Add PUNT-TO-MEVAL for returning trivial translations
[maxima.git] / src / specfn.lisp
blob0f9a55f7636b85440763543820e1896f404f7c7b
1 ;;; -*- Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- ;;;;
2 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3 ;;; The data in this file contains enhancments. ;;;;;
4 ;;; ;;;;;
5 ;;; Copyright (c) 1984,1987 by William Schelter,University of Texas ;;;;;
6 ;;; All rights reserved ;;;;;
7 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
8 ;;; (c) Copyright 1980 Massachusetts Institute of Technology ;;;
9 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
11 (in-package :maxima)
13 (macsyma-module specfn)
15 ;;*********************************************************************
16 ;;**************** ******************
17 ;;**************** Macsyma Special Function Routines ******************
18 ;;**************** ******************
19 ;;*********************************************************************
21 (load-macsyma-macros rzmac)
22 (load-macsyma-macros mhayat)
24 (defmacro mnumericalp (arg)
25 `(or (floatp ,arg) (and (or $numer $float) (integerp ,arg))))
27 ;; subtitle polylogarithm routines
29 (declare-top (special $zerobern tlist %e-val))
31 (defun lisimp (expr vestigial z)
32 (declare (ignore vestigial))
33 (let ((s (simpcheck (car (subfunsubs expr)) z))
34 ($zerobern t)
35 (a))
36 (subargcheck expr 1 1 '$li)
37 (setq a (simpcheck (car (subfunargs expr)) z))
38 (or (cond ((zerop1 a) a)
39 ((not (integerp s)) ())
40 ((= s 1)
41 (if (onep1 a)
42 (simp-domain-error
43 (intl:gettext "li: li[~:M](~:M) is undefined.") s a)
44 (neg (take '(%log) (sub 1 a)))))
45 ((= s 0) (div a (sub 1 a)))
46 ((< s 0) (lisimp-negative-integer s a))
47 ((and (integerp a) (> s 1)
48 (cond ((= a 1) (take '(%zeta) s))
49 ((= a -1)
50 ;; li[s](-1) = (2^(1-s)-1)*zeta(s)
51 (mul (add -1 (inv (expt 2 (- s 1))))
52 (take '(%zeta) s))))))
53 ((= s 2) (li2simp a))
54 ((= s 3) (li3simp a))
55 ((or (complex-float-numerical-eval-p a)
56 (complex-bigfloat-numerical-eval-p a))
57 (cond ((bigfloat:= 1 (bigfloat:to a))
58 ;; li[s](1) -> zeta(s)
59 (let ((result ($zeta s)))
60 (if (floatp a)
61 ($float result)
62 ($bfloat result))))
63 ((bigfloat:= -1 (bigfloat:to a))
64 ;; li[s](-1) = (2^(1-s)-1)*zeta(s)
65 (let ((result (mul (add -1 (inv (expt 2 (- s 1))))
66 (take '(%zeta) s))))
67 (if (floatp a)
68 ($float result)
69 ($bfloat result))))
70 ((integerp s)
71 (to (bigfloat::li-s-simp s (bigfloat:to a)))))))
72 (eqtest (subfunmakes '$li (ncons s) (ncons a))
73 expr))))
75 ;; Expand the Polylogarithm li[s](z) for a negative integer parameter s.
76 (defun lisimp-negative-integer (s z)
77 (let ((n (- s)))
78 (mul (inv (power (sub 1 z) (+ n 1)))
79 (let ((index1 (gensumindex))
80 ($simpsum t))
81 (dosum
82 (mul (power z index1)
83 (let ((index2 (gensumindex)))
84 (dosum
85 (mul (power -1 (add index2 1))
86 (take '(%binomial) (+ n 1) (sub index2 1))
87 (power (add 1 (sub index1 index2)) n))
88 index2 1 index1 t)))
89 index1 1 n t)))))
91 (defun li2simp (arg)
92 (cond ((mnumericalp arg)
93 ;; When arg is a float or rational, use the original li2numer
94 ;; using Spences function.
95 (li2numer (float arg)))
96 ((complex-float-numerical-eval-p arg)
97 ;; For complex args that should should result in float
98 ;; answers, use bigfloat::li2numer.
99 (to (bigfloat::li2numer (bigfloat:to ($rectform ($float arg))))))
100 ((or (bigfloat-numerical-eval-p arg)
101 (complex-bigfloat-numerical-eval-p arg))
102 (to (bigfloat::li2numer (bigfloat:to ($rectform ($bfloat arg))))))
103 ((alike1 arg '((rat) 1 2))
104 (add (div (take '(%zeta) 2) 2)
105 (mul '((rat simp) -1 2)
106 (power (take '(%log) 2) 2))))))
108 (defun li3simp (arg)
109 (cond ((or (float-numerical-eval-p arg)
110 (complex-float-numerical-eval-p arg))
111 (to (bigfloat::li3numer (bigfloat:to ($rectform ($float arg))))))
112 ((or (bigfloat-numerical-eval-p arg)
113 (complex-bigfloat-numerical-eval-p arg))
114 (to (bigfloat::li3numer (bigfloat:to ($rectform ($bfloat arg))))))
115 ((alike1 arg '((rat) 1 2))
116 (add (mul '((rat simp) 7 8) (take '(%zeta) 3))
117 (mul (div (take '(%zeta) 2) -2) (take '(%log) 2))
118 (mul '((rat simp) 1 6) (power (take '(%log) 2) 3))))))
120 ;; exponent in first term of taylor expansion of $li is one
121 (defun li-ord (subl)
122 (declare (ignore subl))
123 (ncons (rcone)))
125 ;; taylor expansion of $li is its definition:
126 ;; x + x^2/2^s + x^3/3^s + ...
127 (defun exp$li-fun (pw subl l) ; l is a irrelevant here
128 (setq subl (car subl)) ; subl is subscript of li
129 (prog ((e 0) ; e is exponent of current term
130 npw) ; npw is exponent of last term needed
131 (declare (fixnum e))
132 (setq npw (/ (float (car pw)) (float (cdr pw))))
133 (setq
134 l (cons '((0 . 1) 0 . 1)
135 nil))
136 a (setq e (1+ e))
137 (if (> e npw) (return l)
138 (rplacd (last l)
139 `(((,e . 1)
140 . ,(prep1 (m^ e (m- subl)))))))
141 (go a)))
144 ;; computes first pw terms of asymptotic expansion of $li[s](z)
146 ;; pw should be < (1/2)*s or gamma term is undefined
148 ;; Wood, D.C. (June 1992). The Computation of Polylogarithms. Technical Report 15-92
149 ;; University of Kent Computing Laboratory.
