var (pnext (cdr p) nil))
54 (cond ((pointergp xv *chk) (go ret1))
55 ((null *var) (return (list p 1))))
56 (pgath1 (cdr p))
57 a (setq *res 0)
58 (pgath3 (cdr p))
59 a2 (cond ((pcoefp *res) (cond ((pzerop *res) nil)(t(go ret1))))
60 ((not (eq (car *res) *chk)) (go ret1))
61 ((not (univar (cdr *res)))
62 (setq *res (car (pmodcontent *res)))
63 (go a2))
64 (gcd (setq gcd (pgcdu gcd *res)))
65 (t (setq gcd *res)))
66 (cond ((pcoefp gcd) (go ret1))
67 ((minusp (setq *max (1- *max)))
68 (return (list gcd (pquotient p gcd)))))
69 (go a)
70 ret1 (return (list 1 p))))
72 (defun pgathercoef (p *chk *res)
73 (if (not (eq (car p) *chk)) 1 (pgath2 (cdr p) nil)))
75 (defun pgath1 (p)
76 (prog nil
77 (cond ((null p) (return *max))
78 ((pcoefp (cadr p)) nil)
79 ((eq (caadr p) *var) (setq *max (max *max (cadadr p)))))
80 (return (pgath1 (cddr p)))))
82 (defun pgath2 (p vmax)
83 (prog (v2)
84 (cond ((null p) (return *res))
85 ((pcoefp (cadr p)) nil)
86 ((vgreat (setq v2 (pdegreer (cadr p))) vmax)
87 (setq *res (psimp *chk
88 (list (car p) (leadcoefficient (cadr p)))))
89 (setq vmax v2))
90 ((equal vmax v2)
91 (setq *res
92 (pplus *res
93 (psimp *chk
94 (list (car p) (leadcoefficient (cadr p))))))))
95 (return (pgath2 (cddr p) vmax))))
97 (defun pgath3 (p)
98 (prog (zz)
99 (cond ((null p) (return *res))
100 ((pcoefp (cadr p))
101 (cond ((equal *max 0) (setq zz (cadr p)) (go add)) (t (go ret))))
102 ((eq (caadr p) *var) (setq zz (ptterm (cdadr p) *max)) (go add)))
103 (cond ((equal *max 0) (setq zz (cadr p))) (t (go ret)))
104 add (cond ((equal zz 0) (go ret)))
105 (setq *res (pplus *res (psimp *chk (list (car p) zz))))
106 ret (return (pgath3 (cddr p)))))
108 (defun pnext (x *l)
109 (pnext1 x)
110 (cond ((null *l) nil)
111 (t (car (sort *l #'pointergp)))))
113 (defun pnext1 (x)
114 (prog nil
115 (cond ((null x) (return *l))
116 ((or (pcoefp (cadr x)) (member (caadr x) *l :test #'eq)) nil)
117 (t (setq *l (cons (caadr x) *l))))
118 (return (pnext1 (cddr x)))))
120 (defun vgreat (x y)
121 (cond ((null x) nil)
122 ((null y) t)
123 ((pointergp (car x)(car y))t)
124 ((not (eq (car x)(car y)))nil)
125 ((> (cadr x)(cadr y)) t)
126 ((equal (cadr x)(cadr y))(vgreat (cddr x)(cddr y)))
127 (t nil)))
129 (defun pdegreer (x)
130 (if (pcoefp x) () (cons (car x) (cons (cadr x) (pdegreer (caddr x))))))
132 ;;*** PGCDP CORRESPONDS TO BROWN'S ALGORITHM P
134 (defun pgcdp (bigf1 bigf2 modulus)
135 (prog (c c1 c2 n q
136 h1tilde h2tilde gstar h1star
137 h2star xv e b
138 gbar nubar nu1bar nu2bar
139 gtilde f1tilde f2tilde biggtilde
140 degree f1 f1f2)
141 (set-modulus modulus)
142 (cond ((and (univar (cdr bigf1)) (univar (cdr bigf2)))
143 (setq q (pgcdu bigf1 bigf2))
144 (return (list q (pquotient bigf1 q) (pquotient bigf2 q)))))
145 (setq xv (car bigf1))
146 (setq bigf1 (pmodcontent bigf1))
147 (setq bigf2 (pmodcontent bigf2))
