1 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3 ;;; sqrtdenest - denest an expression containing square roots of square roots
5 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
6 ;;; This library is free software; you can redistribute it and/or modify it
7 ;;; under the terms of the GNU General Public License as published by the
8 ;;; Free Software Foundation; either version 2 of the License, or (at
9 ;;; your option) any later version.
11 ;;; This library is distributed in the hope that it will be useful, but
12 ;;; WITHOUT ANY WARRANTY; without even the implied warranty of
13 ;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 ;;; Library General Public License for more details.
16 ;;; You should have received a copy of the GNU General Public License along
17 ;;; with this library; if not, write to the Free Software
18 ;;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
20 ;;; Copyright (C) 2016 David Billinghurst
21 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
25 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
27 ;;; SQRTDENEST simplifies square roots of square roots.
29 ;;; This implementation uses the same algorithm as the maxima language
30 ;;; SQRTDENEST in share package sqdnst.mac. It only handles simple cases.
34 ;;; Jeffrey, David J. and Rich, Albert D. (1999)
35 ;;; Simplifying Square Roots of Square Roots by Denesting,
36 ;;; in Computer Algebra Systems (Ed. M. J. Wester)
37 ;;; <http://www.cybertester.com/data/denest.pdf>
41 ;;; A. Borodin and R. Fagin and J. Hopcroft and M. Tompa. (1985)
42 ;;; Decreasing the Nesting Depth of expressions Involving Square Roots.
43 ;;; J. Symbolic Computation, 1:169-188
44 ;;; <http://www.almaden.ibm.com/cs/people/fagin/symb85.pdf>
46 ;;; Landau, Susan (1992) A Note on Zippel Denesting.
47 ;;; Journal of Symbolic Computation 13:41-45
49 ;;; Landau, Susan (1992) Simplification of Nested Radicals.
50 ;;; SIAM Journal on Computing, 21: 85-110.
52 ;;; Landau, Susan (1994). How to Tangle with a Nested Radical.
53 ;;; Math. Intell. 16:49-55
55 ;;; Zippel, Richard (1985) Simplification of Expressions involving Radicals.
56 ;;; Journal of Symbolic Computation, 1:189-210.
58 ;;; Python sympy sqrtdenest function
59 ;;; http://docs.sympy.org/latest/_modules/sympy/simplify/sqrtdenest.html
60 ;;; which references Borodin et al (1985), Jeffrey and Rich (2009)
62 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
63 (defmfun $sqrtdenest
(e)
64 "Denest square roots in expression e"
67 (defun sqrtdenest1 (e)
68 "Denest square roots in expression e"
71 ((eq (mop e
) 'mexpt
) (sqrtdenest2 e
))
72 (t `((,(mop e
)) ,@(mapcar #'sqrtdenest1
(rest e
))))))
74 ;;; Simple denesting of square roots. Uses algorithm in maxima share package
75 ;;; sqdnst.mac. Should give identical results.
77 ;;; Ref: Jeffrey and Rich (1999), Section 4.5.2
79 ;;; Let X,Y real with X > Y > 0
82 ;;; sqrt(X+Y) = sqrt(A) + sqrt(B) (4.9)
84 ;;; Squaring both sides
85 ;;; X + Y = A + B + 2 sqrt(AB) (4.10)
87 ;;; One way to satify this is to set X=A+B and Y^2=4AB
90 ;;; sqrt(X-Y) = sqrt(A) - sqrt(B) (4.11)
92 ;;; Solve for A and B in terms of X and Y to derive:
94 ;;; Theorem 4.12: Let X,Y real with X > Y > 0
95 ;;; sqrt(X +/- Y) = sqrt(X/2+sqrt(X^2-Y^2)/2) +/- sqrt(X/2-sqrt(X^2-Y^2)/2)
97 ;;; Apply this below by testing discriminant D = sqrt(1-(Y/X)^2)
98 ;;; If $numberp(D) then theorem 4.12 denests the square-root as
99 ;;; sqrt(X +/- Y) = sqrt(X*(1+D)/2) +/- *sqrt(X*(1-D)/2)
100 ;;; Note: X>0 and D<1 so both sqrt terms on RHS are real.
101 (defun sqrtdenest2 (e)
102 "Denest square roots in maxima expression e of form a^b"
103 (let ((a (simplify (sqrtdenest1 (second e
))))
104 (b (simplify (sqrtdenest1 (third e
))))
106 (cond ((and ($evenp
($denom b
))
110 (setq x
; maximum of args(a)
111 (simplify `(($max
) ,@(rest a
))))
112 (setq y
(sub a x
)) ; a-x
113 (setq D
; sqrt(1-(y/x)^2)
114 (root (sub 1 (power (div y x
) 2)) 2))
116 ;; (sqrt(x*(1+D)/2)+signum(y)*sqrt(x*(1-D)/2))^(2*b)
117 (power (add (root (mul 1//2 x
(add 1 D
)) 2)
118 (mul (take '(%signum
) y
)
119 (root (mul 1//2 x
(sub 1 D
)) 2)))
121 ;; Didn't denest at this level, but may have at a lower level.