150 ;; http://www.cs.kent.ac.uk/pubs/1992/110
151 ;; equation 11.1
152 (defun li-asymptotic-expansion (pw s z)
153 (m+l (loop for k from 0 to pw collect
154 (m* (m^ -1 k)
155 (m- 1 (m^ 2 (m- 1 (m* 2 k))))
156 (m^ (m* 2 '$%pi) (m* 2 k))
157 (m// ($bern (m* 2 k))
158 `((mfactorial) ,(m* 2 k)))
159 (m// (m^ `((%log) ,(m- z)) (m- 2 (m* 2 k)))
160 ($gamma (m+ s 1 (m* -2 k))))))))
162 ;; Numerical evaluation for Chebyschev expansions of the first kind
164 (defun cheby (x chebarr)
165 (let ((bn+2 0.0) (bn+1 0.0))
166 (do ((i (floor (aref chebarr 0)) (1- i)))
167 ((< i 1) (- bn+1 (* bn+2 x)))
168 (setq bn+2
169 (prog1 bn+1 (setq bn+1 (+ (aref chebarr i)
170 (- (* 2.0 x bn+1) bn+2))))))))
172 (defun cheby-prime (x chebarr)
173 (- (cheby x chebarr)
174 (* (aref chebarr 1) 0.5)))
176 ;; These should really be calculated with minimax rational approximations.
177 ;; Someone has done LI[2] already, and this should be updated; I haven't
178 ;; seen any results for LI[3] yet.
180 (defun li2numer (y)
181 ;; Spence's function can be used to compute li[2] for 0 <= x <= 1.
182 ;; To compute the rest, we need the following identities:
184 ;; li[2](x) = -li[2](1/x)-log(-x)^2/2-%pi^2/6
185 ;; li[2](x) = li[2](1/(1-x)) + log(1-x)*log((1-x)/x^2)/2 - %pi^2/6
187 ;; The first tells us how to compute li[2] for x > 1. The result is complex.
188 ;; For x < 0, the second can be used, and the result is real.
190 ;; (See http://functions.wolfram.com/ZetaFunctionsandPolylogarithms/PolyLog2/17/01/01/)
191 (labels ((li2 (x)
192 (cond ((< x 0)
193 (+ (li2 (/ (- 1 x)))
194 (* 0.5 (log (- 1 x)) (log (/ (- 1 x) (* x x))))
195 (- (/ (cl:expt (float pi) 2) 6))))
196 ((< x 1)
197 (slatec:dspenc x))
198 ((= x 1)
199 (/ (cl:expt (float pi) 2) 6))
201 ;; li[2](x) = -li[2](1/x)-log(-x)^2/2-%pi^2/6
202 (- (+ (li2 (/ x))
203 (/ (cl:expt (cl:log (- x)) 2) 2)
204 (/ (cl:expt (float pi) 2) 6)))))))
205 (complexify (li2 y))))
208 (defvar *li2* (make-array 15. :initial-contents '(14.0 1.93506430 .166073033 2.48793229e-2
209 4.68636196e-3 1.0016275e-3 2.32002196e-4
210 5.68178227e-5 1.44963006e-5 3.81632946e-6
211 1.02990426e-6 2.83575385e-7 7.9387055e-8
212 2.2536705e-8 6.474338e-9)
213 :element-type 'flonum))
216 (defvar *li3* (make-array 15. :initial-contents '(14.0 1.95841721 8.51881315e-2 8.55985222e-3
217 1.21177214e-3 2.07227685e-4 3.99695869e-5
218 8.38064066e-6 1.86848945e-6 4.36660867e-7
219 1.05917334e-7 2.6478920e-8 6.787e-9
220 1.776536e-9 4.73417e-10)
221 :element-type 'flonum))
223 (defvar *s12* (make-array 18. :initial-contents '(17.0 1.90361778 .431311318 .100022507
224 2.44241560e-2 6.22512464e-3 1.64078831e-3
225 4.44079203e-4 1.22774942e-4 3.45398128e-5
226 9.85869565e-6 2.84856995e-6 8.31708473e-7
227 2.45039499e-7 7.2764962e-8 2.1758023e-8 6.546158e-9
228 1.980328e-9)
229 :element-type 'flonum))
231 (defun chebyli2 (x)
232 (* x (cheby-prime (/ (1+ (* x 4)) 3) *li2*)))
234 (defun chebyli3 (x)
235 (* x (cheby-prime (/ (1+ (* 4 x)) 3) *li3*)))
237 (defun chebys12 (x)
238 (* (/ (expt x 2) 4)
239 (cheby-prime (/ (1+ (* 4 x)) 3) *s12*)))
241 ;; subtitle polygamma routines
243 ;; gross efficiency hack, exp is a function of *k*, *k* should be mbind'ed
245 (defun msum (exp lo hi)
246 (if (< hi lo)
248 (let ((sum 0))
249 (do ((*k* lo (1+ *k*)))
250 ((> *k* hi) sum)
251 (declare (special *k*))
252 (setq sum (add2 sum (meval exp)))))))
255 (defun pole-err (exp)
256 (declare (special errorsw))
257 (cond (errorsw (throw 'errorsw t))
258 (t (merror (intl:gettext "Pole encountered in: ~M") exp))))
261 (declare-top (special $maxpsiposint $maxpsinegint $maxpsifracnum $maxpsifracdenom))
263 (defprop $psi psisimp specsimp)
265 ;; Integral of psi function psi[n](x)
266 (putprop '$psi
267 `((n x)
269 ,(lambda (n x)
270 (cond
271 ((and ($integerp n) (>= n 0))
272 (cond
273 ((= n 0) `((%log_gamma) ,x))
274 (t `((mqapply) (($psi array) ((mplus) -1 ,n)) ,x))))
275 (t nil))))
276 'integral)
278 (mapcar #'(lambda (var val)
279 (and (not (boundp var)) (setf (symbol-value var) val)))
280 '($maxpsiposint $maxpsinegint $maxpsifracnum $maxpsifracdenom)
281 '(20. -10. 6 6))
283 (defun psisimp (expr a z)
284 (let ((s (simpcheck (car (subfunsubs expr)) z)))
285 (subargcheck expr 1 1 '$psi)
286 (setq a (simpcheck (car (subfunargs expr)) z))
287 (and (setq z (integer-representation-p a))
288 (< z 1)
289 (pole-err expr))
290 (eqtest (psisimp1 s a) expr)))
292 ;; This gets pretty hairy now.