148 (setq c (pgcdu (setq c1 (car bigf1)) (setq c2 (car bigf2))))
149 (setq bigf1 (cadr bigf1))
150 (setq bigf2 (cadr bigf2))
151 (setq n 0)
152 (setq e (pdegreer bigf2))
153 (setq degree (pdegreer bigf1))
154 (cond ((vgreat e degree) (setq e degree)))
155 (setq b (ash modulus -1))
156 (setq gbar
157 (pgcdu (setq f1 (pgathercoef bigf1 xv 0))
158 (setq f1f2
159 (pgathercoef bigf2 xv 0))))
160 (cond ((equal 0 f1f2) (go step15a)))
161 (setq nubar (pdegree gbar xv))
162 (setq nu1bar (+ nubar (pdegree bigf1 xv)))
163 (setq nu2bar (+ nubar (pdegree bigf2 xv)))
164 (setq f1f2 (ptimes f1 f1f2))
165 (setq nubar (max nu1bar nu2bar))
166 step6(setq b (cplus b 1))
167 (cond ((equal (pcsubst f1f2 b xv) 0) (go step6)))
168 ;; Step 7
169 (setq gtilde (pcsubst gbar b xv))
170 (setq f1tilde (pcsubst bigf1 b xv))
171 (setq f2tilde (pcsubst bigf2 b xv))
172 (setq biggtilde
173 (ptimeschk gtilde
174 (car (setq h2tilde (newgcd f1tilde f2tilde modulus)))))
175 (cond ((pcoefp biggtilde) (go step15a)))
176 (setq h1tilde (cadr h2tilde))
177 (setq h2tilde (caddr h2tilde))
178 (setq degree (pdegreer biggtilde))
179 (cond ((vgreat degree e) (go step6))
180 ((vgreat e degree) (setq n 0) (setq e degree)))
181 (setq n (1+ n))
182 (cond ((equal n 1) (setq q (list xv 1 1 0 (cminus b)))
183 (setq gstar biggtilde)
184 (setq h1star h1tilde)
185 (setq h2star h2tilde))
186 (t (setq gstar (lagrange33 gstar biggtilde q b))
187 (setq h1star (lagrange33 h1star h1tilde q b))
188 (setq h2star (lagrange33 h2star h2tilde q b))
189 (setq q (ptimes q (list xv 1 1 0 (cminus b))))))
190 ;; Step 12
191 (cond ((not (> n nubar)) (go step6)))
192 ;; Step 13
193 (cond ((or (not (= nu1bar (+ (setq degree (pdegree gstar xv))
194 (pdegree h1star xv))))
195 (not (= nu2bar (+ degree (pdegree h2star xv)))))
196 (setq n 0)
197 (go step6)))
198 (setq gstar (cadr (pmodcontent gstar)))
199 ;; Step 15
200 (setq q (pgathercoef gstar xv 0))
201 (return (monicgcd (ptimeschk c gstar)
202 (ptimeschk (pquotient c1 c) (pquotientchk h1star q))
203 (ptimeschk (pquotient c2 c) (pquotientchk h2star q))
204 (leadcoefficient gstar)))
205 step15a
206 (return (list c
207 (ptimeschk (pquotient c1 c) bigf1)
208 (ptimeschk (pquotient c2 c) bigf2))) ))
211 (defun monicgcd (gcd x y lcf)
212 (cond ((equal lcf 1) (list gcd x y))
213 (t (list (ptimes (crecip lcf) gcd)
214 (ptimes lcf x)
215 (ptimes lcf y) )) ))
217 ;;*** PGCDM CORRESPONDS TO BROWN'S ALGORITHM M
220 (defun pgcdm
221 (bigf1 bigf2)
222 (prog (c c1 c2 f1 f2 n
223 e degree mubar p
224 gtilde h1tilde h2tilde
225 modulus
226 biggtilde q h1star h2star
227 gstar xv gbar)
228 (setq p *alpha)
229 (setq xv (car bigf1))
230 ;; Step 1
231 (setq f1 (pcontent bigf1))
232 (setq f2 (pcontent bigf2))
233 (setq c (cgcd (setq c1 (car f1)) (setq c2 (car f2))))
234 (setq bigf1 (cadr f1))
235 (setq bigf2 (cadr f2))
236 ;; Step 3
237 (setq f1 (leadcoefficient bigf1))
