Regenerate all examples via update_examples.
[maxima.git] / src / factor.lisp
blobfbc1529688fe3d336a6d5b51f4533793876b8bbf
1 ;;; -*- Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- ;;;;
2 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3 ;;; The data in this file contains enhancements. ;;;;;
4 ;;; ;;;;;
5 ;;; Copyright (c) 1984,1987 by William Schelter,University of Texas ;;;;;
6 ;;; All rights reserved ;;;;;
7 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
8 ;;; (c) Copyright 1981 Massachusetts Institute of Technology ;;;
9 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
11 (in-package :maxima)
13 (macsyma-module factor)
15 ;;; This is the FACTOR package.
17 ;;; THIS IS THE NEW FACTORING PACKAGE. THE FUNCTION
18 ;;; FACTOR72 TAKES A PRIMITIVE SQUARE-FREE POLY AS INPUT THE OUTPUT IS A
19 ;;; LIST OF FACTORS THE FUNCTION FACTOR1972 IS ABOVE FACTOR72 AND IT
20 ;;; TAKES CARE OF REPEATED FACTORS OVER THE GAUSSIAN INTEGERS BEFORE
21 ;;; CALLING FACTOR72 THE FUNCTION Z1 TAKES TWO FACTORS IN ONE VARIABLE
22 ;;; AND ONE POLY IN SEVERAL VARIABLES AS INPUT Z1 TAKES THESE FACTORS IN
23 ;;; ONE VARIABLES AND BUILDS OUT OF THEM TWO FACTORS OF THE GIVEN POLY IN
24 ;;; SEVERAL VARIABLES
26 (load-macsyma-macros ratmac)
28 (declare-top (special *stop* trl* *xn sharpcont subvar1 anotype invc fctc
29 subval1 var mcflag alcinv *ab* monic* intbs*
30 *prime *g* modulu* plim listelm many* *inl3
31 *sharpa *sharpb limk split* alc ind p l *odr*
32 *i* mcflag elm ne res fact1 fact2 subvar
33 subval ovarlist valist dlp df1 df2 fcs* uu*))
35 (defvar *afixn*)
36 (defvar *fctcfixn*)
37 (defvar *invcfixn*)
39 (defvar *negflag*)
41 ;; Internal specials
43 ;(defmvar smallprimes '(3 5 7 11. 13. 17. 19. 23. 29. 31. 37. 41. 43. 47. 53. 59. 61.))
45 (defun primcyclo (n)
46 (let ((*g* (gensym "PRIMCYCLO-"))
47 (nl (loop for (c e) on (cfactorw n) by #'cddr
48 nconc (make-list e :initial-element c))))
49 (setf (symbol-value *g*) 0)
50 (let ((res (cyclotomic (list n nl))))
51 (cond ((consp res) (p-terms res))
52 ((eql 0 res) nil)
53 (t (list 0 res))))))
55 (defun factxn+-1 (p)
56 (let ((*g* (car p))
57 ($factorflag t))
58 (cond ((equal 1 (cadr p)) (list p))
59 ((equal (cddr p) '(1 0 1))
60 (factxn+1 (cadr p)))
61 ((equal (cddr p) '(1 0 -1))
62 (factxn-1 (cadr p))))))
64 (defun cfactorw (n) (let (($factorflag t)) (cfactor n)))
66 (defun factxn-1 (n)
67 (cond ((evenp n)
68 (append (factxn-1 (ash n -1)) (factxn+1 (ash n -1))))
69 (t (mapcar #'cyclotomic (divisors (cfactor n))))))
71 (defun factxn+1 (n)
72 (cond (gauss
73 (let* ((gauss nil) (facl (factxn+1 n)))
74 (cond ((oddp n) facl)
75 (t (let (($gcd '$subres)
76 (pfac (list *g* (ash n -1) 1 0 *alpha*)))
77 (mapcan #'(lambda (q) (subseq (pgcdcofacts q pfac) 0 2)) facl))))))
78 (t (let ((m 1) (nl (reverse (cfactor n))))
79 (when (equal 2 (cadr nl))
80 (setq m (expt 2 (car nl)))
81 (setq nl (cddr nl)))
82 (setq m (list *g* m -1))
83 (if (null nl) (ncons (list *g* n 1 0 1))
84 (mapcar #'(lambda (p) (pabs (pcsubst p m (car p))))
85 (mapcar #'cyclotomic (divisors (reverse nl)))))))))
88 (defun cyclp (n ind)
89 (loop for i downfrom (1- n) to 0
90 nconc (list (* ind i) 1)))
92 (defun csf (l)
93 (cond ((null l) nil) (t (list* (car l) 1 (csf (cdr l))))))
95 (defun condense (l)
96 (cond ((null (cdr l)) l)
97 ((eq (car l) (cadr l)) (condense (cdr l)))