294 (defun psisimp1 (s a)
295 (let ((*k*))
296 (declare (special *k*))
298 (and (integerp s) (>= s 0) (mnumericalp a)
299 (let (($float2bf t)) ($float (mfuncall '$bfpsi s a 18))))
300 (and (integerp s) (>= s 0) ($bfloatp a)
301 (mfuncall '$bfpsi s a $fpprec))
302 (and (not $numer) (not $float) (integerp s) (> s -1)
303 (cond
304 ((integerp a)
305 (and (not (> a $maxpsiposint)) ; integer values
306 (m*t (expt -1 s) (factorial s)
307 (m- (msum (inv (m^t '*k* (1+ s))) 1 (1- a))
308 (cond ((zerop s) '$%gamma)
309 (($zeta (1+ s))))))))
310 ((or (not (ratnump a)) (ratgreaterp a $maxpsiposint)) ())
311 ((ratgreaterp a 0)
312 (cond
313 ((ratgreaterp a 1)
314 (let* ((int ($entier a)) ; reduction to fractional values
315 (frac (m-t a int)))
316 (m+t
317 (psisimp1 s frac)
318 (if (> int $maxpsiposint)
319 (subfunmakes '$psi (ncons s) (ncons int))
320 (m*t (expt -1 s) (factorial s)
321 (msum (m^t (m+t (m-t a int) '*k*)
322 (1- (- s)))
323 0 (1- int)))))))
324 ((= s 0)
325 (let ((p (cadr a)) (q (caddr a)))
326 (cond
327 ((or (> p $maxpsifracnum)
328 (> q $maxpsifracdenom) (bignump p) (bignump q)) ())
329 ((and (= p 1)
330 (cond ((= q 2)
331 (m+ (m* -2 '((%log) 2)) (m- '$%gamma)))
332 ((= q 3)
333 (m+ (m* '((rat simp) -1 2)
334 (m^t 3 '((rat simp) -1 2)) '$%pi)
335 (m* '((rat simp) -3 2) '((%log) 3))
336 (m- '$%gamma)))
337 ((= q 4)
338 (m+ (m* '((rat simp) -1 2) '$%pi)
339 (m* -3 '((%log) 2)) (m- '$%gamma)))
340 ((= q 6)
341 (m- (m+ (m* '((rat simp) 3 2) '((%log) 3))
342 (m* 2 '((%log) 2))
343 (m* '((rat simp) 1 2) '$%pi
344 (m^t 3 '((rat simp) 1 2)))
345 '$%gamma))))))
346 ((and (= p 2) (= q 3))
347 (m+ (m* '((rat simp) 1 2)
348 (m^t 3 '((rat simp) -1 2)) '$%pi)
349 (m* '((rat simp) -3 2) '((%log) 3))
350 (m- '$%gamma)))
351 ((and (= p 3) (= q 4))
352 (m+ (m* '((rat simp) 1 2) '$%pi)
353 (m* -3 '((%log) 2)) (m- '$%gamma)))
354 ((and (= p 5) (= q 6))
355 (m- (m* '((rat simp) 1 2) '$%pi
356 (m^t 3 '((rat simp) 1 2)))
357 (m+ (m* '((rat simp) 3 2) '((%log) 3))
358 (m* 2 '((%log) 2))
359 '$%gamma)))
360 ;; Gauss's Formula
361 ((let ((f (m* `((%cos) ,(m* 2 a '$%pi '*k*))
362 `((%log) ,(m-t 2 (m* 2 `((%cos)
363 ,(m//t (m* 2 '$%pi '*k*)
364 q))))))))
365 (m+t (msum f 1 (1- (truncate q 2)))
366 (let ((*k* (truncate q 2)))
367 (declare (special *k*))
368 (m*t (meval f)
369 (cond ((oddp q) 1)
370 ('((rat simp) 1 2)))))
371 (m-t (m+ (m* '$%pi '((rat simp) 1 2)
372 `((%cot) ((mtimes simp) ,a $%pi)))
373 `((%log) ,q)
374 '$%gamma))))))))
375 ((alike1 a '((rat) 1 2))
376 (m*t (expt -1 (1+ s)) (factorial s)
377 (1- (expt 2 (1+ s))) (simplify ($zeta (1+ s)))))
378 ((and (ratgreaterp a '((rat) 1 2))
379 (ratgreaterp 1 a))
380 (m*t
381 (expt -1 s)
382 (m+t (psisimp1 s (m- 1 a))
383 (let ((dif (m* '$%pi
384 ($diff `((%cot) ,(m* '$%pi '$z)) '$z s)))
385 ($z (m-t a)))
386 (declare (special $z))
387 (meval dif)))))))
388 ((ratgreaterp a $maxpsinegint) ;;; Reflection Formula
389 (m*t
390 (expt -1 s)
391 (m+t (m+t (psisimp1 s (m- a))
392 (let ((dif (m* '$%pi
393 ($diff `((%cot) ,(m* '$%pi '$z)) '$z s)))
394 ($z (m-t a)))
395 (declare (special $z))
396 (meval dif)))
397 (m*t (factorial s) (m^t (m-t a) (1- (- s)))))))))
398 (subfunmakes '$psi (ncons s) (ncons a)))))
401 ;; subtitle polygamma tayloring routines
403 ;; These routines are specially coded to be as fast as possible given the
404 ;; current $TAYLOR; too bad they have to be so ugly.
406 (declare-top (special var subl *last* sign last-exp))
408 (defun expgam-fun (pw temp)
409 (setq temp (get-datum (get-key-var (car var))))
410 (let-pw temp pw
411 (pstimes
412 (let-pw temp (e1+ pw)
413 (psexpt-fn (getexp-fun '(($psi) -1) var (e1+ pw))))
414 (make-ps var (ncons pw) '(((-1 . 1) 1 . 1))))))
416 (defun expplygam-funs (pw subl l) ; l is a irrelevant here
417 (setq subl (car subl))
418 (if (or (not (integerp subl)) (< subl -1))
419 (tay-err "Unable to expand at a subscript in")
420 (prog ((e 0) (sign 0) npw)
421 (declare (fixnum e) (fixnum sign))
422 (setq npw (/ (float (car pw)) (float (cdr pw))))
423 (setq
424 l (cond ((= subl -1)
425 `(((1 . 1) . ,(prep1 '((mtimes) -1 $%gamma)))))
426 ((= subl 0)
427 (cons '((-1 . 1) -1 . 1)
428 (if (> 0.0 npw) ()
429 `(((0 . 1)
430 . ,(prep1 '((mtimes) -1 $%gamma)))))))
431 (t (setq *last* (factorial subl))
432 `(((,(- (1+ subl)) . 1)
433 ,(* (expt -1 (1+ subl))
434 (factorial subl)) . 1))))
435 e (if (< subl 1) (- subl) -1)
436 sign (if (< subl 1) -1 (expt -1 subl)))
437 a (setq e (1+ e) sign (- sign))
438 (if (> e npw) (return l)
439 (rplacd (last l)
440 `(((,e . 1)
441 . ,(rctimes (rcplygam e)
442 (prep1 ($zeta (+ (1+ subl) e))))))))
443 (go a))))
445 (defun rcplygam (k)
446 (declare (fixnum k) )
447 (cond ((= subl -1) (cons sign k))
448 ((= subl 0) (cons sign 1))
449 (t (prog1
450 (cons (* sign *last*) 1)
451 (setq *last*
452 (quot (* *last* (+ subl (1+ k)))
453 (1+ k)))))))
455 (defun plygam-ord (subl)
456 (if (equal (car subl) -1) (ncons (rcone))
457 `((,(m- (m1+ (car subl))) . 1))))
459 (defun plygam-pole (a c func)
460 (if (rcmintegerp c)
461 (let ((ps (get-lexp (m- a (rcdisrep c)) () t)))
462 (rplacd (cddr ps) (cons `((0 . 1) . ,c) (cdddr ps)))
463 (if (atom func) (gam-const a ps func)
