Fix for #4416 limit of Newton quotient involving asin
[maxima.git] / share / lapack / blas / fortran / dsymv.f
blob7592d156b3d1cbd0e62c9ebf85c5d5200361cf58
1 SUBROUTINE DSYMV ( UPLO, N, ALPHA, A, LDA, X, INCX,
2 $ BETA, Y, INCY )
3 * .. Scalar Arguments ..
4 DOUBLE PRECISION ALPHA, BETA
5 INTEGER INCX, INCY, LDA, N
6 CHARACTER*1 UPLO
7 * .. Array Arguments ..
8 DOUBLE PRECISION A( LDA, * ), X( * ), Y( * )
9 * ..
11 * Purpose
12 * =======
14 * DSYMV performs the matrix-vector operation
16 * y := alpha*A*x + beta*y,
18 * where alpha and beta are scalars, x and y are n element vectors and
19 * A is an n by n symmetric matrix.
21 * Parameters
22 * ==========
24 * UPLO - CHARACTER*1.
25 * On entry, UPLO specifies whether the upper or lower
26 * triangular part of the array A is to be referenced as
27 * follows:
29 * UPLO = 'U' or 'u' Only the upper triangular part of A
30 * is to be referenced.
32 * UPLO = 'L' or 'l' Only the lower triangular part of A
33 * is to be referenced.
35 * Unchanged on exit.
37 * N - INTEGER.
38 * On entry, N specifies the order of the matrix A.
39 * N must be at least zero.
40 * Unchanged on exit.
42 * ALPHA - DOUBLE PRECISION.
43 * On entry, ALPHA specifies the scalar alpha.
44 * Unchanged on exit.
46 * A - DOUBLE PRECISION array of DIMENSION ( LDA, n ).
47 * Before entry with UPLO = 'U' or 'u', the leading n by n
48 * upper triangular part of the array A must contain the upper
49 * triangular part of the symmetric matrix and the strictly
50 * lower triangular part of A is not referenced.
51 * Before entry with UPLO = 'L' or 'l', the leading n by n
52 * lower triangular part of the array A must contain the lower
53 * triangular part of the symmetric matrix and the strictly
54 * upper triangular part of A is not referenced.
55 * Unchanged on exit.
57 * LDA - INTEGER.
58 * On entry, LDA specifies the first dimension of A as declared
59 * in the calling (sub) program. LDA must be at least
60 * max( 1, n ).
61 * Unchanged on exit.
63 * X - DOUBLE PRECISION array of dimension at least
64 * ( 1 + ( n - 1 )*abs( INCX ) ).
65 * Before entry, the incremented array X must contain the n
66 * element vector x.
67 * Unchanged on exit.
69 * INCX - INTEGER.
70 * On entry, INCX specifies the increment for the elements of
71 * X. INCX must not be zero.
72 * Unchanged on exit.
74 * BETA - DOUBLE PRECISION.
75 * On entry, BETA specifies the scalar beta. When BETA is
76 * supplied as zero then Y need not be set on input.
77 * Unchanged on exit.
79 * Y - DOUBLE PRECISION array of dimension at least
80 * ( 1 + ( n - 1 )*abs( INCY ) ).
81 * Before entry, the incremented array Y must contain the n
82 * element vector y. On exit, Y is overwritten by the updated
83 * vector y.
85 * INCY - INTEGER.
86 * On entry, INCY specifies the increment for the elements of
87 * Y. INCY must not be zero.
88 * Unchanged on exit.
91 * Level 2 Blas routine.
93 * -- Written on 22-October-1986.
94 * Jack Dongarra, Argonne National Lab.
95 * Jeremy Du Croz, Nag Central Office.
96 * Sven Hammarling, Nag Central Office.
97 * Richard Hanson, Sandia National Labs.
100 * .. Parameters ..
101 DOUBLE PRECISION ONE , ZERO
102 PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
103 * .. Local Scalars ..
104 DOUBLE PRECISION TEMP1, TEMP2
105 INTEGER I, INFO, IX, IY, J, JX, JY, KX, KY
106 * .. External Functions ..
107 LOGICAL LSAME
108 EXTERNAL LSAME
109 * .. External Subroutines ..
110 EXTERNAL XERBLA
111 * .. Intrinsic Functions ..
112 INTRINSIC MAX
113 * ..
114 * .. Executable Statements ..
116 * Test the input parameters.
