2 This subroutine computes state variable equations
3 Copyright (C) 1999 Dan Stanger
5 This library is free software; you can redistribute it and/or modify it
6 under the terms of the GNU Library General Public License as published
7 by the Free Software Foundation; either version 2 of the License, or (at
8 your option) any later version.
10 This library is distributed in the hope that it will be useful, but
11 WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 Library General Public License for more details.
15 You should have received a copy of the GNU Library General Public
16 License along with this library; if not, write to the Free Software
17 Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
19 Dan Stanger dan.stanger@ieee.org
21 /* load in readfile and tree */
22 /* get the filename from the user */
23 /* this code works around problems caused by:
24 matrix.scalar does not simplify properly
25 1 dimensional matrixes do not simplify properly
26 empty matrixes do not remember how they were created
28 f(m,n,p,q,r,s, MN, MB):=block([l,a_T, a_L,b_T,b_L,c_T,c_L],
29 /* reorder the array a_pt and turn it into the a_T and a_L matrixes */
30 l:sortem(MN,MB),a_T:first(l),a_L:second(l),
31 b_T:-transpose(a_L).invert(transpose(a_T)),
37 c_LLC, c_LRC, c_LGC, c_LLR, c_LRR, c_LGR, c_LLG, c_LRG, c_LGG,
38 b_TCL, b_TRL, b_TGL, b_TCR, b_TRR, b_TGR, b_TCG, b_TRG, b_TGG,
39 x:transpose(append( /* state variable vector */
40 makelist(concat('v,pt_name[i]),i,1,m),
41 makelist(concat('i,pt_name[i]),i,m+n+p+1,m+n+p+q))),
42 u:transpose(append(makelist(
43 if pt_V[i] = false then pt_name[i] else pt_V[i],
46 if pt_V[i] = false then pt_name[i] else pt_V[i],
47 i,m+n+p+q+r+1,m+n+p+q+r+s))),
48 r_L,g_T,se,sx,su,e1,e2,e3,e4],
49 if length(x) = 1 then x:x[1],
50 if length(u) = 1 then u:u[1],
51 submat_m(c_LLC, c_L, 1 .. m, 1 .. q),
52 submat_m(c_LRC, c_L, 1 .. m, (q+1) .. (q+r)),
53 submat_m(c_LGC, c_L, 1 .. m, (q+r+1) .. (q+r+s)),
54 submat_m(c_LLR, c_L, (m+1) .. (m+n), 1 .. q),
55 submat_m(c_LRR, c_L, (m+1) .. (m+n), (q+1) .. (q+r)),
56 submat_m(c_LGR, c_L, (m+1) .. (m+n), (q+r+1) .. (q+r+s)),
57 submat_m(c_LLG, c_L, (m+n+1) .. (m+n+p), 1 .. q),
58 submat_m(c_LRG, c_L, (m+n+1) .. (m+n+p), (q+1) .. (q+r)),
59 submat_m(c_LGG, c_L, (m+n+1) .. (m+n+p), (q+r+1) .. (q+r+s)),
61 submat_m(b_TCL, b_T, 1 .. q, 1 .. m),
62 submat_m(b_TRL, b_T, 1 .. q, (m+1) .. (m+n)),
63 submat_m(b_TGL, b_T, 1 .. q, (m+n+1) .. (m+n+p)),
64 submat_m(b_TCR, b_T, (q+1) .. (q+r), 1 .. m),
65 submat_m(b_TRR, b_T, (q+1) .. (q+r), (m+1) .. (m+n)),
66 submat_m(b_TGR, b_T, (q+1) .. (q+r), (m+n+1) .. (m+n+p)),
67 submat_m(b_TCG, b_T, (q+r+1) .. (q+r+s), 1 .. m),
68 submat_m(b_TRG, b_T, (q+r+1) .. (q+r+s), (m+1) .. (m+n)),
69 submat_m(b_TGG, b_T, (q+r+1) .. (q+r+s), (m+n+1) .. (m+n+p)),
71 r_L:makelist(pt_name[i],i,m+n+p+q+1,m+n+p+q+r),
72 if length(r_L) > 0 then r_L:apply(diag_matrix,r_L) else r_L:em,
73 g_T:makelist(1/pt_name[i],i,m+1,m+n),
74 if length(g_T) > 0 then g_T:apply(diag_matrix,g_T) else g_T:em,
75 /* compute free response */
77 matrix2([zeromatrix2(mat_nrows_m(c_LRC),mat_ncols_m(b_TRL)),c_LRC],
78 [b_TRL,zeromatrix2(mat_nrows_m(b_TRL),mat_ncols_m(c_LRC))])),
79 e2:block([e:matrix2([b_TRR,r_L], [g_T, c_LRR])],
80 if matrixp(e) then invert(e) else 1/e),
82 matrix2( [b_TCR, zeromatrix2(mat_nrows_m(b_TCR),mat_ncols_m(c_LLR))],
83 [zeromatrix2(mat_nrows_m(c_LLR),mat_ncols_m(b_TCR)),c_LLR])),
85 matrix2([zeromatrix2(mat_nrows_m(c_LLC),mat_ncols_m(b_TCL)),c_LLC],
86 [b_TCL,zeromatrix2(mat_nrows_m(b_TCL),mat_ncols_m(c_LLC))])),
88 if e4 # em then sx:sx-e4, /* check no link inductors */
89 sx:if matrixp(x) then sx.x else x*sx, /* if x is scalar use * mult */
90 /* compute source response */
92 matrix2( [b_TGR, zeromatrix2(mat_nrows_m(b_TGR),mat_ncols_m(c_LGR))],
93 [zeromatrix2(mat_nrows_m(c_LGR),mat_ncols_m(b_TGR)),c_LGR])),
95 matrix2([zeromatrix2(mat_nrows_m(c_LGC),mat_ncols_m(b_TGL)),c_LGC],
96 [b_TGL,zeromatrix2(mat_nrows_m(b_TGL),mat_ncols_m(c_LGC))])),
98 if e4 # em then su:su-e4,
99 su:if matrixp(u) then su.u else u*su,
101 /* try to remove . if its there */
102 if not matrixp(se) then subst("*",".",sx+su) else se
106 block([filename:read("enter the filename"), se],
107 /* compute the proper tree and use apply to destructure it */
108 se:apply(f,propertree(filename)))