464 (plygam-const a ps func)))
465 (prep1 (simplifya
466 (if (atom func) `((%gamma) ,(rcdisrep c))
467 `((mqapply) ,func ,(rcdisrep c)))
468 () ))))
470 (defun gam-const (a arg func)
471 (let ((const (ps-lc* arg)) (arg-c))
472 (cond ((not (rcintegerp const))
473 (taylor2 (diff-expand `((%gamma) ,a) tlist)))
475 (setq const (car const))
476 (if (pscoefp arg) (setq arg-c (get-lexp (m+t a (- const)) (rcone) (signp le const))))
477 (if (and arg-c (not (psp arg-c)))
478 (taylor2 (simplify `((%gamma) ,const)))
479 (let ((datum (get-datum (get-key-var (gvar (or arg-c arg)))))
480 (ord (if arg-c (le (terms arg-c)) (le (n-term (terms arg))))))
481 (setq func (current-trunc datum))
482 (if (> const 0)
483 (pstimes (let-pw datum (e- func ord) (expand (m+t a (- const)) '%gamma))
484 (let-pw datum (e+ func ord)
485 (tsprsum (m+t a (m-t '%%taylor-index%%))
486 `(%%taylor-index%% 1 ,const) '%product)))
487 (pstimes (expand (m+t a (- const)) '%gamma)
488 (let-pw datum (e+ func ord)
489 (psexpt (tsprsum (m+t a '%%taylor-index%%)
490 `(%%taylor-index%% 0 ,(- (1+ const))) '%product)
491 (rcmone)))))))))))
493 (defun plygam-const (a arg func)
494 (let ((const (ps-lc* arg)) (sub (cadr func)))
495 (cond
496 ((or (not (integerp sub)) (< sub -1))
497 (tay-err "Unable to expand at a subscript in"))
498 ((not (rcintegerp const))
499 (taylor2 (diff-expand `((mqapply) ,func ,a) tlist)))
500 (t (setq const (car const))
501 (psplus
502 (expand (m+t a (- const)) func)
503 (if (> const 0)
504 (pstimes
505 (cons (* (expt -1 sub) (factorial sub)) 1)
506 (tsprsum `((mexpt) ,(m+t a (m-t '%%taylor-index%%)) ,(- (1+ sub)))
507 `(%%taylor-index%% 1 ,const) '%sum))
508 (pstimes
509 (cons (* (expt -1 (1+ sub)) (factorial sub)) 1)
510 (tsprsum `((mexpt) ,(m+t a '%%taylor-index%%) ,(- (1+ sub)))
511 `(%%taylor-index%% 0 ,(- (1+ const))) '%sum))))))))
513 (declare-top (unspecial var subl *last* sign last-exp))
515 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
516 ;;; Lambert W function
517 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
519 ;; References
521 ;; Corless, R. M., Gonnet, D. E. G., Jeffrey, D. J., Knuth, D. E. (1996).
522 ;; "On the Lambert W function". Advances in Computational Mathematics 5:
523 ;; pp 329-359
525 ;; http://www.apmaths.uwo.ca/~djeffrey/Offprints/W-adv-cm.pdf.
526 ;; or http://www.apmaths.uwo.ca/~rcorless/frames/PAPERS/LambertW/
528 ;; D. J. Jeffrey, D. E. G. Hare, R. M. Corless
529 ;; Unwinding the branches of the Lambert W function
530 ;; The Mathematical Scientist, 21, pp 1-7, (1996)
531 ;; http://www.apmaths.uwo.ca/~djeffrey/Offprints/wbranch.pdf
533 ;; Winitzki, S. Uniform Approximations for Transcendental Functions.
534 ;; In Part 1 of Computational Science and its Applications - ICCSA 2003,
535 ;; Lecture Notes in Computer Science, Vol. 2667, Springer-Verlag,
536 ;; Berlin, 2003, 780-789. DOI 10.1007/3-540-44839-X_82
537 ;; http://homepages.physik.uni-muenchen.de/~Winitzki/papers/
539 ;; Darko Verebic,
540 ;; Having Fun with Lambert W(x) Function
541 ;; arXiv:1003.1628v1, March 2010, http://arxiv.org/abs/1003.1628
543 ;; See also http://en.wikipedia.org/wiki/Lambert's_W_function
545 (defmfun $lambert_w (z)
546 (simplify (list '(%lambert_w) (resimplify z))))
548 ;;; Set properties to give full support to the parser and display
549 (defprop $lambert_w %lambert_w alias)
550 (defprop $lambert_w %lambert_w verb)
551 (defprop %lambert_w $lambert_w reversealias)
552 (defprop %lambert_w $lambert_w noun)
554 ;;; lambert_w is a simplifying function
555 (defprop %lambert_w simp-lambertw operators)
557 ;;; Derivative of lambert_w
558 (defprop %lambert_w
559 ((x)
560 ((mtimes)
561 ((mexpt) $%e ((mtimes ) -1 ((%lambert_w) x)))
562 ((mexpt) ((mplus) 1 ((%lambert_w) x)) -1)))
563 grad)
565 ;;; Integral of lambert_w
566 ;;; integrate(W(x),x) := x*(W(x)^2-W(x)+1)/W(x)
567 (defprop %lambert_w
568 ((x)
569 ((mtimes)
571 ((mplus)
572 ((mexpt) ((%lambert_w) x) 2)
573 ((mtimes) -1 ((%lambert_w) x))
575 ((mexpt) ((%lambert_w) x) -1)))
576 integral)
578 (defun simp-lambertw (x yy z)
579 (declare (ignore yy))
580 (oneargcheck x)
581 (setq x (simpcheck (cadr x) z))
582 (cond ((equal x 0) 0)
583 ((equal x 0.0) 0.0)
584 ((zerop1 x) ($bfloat 0)) ;bfloat case
585 ((alike1 x '$%e)
586 ;; W(%e) = 1
588 ((alike1 x '((mtimes simp) ((rat simp) -1 2) ((%log simp) 2)))
589 ;; W(-log(2)/2) = -log(2)
590 '((mtimes simp) -1 ((%log simp) 2)))
591 ((alike1 x '((mtimes simp) -1 ((mexpt simp) $%e -1)))
592 ;; W(-1/e) = -1
594 ((alike1 x '((mtimes) ((rat) -1 2) $%pi))
595 ;; W(-%pi/2) = %i*%pi/2
596 '((mtimes simp) ((rat simp) 1 2) $%i $%pi))
597 ;; numerical evaluation
598 ((complex-float-numerical-eval-p x)
599 ;; x may be an integer. eg "lambert_w(1),numer;"
600 (if (integerp x)
601 (to (bigfloat::lambert-w-k 0 (bigfloat:to ($float x))))
602 (to (bigfloat::lambert-w-k 0 (bigfloat:to x)))))
603 ((complex-bigfloat-numerical-eval-p x)
604 (to (bigfloat::lambert-w-k 0 (bigfloat:to x))))
605 (t (list '(%lambert_w simp) x))))
607 ;; An approximation of the k-branch of generalized Lambert W function
608 ;; k integer
609 ;; z real or complex lisp float
610 ;; Used as initial guess for Halley's iteration.