98 (t (cons (car l) (condense (cdr l))))))
100 (defun cyclotomic (nl)
101 (prog (n dp dpl num den p)
102 (cond ((equal 1 (car nl)) (return (list *g* 1 1 0 -1)))
103 ((null (cdr (setq p (condense (cadr nl)))))
104 (return (cons *g*
105 (cyclp (car p)
106 (expt (car p) (1- (length (cadr nl)))))))))
107 (setq num 1 den 1 n (car nl) dpl (divisors (csf p)))
108 loop (cond ((null dpl) (return (pquotient num den))))
109 (setq dp (car dpl))
110 (setq dpl (cdr dpl))
111 (setq p (list *g* (quotient n (car dp)) 1 0 -1))
112 (cond ((or (evenp (length (cadr dp))) (equal (car dp) 1))
113 (setq num (ptimes p num)))
114 (t (setq den (ptimes p den))))
115 (go loop)))
117 (defun divisors (l)
118 (if (equal l '(1 1)) (setq l nil))
119 (do ((ans (list '(1 ()) ))
120 (l l (cddr l)))
121 ((null l) ans)
122 (do ((u ans)
123 (factor (car l))
124 (mult (cadr l) (1- mult)))
125 ((zerop mult))
126 (setq u (mapcar #'(lambda (q) (list (* factor (car q))
127 (cons factor (cadr q))))
129 (setq ans (nconc ans u)))))
132 (defun estcheck2 (d lc c)
133 (prog (p)
134 loop (cond ((null d) (return nil)))
135 (setq p (car d) d (cdr d))
136 (cond ((or (and (not (equal (rem c p) 0))
137 (not (equal (rem lc (* p p)) 0)))
138 (and (not (equal (rem lc p) 0))
139 (not (equal (rem c (* p p)) 0))))
140 (return t)))
141 (go loop)))
143 (defun estcheck (p)
144 (prog (lc c d)
145 (cond ((or (atom p) (null (cddr p)) (equal (ptterm p 0) 0))
146 (return nil)))
147 (setq lc (cadr p))
148 (setq p (nreverse (cdr (oddelm (cdr p)))))
149 (setq c (car p))
150 (setq d (cgcdlist p))
151 (cond ((equal 1 d) (return nil)))
152 (setq d (oddelm (cfactorw d)))
153 (return (estcheck2 d lc c))))
156 (defun cgcdlist (l)
157 (cond ((null l) nil)
158 ((null (cdr l)) (abs (car l)))
159 ((or (member 1 l) (member -1 l)) 1)
160 ((null (cddr l)) (gcd (car l) (cadr l)))
161 (t (cgcdlist (cons (gcd (car l) (cadr l)) (cddr l))))))
163 (defun dropterms (p)
164 (prog (ans c)
165 (cond ((atom p) (return p))
166 ((not (eq (car p) var)) (return (kterms p dlp))))
167 (setq ans (cons (car p) ans) p (cdr p))
168 loop (cond ((null p) (return (cond ((cdr ans) (nreverse ans)) (t 0)))))
169 (setq c (kterms (cadr p) dlp))
170 (cond ((not (equal c 0)) (setq ans (cons c (cons (car p) ans)))))
171 (setq p (cddr p))
172 (go loop)))
175 (defun restorelc (l lc)
176 (prog (h r ans var c d deg)
177 (cond ((equal 1 lc)
178 (cond ((and (not many*) algfac* (not (equal intbs* 1)))
179 (return (mapcar #'intbasehk l)))
180 (t (return (reverse l))))))
181 (setq r (lcprodl l) h 1)
182 loop (cond ((null l) (return ans)))
183 (setq d (car l) l (cdr l) var (car d) deg (cadr d) c (caddr d))
184 (setq d (ptimes (ptimes h (car r)) (psimp var (cdddr d))))
185 (cond (many* (setq d (dropterms d))))
186 (setq d (pplus (list var deg lc)d))
187 (cond ((and (not many*) algfac* (not (equal intbs* 1)))
188 (setq d (intbasehk d))))
189 (let ((modulus))
190 (setq ans (cons (cadr (oldcontent d)) ans)))
191 (setq h (ptimes h c) r (cdr r))
192 (go loop)))
194 (defun iredup (p)
195 (let ((mm* 1) (algfac*))
196 (cond ((sqfrp p(car p))
197 (setq p (catch 'splt (cpber1 p)))
198 (and (null (car p)) (null (cdadr p)))))))
200 (defun zerolp (a)
201 (every #'zerop1 a))
203 ;;; TESTDIVIDE
205 ;;; Check if y divides x, assuming that x and y are polynomials in the
206 ;;; same variable.
