1 cm.mac is from the book "Perturbation Methods, Bifurcation Theory and
2 Computer Algebra" by Rand & Armbruster (Springer 1987)
4 It performs center manifold reduction for ordinary differential
7 The first example is from p31. maxima-5.9.0 cvs reproduces the
10 (C1) load("./cm.mac");
15 ENTER DIMENSION OF CENTER MANIFOLD
17 THE D.E.'S MUST BE ARRANGED SO THAT THE FIRST 2 EQS.
18 REPRESENT THE CENTER MANIFOLD. I.E. ALL ASSOCIATED
19 EIGENVALUES ARE ZERO OR HAVE ZERO REAL PARTS.
20 ENTER SYMBOL FOR VARIABLE NO. 1
22 ENTER SYMBOL FOR VARIABLE NO. 2
24 ENTER SYMBOL FOR VARIABLE NO. 3
26 ENTER ORDER OF TRUNCATION
48 2 ALPHA y 2 ALPHA x y 3 ALPHA x
49 [z = ---------- - ----------- + ----------]
53 dx dy 2 ALPHA y 2 ALPHA x y 3 ALPHA x
54 [-- = y, -- = - x (---------- - ----------- + ----------) - x]
59 The second example is from page 35, and again the results in the book
60 are reproduced by maxima-5.9.0-cvs.
65 ENTER DIMENSION OF CENTER MANIFOLD
67 THE D.E.'S MUST BE ARRANGED SO THAT THE FIRST 3 EQS.
68 REPRESENT THE CENTER MANIFOLD. I.E. ALL ASSOCIATED
69 EIGENVALUES ARE ZERO OR HAVE ZERO REAL PARTS.
70 ENTER SYMBOL FOR VARIABLE NO. 1
72 ENTER SYMBOL FOR VARIABLE NO. 2
74 ENTER SYMBOL FOR VARIABLE NO. 3
76 ENTER SYMBOL FOR VARIABLE NO. 4
78 ENTER ORDER OF TRUNCATION
106 28 ALPHA MU y 2 ALPHA y 8 ALPHA MU x y 2 ALPHA x y
107 [z = - -------------- + ---------- + -------------- - -----------
111 22 ALPHA MU x 3 ALPHA x
112 - -------------- + ----------]
116 dMU dx dy 28 ALPHA MU y 2 ALPHA y
117 [--- = 0, -- = y + MU x, -- = - x (- -------------- + ----------
121 8 ALPHA MU x y 2 ALPHA x y 22 ALPHA MU x 3 ALPHA x
122 + -------------- - ----------- - -------------- + ----------) + MU y - x]