611 ;; When W(z) is real, ensure that guess is real.
612 (defun init-lambert-w-k (k z)
613 (let ( ; parameters for k = +/- 1 near branch pont z=-1/%e
614 (branch-eps 0.2e0)
615 (branch-point (/ -1 %e-val))) ; branch pont z=-1/%e
616 (cond
617 ; For principal branch k=0, use expression by Winitzki
618 ((= k 0) (init-lambert-w-0 z))
619 ; For k=1 branch, near branch point z=-1/%e with im(z) < 0
620 ((and (= k 1)
621 (< (imagpart z) 0)
622 (< (abs (- branch-point z)) branch-eps))
623 (bigfloat::lambert-branch-approx z))
624 ; For k=-1 branch, z real with -1/%e < z < 0
625 ; W(z) is real in this range
626 ((and (= k -1) (realp z) (> z branch-point) (< z 0))
627 (init-lambert-w-minus1 z))
628 ; For k=-1 branch, near branch point z=-1/%e with im(z) >= 0
629 ((and (= k -1)
630 (>= (imagpart z) 0)
631 (< (abs (- branch-point z)) branch-eps))
632 (bigfloat::lambert-branch-approx z))
633 ; Default to asymptotic expansion Corless et al (4.20)
634 ; W_k(z) = log(z) + 2.pi.i.k - log(log(z)+2.pi.i.k)
635 (t (let ((two-pi-i-k (complex 0.0e0 (* 2 pi k))))
636 (+ (log z)
637 two-pi-i-k
638 (* -1 (log (+ (log z) two-pi-i-k )))))))))
640 ;; Complex value of the principal branch of Lambert's W function in
641 ;; the entire complex plane with relative error less than 1%, given
642 ;; standard branch cuts for sqrt(z) and log(z).
643 ;; Winitzki (2003)
644 (defun init-lambert-w-0 (z)
645 (let ((a 2.344e0) (b 0.8842e0) (c 0.9294e0) (d 0.5106e0) (e -1.213e0)
646 (y (sqrt (+ (* 2 %e-val z ) 2)) ) ) ; y=sqrt(2*%e*z+2)
647 ; w = (2*log(1+B*y)-log(1+C*log(1+D*y))+E)/(1+1/(2*log(1+B*y)+2*A)
649 (+ (* 2 (log (+ 1 (* b y))))
650 (* -1 (log (+ 1 (* c (log (+ 1 (* d y)))))))
652 (+ 1
653 (/ 1 (+ (* 2 (log (+ 1 (* b y)))) (* 2 a)))))))
655 ;; Approximate k=-1 branch of Lambert's W function over -1/e < z < 0.
656 ;; W(z) is real, so we ensure the starting guess for Halley iteration
657 ;; is also real.
658 ;; Verebic (2010)
659 (defun init-lambert-w-minus1 (z)
660 (cond
661 ((not (realp z))
662 (merror "z not real in init-lambert-w-minus1"))
663 ((or (< z (/ -1 %e-val)) (plusp z))
664 (merror "z outside range of approximation in init-lambert-w-minus1"))
665 ;; In the region where W(z) is real
666 ;; -1/e < z < C, use power series about branch point -1/e ~ -0.36787
667 ;; C = -0.3 seems a reasonable crossover point
668 ((< z -0.3)
669 (bigfloat::lambert-branch-approx z))
670 ;; otherwise C <= z < 0, use iteration W(z) ~ ln(-z)-ln(-W(z))
671 ;; nine iterations are sufficient over -0.3 <= z < 0
672 (t (let* ((ln-z (log (- z))) (maxiter 9) (w ln-z))
673 (dotimes (k maxiter w)
674 (setq w (- ln-z (log (- w)))))))))
676 (in-package #-gcl #:bigfloat #+gcl "BIGFLOAT")
678 ;; Approximate Lambert W(k,z) for k=1 and k=-1 near branch point z=-1/%e
679 ;; using power series in y=-sqrt(2*%e*z+2)
680 ;; for im(z) < 0, approximates k=1 branch
681 ;; for im(z) >= 0, approximates k=-1 branch
683 ;; Corless et al (1996) (4.22)
684 ;; Verebic (2010)
686 ;; z is a real or complex bigfloat:
687 (defun lambert-branch-approx (z)
688 (let ((y (- (sqrt (+ (* 2 (%e z) z ) 2)))) ; y=-sqrt(2*%e*z+2)
689 (b0 -1) (b1 1) (b2 -1/3) (b3 11/72))
690 (+ b0 (* y (+ b1 (* y (+ b2 (* b3 y))))))))
692 ;; Algorithm based in part on Corless et al (1996).
694 ;; It is Halley's iteration applied to w*exp(w).
697 ;; w[j] exp(w[j]) - z
698 ;; w[j+1] = w[j] - -------------------------------------------------
699 ;; (w[j]+2)(w[j] exp(w[j]) -z)
700 ;; exp(w[j])(w[j]+1) - ---------------------------
701 ;; 2 w[j] + 2
703 ;; The algorithm has cubic convergence. Once convergence begins, the
704 ;; number of digits correct at step k is roughly 3 times the number
705 ;; which were correct at step k-1.
707 ;; Convergence can stall using convergence test abs(w[j+1]-w[j]) < prec,
708 ;; as happens for generalized_lambert_w(-1,z) near branch point z = -1/%e
709 ;; Therefore also stop iterating if abs(w[j]*exp(w[j]) - z) << abs(z)
710 (defun lambert-w-k (k z &key (maxiter 50))
711 (let ((w (init-lambert-w-k k z)) we w1e delta (prec (* 4 (epsilon z))))
712 (dotimes (i maxiter (maxima::merror "lambert-w-k did not converge"))
713 (setq we (* w (exp w)))
714 (when (<= (abs (- z we)) (* 4 (epsilon z) (abs z))) (return))
715 (setq w1e (* (1+ w) (exp w)))
716 (setq delta (/ (- we z)
717 (- w1e (/ (* (+ w 2) (- we z)) (+ 2 (* 2 w))))))
718 (decf w delta)
719 (when (<= (abs (/ delta w)) prec) (return)))
720 ;; Check iteration converged to correct branch
721 (check-lambert-w-k k w z)
724 (defmethod init-lambert-w-k ((k integer) (z number))
725 (maxima::init-lambert-w-k k z))
727 (defmethod init-lambert-w-k ((k integer) (z bigfloat))
728 (bfloat-init-lambert-w-k k z))
730 (defmethod init-lambert-w-k ((k integer) (z complex-bigfloat))
731 (bfloat-init-lambert-w-k k z))
733 (defun bfloat-init-lambert-w-k (k z)
734 "Approximate generalized_lambert_w(k,z) for bigfloat: z as initial guess"
735 (let ((branch-point -0.36787944117144)) ; branch point -1/%e
736 (cond
737 ;; if k=-1, z very close to -1/%e and imag(z)>=0, use power series
738 ((and (= k -1)
739 (or (zerop (imagpart z))
740 (plusp (imagpart z)))
741 (< (abs (- z branch-point)) 1e-10))
742 (lambert-branch-approx z))
743 ;; if k=1, z very close to -1/%e and imag(z)<0, use power series
744 ((and (= k 1)
745 (minusp (imagpart z))
746 (< (abs (- z branch-point)) 1e-10))
747 (lambert-branch-approx z))
748 ;; Initialize using float value if z is representable as a float
749 ((< (abs z) 1.0e100)
750 (if (complexp z)
751 (bigfloat (lambert-w-k k (cl:complex (float (realpart z) 1.0)
752 (float (imagpart z) 1.0))))
753 (bigfloat (lambert-w-k k (float z 1.0)))))
754 ;; For large z, use Corless et al (4.20)
755 ;; W_k(z) ~ log(z) + 2.pi.i.k - log(log(z)+2.pi.i.k)
757 (let ((log-z (log z)))
758 (if (= k 0)
759 (- log-z (log log-z))
760 (let* ((i (make-instance 'complex-bigfloat :imag (intofp 1)))
761 (two-pi-i-k (* 2 (%pi z) i k)))
762 (- (+ log-z two-pi-i-k)
763 (log (+ log-z two-pi-i-k))))))))))
765 ;; Check Lambert W iteration converged to the correct branch
766 ;; W_k(z) + ln W_k(z) = ln z, for k = -1 and z in [-1/e,0)
767 ;; = ln z + 2 pi i k, otherwise
768 ;; See Jeffrey, Hare, Corless (1996), eq (12)
769 ;; k integer
770 ;; z, w bigfloat: numbers
771 (defun check-lambert-w-k (k w z)
772 (let ((tolerance #-gcl 1.0e-6
773 #+gcl (cl:float 1/1000000)))
775 (cond
776 ;; k=-1 branch with z and w real.