207 (defun testdivide (x y)
208 (if algfac*
209 (algtestd x y)
210 (eztestdivide x y)))
212 ;;; TESTDIVIDE*
214 ;;; Check if y divides x, for general polynomials x and y (not
215 ;;; necessarily in the same variable).
216 (defun testdivide* (x y)
217 (if algfac*
218 (algtestd x y)
219 (ignore-rat-err (pquotient x y))))
221 (defun algtestd (x y)
222 (and (div-deg-chk (nreverse (pdegreevector x)) (nreverse (pdegreevector y))
223 (reverse genvar))
224 (cond ((setq x (ignore-rat-err (rquotient x y)))
225 (setq adn* (* adn* (cdr x)))
226 (car x)) )))
228 (defun div-deg-chk (xl yl gl)
229 (cond ((or (null gl) (algv (car gl))) t)
230 ((> (car yl) (car xl)) nil)
231 (t (div-deg-chk (cdr xl) (cdr yl) (cdr gl)))))
233 ;; FUU is used by systems programmers such as BMT and PAULW while debugging.
234 (defun fuu nil
235 (setq tellratlist nil varlist nil genvar nil genpairs nil))
237 (defun linout (u)
238 (prog (m linfac x y)
239 (setq y (list (setq x (car u)) 1 1) m modulus)
240 loop (decf m)
241 (cond ((< m 0) (return (list u linfac)))
242 ((equal (cadr u) 1) (return (list 1 (cons u linfac))))
243 ((zerop (pcsubsty (cmod m) x u))
244 (setq linfac
245 (cons (append y
246 (cond ((zerop m) nil)
247 (t (list 0 (cmod (- m))))))
248 linfac))
249 (setq u (car (pmodquo u (car linfac))))))
250 (go loop)))
252 (defun onevarp (p)
253 (if algfac* (every #'pacoefp (cdr p))
254 (every #'numberp (cdr p))))
256 (defun putodr (l)
257 (do ((l l (cdr l))
258 (i 1 (1+ i))
259 (ans))
260 ((null l) ans)
261 (push (cons (car l) i) ans)))
263 (defun kterms (p k)
264 (cond ((pacoefp p) p)
265 ((= k 0) (consta p))
266 (t (prog (v ans w)
267 (setq v (car p))
268 (setq p (cdr p))
269 loop (cond ((null p) (return 0))
270 ((> (car p) k) (setq p (cddr p)) (go loop)))
271 ag (cond ((null p)
272 (return (psimp v ans))))
273 (setq w (kterms (cadr p) (- k (car p))))
274 (cond ((not (pzerop w))
275 (setq ans (nconc ans (list (car p) w)))))
276 (setq p (cddr p))
277 (go ag)))))
279 (defun consta (p)
280 (cond ((or (pcoefp p) (alg p)) p)
281 (t (consta (ptterm (cdr p) 0)))))
283 (defun constacl (p) ;NO LONGER USED?
284 (cond ((atom p)
285 (cond ((equal p 1) (throw 'cnt 1))
286 (t (list p))))
287 ((every #'numberp (cdr p))
288 (setq p (oddelm p))
289 (cond ((member 1 p) (throw 'cnt 1))
290 (t (cdr p))))
291 (t (apply #'append (mapcar #'constacl (cdr (oddelm p)))))))
293 (defun z1 (poly fact1 fact2)
294 (prog (res hsteps steps kterm a b c d *ab* m df1 df2 dlr step *sharpa *sharpb)
295 (let ((modulus))
296 (set-modulus *prime)
297 (setq *sharpb (fact20 fact1 fact2 limk)))
298 (setq *sharpa (car *sharpb))
299 (setq *sharpb (cadr *sharpb))
300 (setq *ab* (list (list 0 *sharpa *sharpb)))
301 (setq steps dlp
302 hsteps (ash steps -1))
303 (setq res (pdifference (ptimes (pmod fact1) (pmod fact2)) (pmod poly)))
304 (setq poly nil)
305 (setq step 0)
306 (setq df1 fact1)
307 (setq df2 fact2)
308 loop (cond ((equal res 0) (go out)))
309 (incf step)
310 (cond ((> step steps) (go out)))
311 (cond ((eq (car res) var) (setq c (cdr res)))
312 (t (setq c (list 0 res))))
313 (setq a 0 b 0)
314 nextm (cond ((null c) (z2 a b step hsteps) (go loop)))
315 (setq m (car c) dlr (cadr c))
316 (setq c (cddr c))
317 (setq kterm (kterms dlr step) dlr nil)
318 (cond ((equal 0 kterm) (go nextm)))
319 (setq d (obtainabm m))
320 (setq b (pplus b (ptimes (car d) kterm))