238 (setq f2 (leadcoefficient bigf2))
239 (setq gbar (cgcd f1 f2))
240 ;; Step 4
241 (setq n 0)
242 (setq degree (pdegreer bigf1))
243 (setq e (pdegreer bigf2))
244 (cond ((vgreat e degree) (setq e degree)))
245 ;; Step 5
246 (setq mubar
247 (* 2 gbar (max (maxcoefficient bigf1)
248 (maxcoefficient bigf2))))
249 (go step6a)
250 step6(setq p (newprime p))
251 step6a
252 (cond ((or (zerop (rem f1 p)) (zerop (rem f2 p)))
253 (go step6)))
254 (set-modulus p)
255 ;; Step 7
256 (setq gtilde (pmod gbar))
257 ;; Step 8
258 (setq biggtilde
259 (ptimeschk gtilde
260 (car (setq h2tilde
261 (newgcd (pmod bigf1) (pmod bigf2)
262 modulus)))))
263 (cond ((pcoefp biggtilde) (setq modulus nil)
264 (setq gstar 1)
265 (setq h1star bigf1)
266 (setq h2star bigf2)
267 (go step15)))
268 (cond ((null (cdr h2tilde))
269 (setq h1tilde (pquotient (pmod bigf1) (car h2tilde)))
270 (setq h2tilde (pquotient (pmod bigf2) (car h2tilde))))
271 (t (setq h1tilde (cadr h2tilde))
272 (setq h2tilde (caddr h2tilde))))
273 (setq degree (pdegreer biggtilde))
274 (cond ((vgreat degree e) (go step6))
275 ((vgreat e degree) (setq n 0) (setq e degree)))
276 (setq n (1+ n))
277 ;; Step 11
278 (set-modulus nil)
279 (cond ((equal n 1) (setq q p)
280 (setq gstar biggtilde)
281 (setq h1star h1tilde)
282 (setq h2star h2tilde))
283 (t (setq gstar (lagrange3 gstar biggtilde p q))
284 (setq h1star (lagrange3 h1star h1tilde p q))
285 (setq h2star (lagrange3 h2star h2tilde p q))
286 (setq q (* p q))))
287 ;; Step 12
288 (cond ((> mubar q) (go step6)))
289 (cond ((> (* 2 (max (* (setq gtilde (norm gstar)) (maxcoefficient h1star))
290 (* gtilde (maxcoefficient h2star))))
292 (go step6)))
293 (set-modulus nil)
294 (setq gstar (cadr (pcontent gstar)))
295 step15
296 (setq q (leadcoefficient gstar))
297 (return (list (ptimeschk c gstar)
298 (ptimeschk (cquotient c1 c) (pquotientchk h1star q))
299 (ptimeschk (cquotient c2 c) (pquotientchk h2star q))))))
301 ;; THE FUNCTIONS ON THIS PAGE ARE USED BY KRONECKER FACTORING
303 (defun pkroneck (p)
304 (prog (maxexp i l *p factors factor)
305 (setq maxexp (quotient (cadr p) 2))
306 (setq i 1)
307 a (when (> i maxexp) (return (cons p factors)))
308 (setq l (p1 (reverse (let ((p p) (i i) ($factorflag t))
309 (pfactor2 p i)))))
310 b (when (null l) (go d))
311 (setq *l (car l))
312 (setq *p (car p))
313 (ignore-rat-err
314 (setq factor (errset (pinterpolate *l *p))))
315 (setq l (cdr l))
316 (if (atom factor)
317 (go b)
318 (setq factor (car factor)))
319 (when (or (pcoefp factor)
320 (not (equal (car p) (car factor)))
321 (not (pzerop (prem p factor))))
322 (go b))
323 (cond (modulus (pmonicize (cdr factor)))
324 ((pminusp factor) (setq factor (pminus factor))))
325 (setq p (pquotient p factor))
326 (setq maxexp (quotient (cadr p) 2))
327 (setq factors (cons factor factors))
328 (go a)
329 d (incf i)
330 (go a)))