777 ((and (= k -1) (realp z) (minusp z) (>= z (/ -1 (%e z))))
778 (if (and (realp w)
779 (<= w -1)
780 (< (abs (+ w (log w) (- (log z)))) tolerance))
782 nil))
784 ; i k = (W_k(z) + ln W_k(z) - ln(z)) / 2 pi
785 (let (ik)
786 (setq ik (/ (+ w (log w) (- (log z))) (* 2 (%pi z))))
787 (if (and (< (realpart ik) tolerance)
788 (< (abs (- k (imagpart ik))) tolerance))
790 nil))))
792 (maxima::merror "Lambert W iteration converged to wrong branch"))))
794 (in-package :maxima)
796 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
797 ;;; Generalized Lambert W function
798 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
800 (defmfun $generalized_lambert_w (k z)
801 (simplify (list '(%generalized_lambert_w) (resimplify k) (resimplify z))))
803 ;;; Set properties to give full support to the parser and display
804 (defprop $generalized_lambert_w %generalized_lambert_w alias)
805 (defprop $generalized_lambert_w %generalized_lambert_w verb)
806 (defprop %generalized_lambert_w $generalized_lambert_w reversealias)
807 (defprop %generalized_lambert_w $generalized_lambert_w noun)
809 ;;; lambert_w is a simplifying function
810 (defprop %generalized_lambert_w simp-generalized-lambertw operators)
812 ;;; Derivative of lambert_w
813 (defprop %generalized_lambert_w
814 ((k x)
816 ((mtimes)
817 ((mexpt) $%e ((mtimes ) -1 ((%generalized_lambert_w) k x)))
818 ((mexpt) ((mplus) 1 ((%generalized_lambert_w) k x)) -1)))
819 grad)
821 ;;; Integral of lambert_w
822 ;;; integrate(W(k,x),x) := x*(W(k,x)^2-W(k,x)+1)/W(k,x)
823 (defprop %generalized_lambert_w
824 ((k x)
826 ((mtimes)
828 ((mplus)
829 ((mexpt) ((%generalized_lambert_w) k x) 2)
830 ((mtimes) -1 ((%generalized_lambert_w) k x))
832 ((mexpt) ((%generalized_lambert_w) k x) -1)))
833 integral)
835 (defun simp-generalized-lambertw (expr ignored z)
836 (declare (ignore ignored))
837 (twoargcheck expr)
838 (let ((k (simpcheck (cadr expr) z))
839 (x (simpcheck (caddr expr) z)))
840 (cond
841 ;; Numerical evaluation for real or complex x
842 ((and (integerp k) (complex-float-numerical-eval-p x))
843 ;; x may be an integer. eg "generalized_lambert_w(0,1),numer;"
844 (if (integerp x)
845 (to (bigfloat::lambert-w-k k (bigfloat:to ($float x))))
846 (to (bigfloat::lambert-w-k k (bigfloat:to x)))))
847 ;; Numerical evaluation for real or complex bigfloat x
848 ((and (integerp k) (complex-bigfloat-numerical-eval-p x))
849 (to (bigfloat::lambert-w-k k (bigfloat:to x))))
850 (t (list '(%generalized_lambert_w simp) k x)))))
852 (in-package "BIGFLOAT")
854 (defvar *debug-li-eval* nil)
856 (defun li-using-powers-of-log (n x)
857 ;; When x is on or near the unit circle the other
858 ;; approaches don't work. Use the expansion in powers of
859 ;; log(z) (from cephes cpolylog)
861 ;; li[s](z) = sum(Z(s-j)*(log(z))^j/j!, j = 0, inf)
863 ;; where Z(j) = zeta(j) for j != 1. For j = 1:
865 ;; Z(1) = -log(-log(z)) + sum(1/k, k, 1, s - 1)
868 ;; This is similar to
869 ;; http://functions.wolfram.com/10.08.06.0024.01, but that
870 ;; identity is clearly undefined if v is a positive
871 ;; integer because zeta(1) is undefined.
873 ;; Thus,
875 ;; li[3](z) = Z(3) + Z(2)*log(z) + Z(1)*log(z)^2/2!
876 ;; + Z(0)*log(z)^3/3! + sum(Z(-k)*log(z)^(k+4)/(k+4)!,k,1,inf);
878 ;; But Z(-k) = zeta(-k) is 0 if k is even. So
880 ;; li[3](z) = Z(3) + Z(2)*log(z) + Z(1)*log(z)^2/2!
881 ;; + Z(0)*log(z)^3/3! + sum(Z(-(2*k+1))*log(z)^(2*k+4)/(2*k+4)!,k,0,inf);
882 (flet ((zfun (j)
883 (cond ((= j 1)
884 (let ((sum (- (log (- (log x))))))
885 (+ sum
886 (loop for k from 1 below n
887 sum (/ k)))))
889 (to (maxima::$zeta (maxima::to (float j (realpart x)))))))))
890 (let* ((eps (epsilon x))
891 (logx (log x))
892 (sum 0))
893 (do* ((k 0 (1+ k))
894 (top 1 (* top logx))
895 (bot 1 (* bot k))
896 (term (* (/ top bot) (to (zfun (- n k))))
897 (* (/ top bot) (to (zfun (- n k))))))
898 ((and (> k 4)
899 (oddp (- n k)) ;; even terms are all zero
900 (<= (abs term) (* (abs sum) eps))))
901 ;;(format t "~3d: ~A / ~A = ~A~%" k top bot term)
902 (incf sum term))
903 sum)))
906 (defun li3numer (x)
907 ;; If |x| < series-threshold, the series is used.
