Adds more tests for laplace and pwilt
[maxima.git] / share / contrib / rand / reduct2.usg
blob1d2b5e85f2b9e2a4fd897d4d55aa63aa1d282365
1 reduct2.mac is from the book "Perturbation Methods, Bifurcation Theory
2 and Computer Algebra" by Rand & Armbruster (Springer 1987)
4 It performs a Liapunov-Schmidt reduction for steady state bifurcations
5 in systems of ordinary differential equations. 
7 The example is from p178.  maxima-5.9.0 cvs reproduces the
8 results from the book.
10 The system of equations is the Lorenz system
12     x1' = sigma (x2-x1)
13     x2' = rho x1 - x2 - x1 x3
14     x3' = -beta x3 + x1 x2
16 It is know that for rho=1 one of the eigenvalues is zero with critical
17 eigenvector [1,1,0] and the adjoint critical eigenvector [1/sigma,1,0]
18 The following run determines the bifurcation equation for the
19 instability.
21 (C1) load("./reduct2.mac");
22 (D1)                             ./reduct2.mac
23 (C2) reduction2();
24 NUMBER OF EQUATIONS
26 ENTER VARIABLE NUMBER 1
27 x1;
28 ENTER VARIABLE NUMBER 2
29 x2;
30 ENTER VARIABLE NUMBER 3
31 x3;
32 ENTER THE BIFURCATION PARAMETER
33 rho;
34 ENTER THE CRITICAL BIFURCATION VALUE RHO
36 WE DEFINE LAM = RHO - 1
37 ENTER THE CRITICAL EIGENVECTOR AS A LIST
38 [1,1,0];
39 ENTER THE ADJOINT CRITICAL EIGENVECTOR
40 [1/sigma,1,0];
41 ENTER THE DIFFERENTIAL EQUATION
42 DIFF( x1 ,T)=
43 sigma*(x2-x1);
44 DIFF( x2 ,T)=
45 -x1*x3+rho*x1-x2;
46 DIFF( x3 ,T)=
47 x1*x2-beta*x3;
48 [SIGMA (x2 - x1), - x1 x3 - x2 + (LAM + 1) x1, x1 x2 - BETA x3]
49 DO YOU KNOW APRIORI THAT SOME TAYLOR COEFFICIENTS
50  ARE ZERO, Y/N
52 TO WHICH ORDER DO YOU WANT TO CALCULATE
55 Dependent equations eliminated:  (1)
56   2          2          2
57  d W1       d W2       d W3     2
58 [----- = 0, ----- = 0, ----- = ----]
59      2          2          2   BETA
60  dAMP       dAMP       dAMP
62 Dependent equations eliminated:  (1)
63     2                                   2
64    d W1               SIGMA            d W2               1
65 [--------- = - --------------------, --------- = --------------------,
66  dAMP dLAM          2                dAMP dLAM        2
67                SIGMA  + 2 SIGMA + 1              SIGMA  + 2 SIGMA + 1
69                                                                    2
70                                                                   d W3
71                                                                 --------- = 0]
72                                                                 dAMP dLAM
73                                              3
74                                           AMP
75 (D2)                            AMP LAM - ----
76                                           BETA
80 Local Variables: ***
81 mode: Text ***
82 End: ***