332 (defun pfactor2 (p i)
333 (cond ((< i 0) nil)
334 (t (cons (pfactor (pcsubst p i (car p)))
335 (pfactor2 p (1- i))))))
337 (defun rpowerset (x n)
338 (cond ((null x) (quote (1 nil)))
339 ((equal x 1) (quote (1)))
340 (t (cons 1 (ptts1 x n x)))))
343 (defun allprods (x y)
344 (cond ((null x) nil)
345 ((null y) nil)
346 (t (nconc (ap1 (car x) y) (allprods (cdr x) y)))))
348 (defun al1 (f r len)
349 (prog (ss)
350 (cond
351 ((equal len 1)
352 (return (mapcar #'(lambda (*y*) (cons *y* nil)) f)))
353 ((null r) (return nil))
355 (mapc #'(lambda (*y*)
356 (setq ss
357 (nconc ss
358 (mapcar #'(lambda (z) (cons z *y*))
359 f))))
360 (al1 (car r) (cdr r) (1- len)))
361 (return ss)))))
364 (defun ap1 (x l)
365 (cond ((null l) nil)
366 (t (cons (ptimes x (car l)) (ap1 x (cdr l))))))
368 (defun ptts1 (x n y)
369 (cond ((equal n 1) (list y))
370 (t (cons y (ptts1 x (1- n) (ptimes x y))))))
372 (defun p1 (l)
373 (prog (a)
374 (setq a (mapcar #'p11 l))
375 (return (cond ((null l) nil)
376 (t (cdr (al1 (car a)
377 (cdr a)
378 (length a))))))))
380 (defun p11 (ele)
381 (cond ((null (cddr ele)) (rpowerset (car ele) (cadr ele)))
382 (t (allprods (rpowerset (car ele) (cadr ele))
383 (p11 (cddr ele))))))
385 (defun pinterpolate (l var)
386 (psimp var (pinterpolate1 (pinterpolate2 l 1)
387 (- (length l) 2))))
389 (defun pinterpolate1 (x n)
390 (pinterpolate4 (pinterpolate5 (reverse x) 1 n n) (1+ n)))
392 (defun pinterpolate2 (x n)
393 (cond ((null (cdr x)) x)
394 (t (cons (car x)
395 (pinterpolate2 (pinterpolate3 x n) (1+ n))))))
397 (defun pinterpolate3 (x n)
398 (cond ((null (cdr x)) nil)
399 (t (cons (pquotient (pdifference (cadr x) (car x)) n)
400 (pinterpolate3 (cdr x) n)))))
402 (defun pinterpolate4 (x n)
403 (cond ((null x) nil)
404 ((pzerop (car x)) (pinterpolate4 (cdr x) (1- n)))
405 (t (cons n (cons (car x)
406 (pinterpolate4 (cdr x) (1- n)))))))
408 (defun pinterpolate5 (x i j n)
409 (cond ((> i n) x)
410 (t (pinterpolate5 (cons (car x) (pinterpolate6 x i j))
411 (1+ i)
412 (1- j)
413 n))))
415 (defun pinterpolate6 (x i j)
416 (cond ((zerop i) (cdr x))
417 (t (cons (pdifference (cadr x) (pctimes j (car x)))
418 (pinterpolate6 (cdr x) (1- i) j)))))
420 ;; THE N**(1.585) MULTIPLICATION SCHEME
421 ;;FOLLOWS. IT SHOULD BE USED ONLY WHEN BOTH INPUTS ARE MULTIVARIATE,
422 ;;DENSE, AND OF NEARLY THE SAME SIZE. OR ABSOLUTELY TREMENDOUS.
423 ;;(THE CLASSICAL MULTIPLICATION SCHEME IS N**2 WHERE N IS SIZE OF
424 ;;POLYNOMIAL (OR N*M FOR DIFFERENT SIZES). FOR THIS
425 ;;CASE, N IS APPX. THE SIZE OF LARGER.
427 (defmfun $fasttimes (x y)
428 (cond ((and (not (atom x)) (not (atom y))
429 (equal (car x) (car y)) (equal (caar x) 'mrat)
430 (equal (cddr x) 1) (equal (cddr y) 1))
431 (cons (car x)(cons (fptimes (cadr x)(cadr y))1)))
432 (t (merror (intl:gettext "fasttimes: arguments must be CRE polynomials with same variables.")))))