908 (let ((series-threshold 0.8))
909 (cond ((zerop x)
910 0.0)
911 ((= x 1)
912 (maxima::$zeta (maxima::to (float 3 x))))
913 ((= x -1)
914 ;; li[3](-1) = -(1-2^(1-3))*li[3](1)
915 ;; = -3/4*zeta(3)
917 ;; From the formula
919 ;; li[s](-1) = (2^(1-s)-1)*zeta(s)
921 ;; (See http://functions.wolfram.com/10.08.03.0003.01)
922 (* -3/4 (to (maxima::$zeta (maxima::to (float 3 x))))))
923 ((> (abs x) 1)
924 ;; For z not in the interval (0, 1) and for integral n, we
925 ;; have the identity:
927 ;; li[n](z) = -log(-z)^n/n! + (-1)^(n-1)*li[n](1/z)
928 ;; + 2 * sum(li[2*r](-1)/(n-2*r)!*log(-z)^(n-2*r), r, 1, floor(n/2))
930 ;; (See http://functions.wolfram.com/ZetaFunctionsandPolylogarithms/PolyLog/17/02/01/01/0008/)
932 ;; In particular for n = 3:
934 ;; li[3](z) = li[3](1/z) - log(-z)/6*(log(-z)^2+%pi^2)
935 (let* ((lg (log (- x)))
936 (dpi (%pi x))
937 (result (- (li3numer (/ x))
938 (* (/ lg 6)
939 (+ (* lg lg) (* dpi dpi))))))
940 result))
941 ((> (abs x) .9)
942 (li-using-powers-of-log 3 x))
943 ((> (abs x) series-threshold)
944 ;; The series converges too slowly so use the identity:
946 ;; li[3](-x/(1-x)) + li[3](1-x) + li[3](x)
947 ;; = li[3](1) + %pi^2/6*log(1-x) - 1/2*log(x)*(log(1-x))^2 + 1/6*(log(1-x))^3
949 ;; Or
951 ;; li[3](x) = li[3](1) + %pi^2/6*log(1-x) - 1/2*log(x)*(log(1-x))^2 + 1/6*(log(1-x))^3
952 ;; - li[3](-x/(1-x)) - li[3](1-x)
954 ;; (See http://functions.wolfram.com/10.08.17.0048.01)
955 (let* ((dpi (%pi x))
956 (u (log x))
957 (s (/ (* u u u) 6))
958 (xc (- 1 x)))
959 (decf s (* 0.5 u u (log xc)))
960 (incf s (/ (* dpi dpi u) 6))
961 (decf s (li3numer (- (/ xc x))))
962 (decf s (li3numer xc))
963 (incf s (li3numer 1))))
965 ;; Sum the power series. threshold determines when the
966 ;; summation has converted.
967 (let* ((threshold (epsilon x))
968 (p (* x x x))
969 (term (/ p 27)))
970 (incf term (* 0.125 x x))
971 (incf term x)
972 (do* ((k 4 (1+ k))
973 (p1 (* p x) (* p1 x))
974 (h (/ p1 (* k k k)) (/ p1 (* k k k)))
975 (s h (+ s h)))
976 ((<= (abs (/ h s)) threshold)
977 (+ s term))))))))
979 (defun li2numer (z)
980 ;; The series threshold to above sqrt(1/2) because li[2](%i) needs
981 ;; the value of li[2](1/2-%i/2), and the magnitude of the argument
982 ;; is sqrt(1/2) = 0.707. If the threshold is below this, we get
983 ;; into an infinite recursion oscillating between the two args.
984 (let ((series-threshold .75))
985 (cond ((zerop z)
987 ((= z 1)
988 ;; %pi^2/6. This follows from the series.
989 (/ (expt (%pi z) 2) 6))
990 ((= z -1)
991 ;; -%pi^2/12. From the formula
993 ;; li[s](-1) = (2^(1-s)-1)*zeta(s)
995 ;; (See http://functions.wolfram.com/10.08.03.0003.01)
996 (/ (expt (%pi z) 2) -12))
997 ((> (abs z) 1)
998 ;; Use
999 ;; li[2](z) = -li[2](1/z) - 1/2*log(-z)^2 - %pi^2/6,
1001 ;; valid for all z not in the intervale (0, 1).
1003 ;; (See http://functions.wolfram.com/10.08.17.0013.01)
1004 (- (+ (li2numer (/ z))
1005 (* 0.5 (expt (log (- z)) 2))
1006 (/ (expt (%pi z) 2) 6))))
1007 ;; this converges faster when close to unit circle
1008 ((> (abs z) series-threshold)
1009 (li-using-powers-of-log 2 z))
1010 ;; no longer in use
1011 ;;(> (abs z) series-threshold)
1012 ;; For 0.5 <= |z|, where the series would not converge very quickly, use
1014 ;; li[2](z) = li[2](1/(1-z)) + 1/2*log(1-z)^2 - log(-z)*log(1-z) - %pi^2/6
1016 ;; (See http://functions.wolfram.com/10.08.17.0016.01)
1017 ;;(let* ((1-z (- 1 z))
1018 ;; (ln (log 1-z)))
1019 ;; (+ (li2numer (/ 1-z))
1020 ;; (* 0.5 ln ln)
1021 ;; (- (* (log (- z))
1022 ;; ln))
1023 ;; (- (/ (expt (%pi z) 2) 6)))))
1025 ;; Series evaluation:
1027 ;; li[2](z) = sum(z^k/k^2, k, 1, inf);
1028 (let ((eps (epsilon z)))
1029 (do* ((k 0 (1+ k))
1030 (term z (* term (/ (* z k k)
1031 (expt (1+ k) 2))))
1032 (sum z (+ term sum)))
1033 ((<= (abs (/ term sum)) eps)
1034 sum)))))))
1036 (defun polylog-power-series (s z)
1037 ;; Series evaluation:
1039 ;; li[s](z) = sum(z^k/k^s, k, 1, inf);
1040 (let ((eps (epsilon z)))
1041 (do* ((k 1 (1+ k))
1042 (term z (* term z (expt (/ (- k 1) k) s)))
1043 (sum z (+ term sum)))
1044 ((<= (abs (/ term sum)) eps)
1045 ;; Return the value and the number of terms used, for
1046 ;; debugging and for helping in determining the series
1047 ;; threshold.