118 INFO = 0
119 IF ( .NOT.LSAME( UPLO, 'U' ).AND.
120 $ .NOT.LSAME( UPLO, 'L' ) )THEN
121 INFO = 1
122 ELSE IF( N.LT.0 )THEN
123 INFO = 2
124 ELSE IF( LDA.LT.MAX( 1, N ) )THEN
125 INFO = 5
126 ELSE IF( INCX.EQ.0 )THEN
127 INFO = 7
128 ELSE IF( INCY.EQ.0 )THEN
129 INFO = 10
130 END IF
131 IF( INFO.NE.0 )THEN
132 CALL XERBLA( 'DSYMV ', INFO )
133 RETURN
134 END IF
136 * Quick return if possible.
138 IF( ( N.EQ.0 ).OR.( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) )
139 $ RETURN
141 * Set up the start points in X and Y.
143 IF( INCX.GT.0 )THEN
144 KX = 1
145 ELSE
146 KX = 1 - ( N - 1 )*INCX
147 END IF
148 IF( INCY.GT.0 )THEN
149 KY = 1
150 ELSE
151 KY = 1 - ( N - 1 )*INCY
152 END IF
154 * Start the operations. In this version the elements of A are
155 * accessed sequentially with one pass through the triangular part
156 * of A.
158 * First form y := beta*y.
160 IF( BETA.NE.ONE )THEN
161 IF( INCY.EQ.1 )THEN
162 IF( BETA.EQ.ZERO )THEN
163 DO 10, I = 1, N
164 Y( I ) = ZERO
165 10 CONTINUE
166 ELSE
167 DO 20, I = 1, N
168 Y( I ) = BETA*Y( I )
169 20 CONTINUE
170 END IF
171 ELSE
172 IY = KY
173 IF( BETA.EQ.ZERO )THEN
174 DO 30, I = 1, N
175 Y( IY ) = ZERO
176 IY = IY + INCY
177 30 CONTINUE
178 ELSE
179 DO 40, I = 1, N
180 Y( IY ) = BETA*Y( IY )
181 IY = IY + INCY
182 40 CONTINUE
183 END IF
184 END IF
185 END IF
186 IF( ALPHA.EQ.ZERO )
187 $ RETURN
188 IF( LSAME( UPLO, 'U' ) )THEN
190 * Form y when A is stored in upper triangle.
192 IF( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) )THEN
193 DO 60, J = 1, N
194 TEMP1 = ALPHA*X( J )
195 TEMP2 = ZERO
196 DO 50, I = 1, J - 1
197 Y( I ) = Y( I ) + TEMP1*A( I, J )
198 TEMP2 = TEMP2 + A( I, J )*X( I )
199 50 CONTINUE
200 Y( J ) = Y( J ) + TEMP1*A( J, J ) + ALPHA*TEMP2
201 60 CONTINUE
202 ELSE
203 JX = KX
204 JY = KY
205 DO 80, J = 1, N
206 TEMP1 = ALPHA*X( JX )
207 TEMP2 = ZERO
208 IX = KX
209 IY = KY
210 DO 70, I = 1, J - 1
211 Y( IY ) = Y( IY ) + TEMP1*A( I, J )
212 TEMP2 = TEMP2 + A( I, J )*X( IX )
213 IX = IX + INCX
214 IY = IY + INCY
215 70 CONTINUE
216 Y( JY ) = Y( JY ) + TEMP1*A( J, J ) + ALPHA*TEMP2
217 JX = JX + INCX
218 JY = JY + INCY
219 80 CONTINUE
220 END IF
221 ELSE
223 * Form y when A is stored in lower triangle.
225 IF( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) )THEN
226 DO 100, J = 1, N
227 TEMP1 = ALPHA*X( J )
228 TEMP2 = ZERO
229 Y( J ) = Y( J ) + TEMP1*A( J, J )
230 DO 90, I = J + 1, N
231 Y( I ) = Y( I ) + TEMP1*A( I, J )
232 TEMP2 = TEMP2 + A( I, J )*X( I )
233 90 CONTINUE
234 Y( J ) = Y( J ) + ALPHA*TEMP2
235 100 CONTINUE
236 ELSE
237 JX = KX
238 JY = KY
239 DO 120, J = 1, N
240 TEMP1 = ALPHA*X( JX )
241 TEMP2 = ZERO
242 Y( JY ) = Y( JY ) + TEMP1*A( J, J )
243 IX = JX
244 IY = JY
245 DO 110, I = J + 1, N
246 IX = IX + INCX
247 IY = IY + INCY
248 Y( IY ) = Y( IY ) + TEMP1*A( I, J )
249 TEMP2 = TEMP2 + A( I, J )*X( IX )
250 110 CONTINUE
251 Y( JY ) = Y( JY ) + ALPHA*TEMP2
252 JX = JX + INCX
253 JY = JY + INCY
254 120 CONTINUE
255 END IF
256 END IF
258 RETURN
260 * End of DSYMV .