434 (defun fptimes (x y)
435 (cond ((or (pzerop x) (pzerop y)) (pzero))
436 ((pcoefp x) (pctimes x y))
437 ((pcoefp y) (pctimes y x))
438 ((eq (car x) (car y))
439 (cond((or(univar(cdr x))(univar(cdr y)))
440 (cons (car x) (ptimes1 (cdr x) (cdr y))))
441 (t(cons (car x) (fptimes1 (cdr x)(cdr y))))))
442 ((pointergp (car x) (car y))
443 (cons (car x) (pctimes1 y (cdr x))))
444 (t (cons (car y) (pctimes1 x (cdr y))))))
446 (defun fptimes1 (f g)
447 (prog (a b c d)
448 (cond ((or (null f) (null g)) (return nil))
449 ((null (cddr f))
450 (return (lsft (pctimes1 (cadr f) g) (car f))))
451 ((null (cddr g))
452 (return (lsft (pctimes1 (cadr g) f) (car g)))))
453 (setq d (ash (1+ (max (car f) (car g))) -1))
454 (setq f (halfsplit f d) g (halfsplit g d))
455 (setq a (fptimes1 (car f) (car g)))
456 (setq b
457 (fptimes1 (ptptplus (car f) (cdr f)) (ptptplus (car g) (cdr g))))
458 (setq c (fptimes1 (cdr f) (cdr g)))
459 (setq b (ptptdiffer (ptptdiffer b a) c))
460 (return (ptptplus (lsft a (ash d 1)) (ptptplus (lsft b d) c)))))
462 (defun halfsplit (p d)
463 (do ((a) (p p (cddr p)))
464 ((or (null p) (< (car p) d)) (cons (nreverse a) p))
465 (setq a (cons (cadr p) (cons (- (car p) d) a)))))
467 (defun lsft (p n)
468 (do ((q p (cddr (rplaca q (+ (car q) n)))))
469 ((null q)))
472 (declare-top (special wtsofar xweight $ratwtlvl v *x*))
474 ;;; TO TRUNCATE ON E, DO RATWEIGHT(E,1);
475 ;;;THEN DO RATWTLVL:N. ALL POWERS >N GO TO 0.
477 (defmfun $ratweight (&rest args)
478 (when (oddp (length args))
479 (merror (intl:gettext "ratweight: number of arguments must be a multiple of 2.")))
480 (do ((l args (cddr l)))
481 ((null l))
482 (rplacd (or (assoc (first l) *ratweights :test #'equal)
483 (car (push (list (first l)) *ratweights)))
484 (second l)))
485 (setq $ratweights (cons '(mlist simp) (dot2l *ratweights)))
486 (if (null args)
487 $ratweights
488 (cons '(mlist) args)))
490 (defun pweight (x)
491 (or (get x '$ratweight) 0))
493 (defun wtptimes (x y wtsofar)
494 (cond ((or (pzerop x) (pzerop y) (> wtsofar $ratwtlvl))
495 (pzero))
496 ((pcoefp x) (wtpctimes x y))
497 ((pcoefp y) (wtpctimes y x))
498 ((eq (car x) (car y))
499 (palgsimp (car x)
500 (wtptimes1 (cdr x)
501 (cdr y)
502 (pweight (car x)))
503 (alg x)))
504 ((pointergp (car x) (car y))
505 (psimp (car x)
506 (wtpctimes1 y (cdr x) (pweight (car x)))))
507 (t (psimp (car y)
508 (wtpctimes1 x (cdr y) (pweight (car y)))))))
510 (defun wtptimes1 (*x* y xweight)
511 (prog (u* v)
512 (declare (special v))
513 (setq v (setq u* (wtptimes2 y)))
514 a (setq *x* (cddr *x*))
515 (cond ((null *x*) (return u*)))
516 (wtptimes3 y)
517 (go a)))
520 (defun wtptimes2 (y)
521 (if (null y)
523 (let ((ii (+ (* xweight (+ (car *x*) (car y))) wtsofar)))
524 (if (> ii $ratwtlvl)
525 (wtptimes2 (cddr y))
526 (pcoefadd (+ (car *x*) (car y))
527 (wtptimes (cadr *x*) (cadr y) ii)
528 (wtptimes2 (cddr y)))))))
530 (defun wtptimes3 (y)
531 (prog ((e 0) u c)
532 (declare (special v))
533 a1 (cond ((null y) (return nil)))
534 (setq e (+ (car *x*) (car y)))
535 (setq c (wtptimes (cadr y) (cadr *x*) (+ wtsofar (* xweight e))))