1048 (values sum k)))))
1050 (defun polylog-log-series (s z)
1051 ;; When x is on or near the unit circle the other
1052 ;; approaches don't work. Use the expansion in powers of
1053 ;; log(z) (from cephes cpolylog)
1055 ;; li[s](z) = sum(Z(s-j)*(log(z))^j/j!, j = 0, inf)
1057 ;; where Z(j) = zeta(j) for j != 1. For j = 1:
1059 ;; Z(1) = -log(-log(z)) + sum(1/k, k, 1, s - 1)
1060 (flet ((zfun (j)
1061 ;; Compute Z(j)
1062 (cond ((= j 1)
1063 (let ((sum (- (log (- (log z))))))
1064 (+ sum
1065 (loop for k from 1 below s
1066 sum (/ k)))))
1068 (to (maxima::$zeta (maxima::to (float j (realpart z)))))))))
1069 (let* ((eps (epsilon z))
1070 (logx (log z))
1071 (logx^2 (* logx logx))
1072 (top logx)
1073 (bot 1)
1074 (sum (zfun s)))
1075 ;; Compute sum(Z(s-j)*log(z)^j/j!, j = 1, s)
1076 (do* ((k 1 (1+ k))
1077 (zf (zfun (- s k)) (zfun (- s k)))
1078 (term (* (/ top bot) zf)
1079 (* (/ top bot) zf)))
1080 ((> k s))
1081 (when *debug-li-eval*
1082 (format t "~3d: ~A / ~A * ~A => ~A~%" k top bot zf term))
1083 (incf sum term)
1084 (setf bot (* bot (1+ k)))
1085 (setf top (* top logx)))
1087 (when *debug-li-eval*
1088 (format t "s = ~A, sum = ~S top, bot = ~S ~S~%"
1089 s sum top bot))
1090 ;; Compute the sum for j = s+1 and up. But since
1091 ;; zeta(-k) is 0 for k even, we only every other term.
1092 (do* ((k (+ s 1) (+ k 2))
1093 (zf (zfun (- s k)) (zfun (- s k)))
1094 (term (* (/ top bot) zf)
1095 (* (/ top bot) zf)))
1096 ((<= (abs term) (* (abs sum) eps))
1097 ;; Return the result and the number of terms used for
1098 ;; helping in determining the series threshold and the
1099 ;; log-series threshold.
1100 (values sum k))
1101 (when *debug-li-eval*
1102 (format t "~3d: ~A / ~A = ~A~%" k top bot term))
1103 (incf sum term)
1104 (setf bot (* bot (+ k 1) (+ k 2)))
1105 (setf top (* top logx^2))))))
1107 (defun polylog-inversion-formula (s z)
1108 ;; For z not in the interval (0, 1) and for integral n, we
1109 ;; have the identity:
1111 ;; li[n](z) = -log(-z)^n/n! + (-1)^(n-1)*li[n](1/z)
1112 ;; + 2 * sum(li[2*r](-1)/(n-2*r)!*log(-z)^(n-2*r), r, 1, floor(n/2))
1114 ;; (See http://functions.wolfram.com/ZetaFunctionsandPolylogarithms/PolyLog/17/02/01/01/0008/)
1116 ;; Or
1118 ;; li[n](z) = -log(-z)^n/n! + (-1)^(n-1)*li[n](1/z)
1119 ;; + 2 * sum(li[2*m-2*r](-1)/(n-2*m+2*r)!*log(-z)^(n-2*m+2*r), r, 0, m - 1)
1121 ;; where m = floor(n/2). Thus, n-2*m = 0 if n is even and 1 if n is odd.
1123 ;; For n = 2*m, we have
1125 ;; li[2*m](z) = -log(-z)^(2*m)/(2*m)! - li[2*m](1/z)
1126 ;; + 2 * sum(li[2*r](-1)/(2*m-2*r)!*log(-z)^(2*m-2*r), r, 1, m)
1127 ;; = -log(-z)^(2*m)/(2*m)! - li[2*m](1/z)
1128 ;; + 2 * sum((li[2*m-2*r](-1)*log(-z)^(2*r+1))/(2*r+1)!,r,0,m-1);
1130 ;; For n = 2*m+1, we have
1132 ;; li[2*m+1](z) = -log(-z)^(2*m+1)/(2*m+1)! + li[2*m+1](1/z)
1133 ;; + 2 * sum(li[2*r](-1)/(2*m-2*r + 1)!*log(-z)^(2*m-2*r + 1), r, 1, m)
1134 ;; = -log(-z)^(2*m+1)/(2*m+1)! + li[2*m+1](1/z)
1135 ;; + 2 * sum((li[2*m-2*r](-1)*log(-z)^(2*r+1))/(2*r+1)!,r,0,m-1);
1136 ;; Thus,
1138 ;; li[n](z) = -log(-z)^n/n! + (-1)^(n-1)*li[n](1/z)
1139 ;; + 2 * sum((li[2*m-2*r](-1)*log(-z)^(2*r+1))/(2*r+1)!,r,0,floor(n/2)-1);
1140 (let* ((lgz (log (- z)))
1141 (lgz^2 (* lgz lgz))
1142 (half-s (floor s 2))
1143 (neg-1 (float -1 (realpart z)))
1144 (sum 0))
1145 (if (evenp s)
1146 (do* ((r 0 (1+ r))
1147 (top (if (oddp s) lgz 1) (* top lgz^2))
1148 (bot 1 (* bot (+ r r -1) (+ r r)))
1149 (term (* (li-s-simp (* 2 (- half-s r)) neg-1)
1150 (/ top bot))
1151 (* (li-s-simp (* 2 (- half-s r)) neg-1)
1152 (/ top bot))))
1153 ((>= r half-s))
1154 (incf sum term)
1155 (when *debug-li-eval*
1156 (format t "r = ~4d: ~A / ~A, ~A; ~A~%" r top bot term sum)))
1157 (do* ((r 0 (1+ r))
1158 (top (if (oddp s) lgz 1) (* top lgz^2))
1159 (bot 1 (* bot (+ r r) (+ r r 1)))
1160 (term (* (li-s-simp (* 2 (- half-s r)) neg-1)
1161 (/ top bot))
1162 (* (li-s-simp (* 2 (- half-s r)) neg-1)
1163 (/ top bot))))
1164 ((>= r half-s))
1165 (incf sum term)
1166 (when *debug-li-eval*
1167 (format t "r = ~4d: ~A / ~A, ~A; ~A~%" r top bot term sum))))
1168 (+ (+ sum sum)
1169 (- (/ (expt lgz s)
1170 (maxima::take '(maxima::mfactorial) s)))
1171 (* (expt -1 (- s 1))
1172 (li-s-simp s (/ z))))))
1174 (defun li-s-simp (s z)
1175 (let ((series-threshold 0.5)
1176 (log-series-threshold 2))
1177 (cond ((zerop z)
1178 (maxima::to (to 0.0)))
1179 ((= z 1)
1180 (maxima::$zeta (maxima::to (float s z))))
1181 ((= z -1)
1182 (- (* (- 1 (expt 2 (- 1 s)))
1183 (to (li-s-simp s (- z))))))
1184 ((<= (abs z) series-threshold)
1185 (values (polylog-power-series s z)))
1186 ((<= (abs z) log-series-threshold)
1187 (values (polylog-log-series s z)))
1188 ((> (abs z) 1.5)
1189 (polylog-inversion-formula s z)))))