536 (cond ((pzerop c) (setq y (cddr y)) (go a1))
537 ((or (null v) (> e (car v))) (setq u* (setq v (ptptplus u* (list e c)))) (setq y (cddr y)) (go a1))
538 ((equal e (car v))
539 (setq c (pplus c (cadr v)))
540 (cond ((pzerop c) (setq u* (setq v (ptptdiffer u* (list (car v) (cadr v)))))) (t (rplaca (cdr v) c)))
541 (setq y (cddr y))
542 (go a1)))
543 a (cond ((and (cddr v) (> (caddr v) e)) (setq v (cddr v)) (go a)))
544 (setq u (cdr v))
545 b (cond ((or (null (cdr u)) (< (cadr u) e)) (rplacd u (cons e (cons c (cdr u)))) (go e)))
546 (cond ((pzerop (setq c (pplus (caddr u) c))) (rplacd u (cdddr u)) (go d)) (t (rplaca (cddr u) c)))
547 e (setq u (cddr u))
548 d (setq y (cddr y))
549 (cond ((null y) (return nil))
550 ((pzerop
551 (setq c (wtptimes (cadr *x*) (cadr y)
552 (+ wtsofar (* xweight
553 (setq e (+ (car *x*) (car y))))))))
554 (go d)))
555 c (cond ((and (cdr u) (> (cadr u) e)) (setq u (cddr u)) (go c)))
556 (go b)))
559 (defun wtpctimes (c p)
560 (cond ((pcoefp p) (ctimes c p))
561 (t (psimp (car p) (wtpctimes1 c (cdr p) (pweight (car p)))))))
563 (defun wtpctimes1 (c x xwt)
564 (prog (cc)
565 (return
566 (cond ((null x) nil)
567 (t (setq cc (wtptimes c
568 (cadr x)
569 (+ wtsofar (* xwt (car x)))))
570 (cond ((pzerop cc) (wtpctimes1 c (cddr x) xwt))
571 (t (cons (car x)
572 (cons cc
573 (wtpctimes1 c
574 (cddr x)
575 xwt))))))))))
577 (defun wtpexpt (x n)
578 (cond ((= n 0) 1)
579 ((= n 1) x)
580 ((evenp n)
581 (let ((xn2 (wtpexpt x (/ n 2))))
582 (wtptimes xn2 xn2 0)))
583 (t (wtptimes x (wtpexpt x (1- n)) 0))))
585 (defmfun $horner (e &rest l)
586 (let (($ratfac nil)
587 (varlist (cdr $ratvars))
588 genvar
589 (x nil)
590 (arg1 (taychk2rat e)))
591 (cond ((mbagp arg1)
592 (cons (car arg1)
593 (mapcar #'(lambda (u) (apply '$horner (cons u l))) (cdr arg1))))
595 (setq x (apply #'$rat (cons arg1 l)))
596 (mapc #'(lambda (y z) (putprop y z 'disrep)) (cadddr (car x)) (caddar x))
597 (div* (hornrep (cadr x)) (hornrep (cddr x)))))))
599 (defun hornrep (p)
600 (if (pcoefp p)
602 (horn+ (cdr p) (get (car p) 'disrep))))
604 (defun horn+ (l var)
605 (prog (ans last)
606 (setq ans (hornrep (cadr l)))
607 a (setq last (car l) l (cddr l))
608 (cond ((null l)
609 (return (cond ((equal last 0) ans)
610 (t (list '(mtimes)
611 (list '(mexpt) var last) ans)))))
612 (t (setq ans (list '(mplus)
613 (hornrep (cadr l))
614 (list '(mtimes)
615 (list '(mexpt) var (- last (car l)))
616 ans)))))
617 (go a)))
619 (declare-top (special y genvar $savefactors checkfactors
620 exp var x $factorflag $ratfac
621 ratform
622 wholepart parnumer varlist n))
624 (defmfun $partfrac (exp var)
625 (cond ((mbagp exp)
626 (cons (car exp) (mapcar #'(lambda (u) ($partfrac u var)) (cdr exp))))
627 ((and (atom var) (not (among var exp))) exp)
628 (t (let (($savefactors t) (checkfactors ()) (varlist (list var))
629 $ratfac $algebraic $keepfloat ratform genvar)
630 (desetq (ratform . exp) (taychk2rat exp))
631 (setq var (caadr (ratf var)))
632 (setq exp (partfrac exp var))
633 (setq exp (cons (car exp) ;FULL DECOMP?
634 (mapcan #'partfraca (cdr exp))))
635 (add2* (disrep (car exp))
636 (cons '(mplus)
637 (mapcar #'(lambda (l)
638 (destructuring-let (((coef poly exp) l))
639 (list '(mtimes)
640 (disrep coef)
641 (list '(mexpt)
642 (disrep poly)
643 (- exp)))))
644 (cdr exp))))))))
646 (defun partfraca (llist)
647 (destructuring-let (((coef poly exp) llist))
648 (do ((nc (ratdivide coef poly) (ratdivide (car nc) poly))
649 (n exp (1- n))
650 (ans))
651 ((rzerop (car nc)) (cons (list (cdr nc) poly n) ans))
652 (push (list (cdr nc) poly n) ans))))
654 (defun partfrac (rat var)
655 (destructuring-let* (((wholepart frpart) (pdivide (car rat) (cdr rat)))
656 ((num . denom) (ratqu frpart (cdr rat))))
657 (cond
658 ((pzerop num) (cons wholepart nil))
659 ((or (pcoefp denom) (pointergp var (car denom))) (cons rat nil))
660 (t (destructuring-let (((content bpart) (oldcontent denom)))
661 (let (apart y parnumer)
662 (loop
663 for (factor multiplicity)
664 on (pfactor bpart) by #'cddr
665 unless (zerop (pdegree factor var))
667 (setq apart (pexpt factor multiplicity)
668 bpart (pquotient bpart apart)
669 y (bprog apart bpart)
670 frpart (cdr (ratdivide (ratti num (cdr y) t)
671 apart)))
672 (push (list (ratqu frpart content) factor multiplicity)
673 parnumer)
674 (desetq (num . content)
675 (cdr (ratdivide (ratqu (ratti num (car y) t)
676 content)
677 bpart))))
678 (cons wholepart parnumer)))))))
680 (declare-top (unspecial exp f n ss v var xv y *chk *l *max *p
681 *res u* *x* *y*))
683 ;; $RATDIFF TAKES DERIVATIVES FAST. IT ASSUMES THAT THE
684 ;; ONLY ENTITY WHICH DEPENDS ON X IS X ITSELF.
685 ;; THAT IS, DEPENDENCIES DECLARED EXPLICITLY OR IMPLICITLY ARE
686 ;; TOTALLY IGNORED. RATDIFF(F(X),X) IS 0. RATDIFF(Y,X) IS 0.
687 ;; ANY OTHER USAGE MUST GO THROUGH $DIFF.
688 ;; FURTHERMORE, X IS ASSUMED TO BE AN ATOM OR A SINGLE ITEM ON
689 ;; VARLIST. E.G. X MIGHT BE SIN(U), BUT NOT 2*SIN(U).
691 (declare-top (special varlist genvar x))
693 (defmfun $ratdiff (p x)
694 (if ($ratp p)
695 (setq p (minimize-varlist
696 (if (member 'trunc (cdar p) :test #'eq) ($taytorat p) p))))
697 (let ((formflag ($ratp p)) (varlist) (genvar))
698 (newvar x) (newvar p)
699 (or (every #'(lambda (exp)
700 (or (alike1 x exp) (free exp x)))
701 varlist)
702 (merror (intl:gettext "ratdiff: first argument must be a polynomial in ~M; found: ~M") x p))
703 (setq p (ratf p))
704 (setq x (caadr (ratf x)))
705 (setq p (cons (car p) (ratderivative (cdr p) x)))
706 (if formflag p ($ratdisrep p))))
708 (declare-top (unspecial x))
710 (declare-top (special $pfeformat varlist $factorflag m v dosimp))
712 (defmfun $pfet (m)
713 (prog (listov $pfeformat varlist $factorflag)
714 (setq $pfeformat t)
715 (newvar m)
716 (setq listov varlist)
717 (mapc #'(lambda (r) (setq m (pfet1 m r)))
718 listov)
719 (setq m (simplify m))
720 (setq m (cond ((atom m) m)
721 ((eq (caar m) 'mplus)
722 (cons '(mplus)
723 (mapcar #'$ratexpand (cdr m))))
724 (t ($ratexpand m))))
725 (return (cond ((atom m) m)
726 ((eq (caar m) 'mplus)
727 (cons '(mplus)
728 (mapcar #'sssqfr (cdr m))))
729 (t (sssqfr m))))))
731 (defun sssqfr (x)
732 (let ((dosimp t)) (simplify ($sqfr x))))
734 (defun pfet1 (m v)
735 (cond ((atom m) m)
736 ((eq (caar m) 'mplus)
737 (cons '(mplus)
738 (mapcar #'(lambda (s) ($partfrac s v))
739 (cdr m))))
740 (t ($partfrac m v))))
742 (declare-top (unspecial m v))