321 a (pplus a (ptimes (cadr d) kterm))
322 kterm nil)
323 (go nextm)
324 out (return (list df1 df2))))
326 (defun z2 (a b step hsteps)
327 (unless (and (equal a 0) (equal b 0))
328 (setq step
329 (pdifference
330 (pdifference (cond ((not (< step hsteps))
331 (dropterms (ptimes a b)))
332 (t (ptimes a b)))
333 (cond ((not (< step hsteps))
334 (dropterms (ptimes df1 b)))
335 (t (ptimes df1 b))))
336 (cond ((not (< step hsteps))
337 (dropterms (ptimes df2 a)))
338 (t (ptimes df2 a)))))
339 (setq res (pplus res step))
340 (setq df1 (pdifference df1 a))
341 (setq df2 (pdifference df2 b))))
343 (defun obtainabm (m)
344 (prog (ans)
345 (cond ((setq ans (cdr (assoc m *ab* :test #'equal))) (return ans)))
346 (setq ans (obtainab (list var m 1)))
347 (setq *ab* (cons (cons m ans) *ab*))
348 (return ans)))
350 (defun fact20 (f1 g1 limk)
351 (prog (f g a pk b reml qlp h k b1)
352 (setq k 0)
353 (setq reml (ppprog (pmod f1) (pmod g1)))
354 (setq a (car reml))
355 (setq b (cadr reml))
356 sharp (cond ((> k limk) (return (list a b))))
357 (setq pk modulus)
358 (set-modulus (* modulus modulus))
359 (setq f(pmod f1) g (pmod g1))
360 (setq h (pquo (pmod (pdifference (pplus (ptimes a f) (ptimes b g))
362 pk))
363 (setq qlp (pmodquo (ptimes a h) g))
364 (setq b1 (pplus (ptimes b h) (ptimes (car qlp) f)))
365 (setq a (pdifference a (pmod (pctimes pk (cdr qlp)))))
366 (setq b (pdifference b (pmod (pctimes pk b1))))
367 (incf k)
368 (go sharp)))
370 (defun baselist (n)
371 (setq *i* n)
372 (completevector nil 0 n elm))
374 (defun inlist3 (l)
375 (cond ((null l) (setq *inl3 nil))
376 ((zerop (car l)) (cons 1 (cdr l)))
377 ((equal (car l) 1) (cons -1 (cdr l)))
378 (t (cons 0 (inlist3 (cdr l))))))
380 (defun newrep (p)
381 (let ((modulus))
382 (if subvar (pcsubsty (mapcar #'(lambda (a b) (list a 1 1 0 b))
383 subvar subval)
384 subvar
386 p)))
388 (defun oldrep (p)
389 (let ((modulus))
390 (if subvar (pcsubsty (mapcar #'(lambda (a b) (list a 1 1 0 (- b)))
391 subvar subval)
392 subvar
394 p)))
396 (defun completevector (l n m v)
397 (do ((i m (1- i)))
398 ((= i n) l)
399 (push v l)))
401 ;; special variable *odr* contains order of nesting of variables in c
402 (defun degvector (l n c)
403 (prog (lf ans j)
404 bk (cond ((numberp c)
405 (return (list (completevector l n nn* 0)))))
406 (setq j (cdr (assoc (car c) *odr* :test #'equal)))
407 ;;; IN CASE (CAR C) IS ALGEBRAIC
408 (cond ((null j) (setq c 0)(go bk)))
409 (setq c (cdr c))
410 (setq lf (completevector l n j 0))
411 loop (cond ((null c) (return ans)))
412 (setq ans
413 (nconc (degvector (cons (car c) lf) (1+ j) (cadr c)) ans))
414 (cond (*mx* (setq ans (ncons (maxlist ans))))
415 (*min* (setq ans (ncons (minlist ans)))))
416 (setq c (cddr c))
417 (go loop)))
419 (defun union1 (a b)
420 (do ((a a (cdr a))
421 (ans b))
422 ((null a) ans)
423 (or (member (car a) ans :test #'equal)
424 (setq ans (cons (car a) ans)))))
426 (defun obtainab (u)
427 (prog (c ql)
428 (setq c (pmod u))
429 (setq ql (pmodquo (ptimes *sharpa c) fact2))
430 (return (list (cdr ql) (pmod (pplus (ptimes (car ql) fact1)
431 (ptimes *sharpb c)))))))
433 (defun pcdifconc (v j)
434 (do ((l v (cddr l)))
435 ((null (cdr l))
436 (or (= j 0)
437 (rplacd l (list 0 j)))
439 (cond ((= (cadr l) 0)
440 (cond ((= j 0)
441 (rplacd l nil))
442 ((rplaca (cddr l) j)))
443 (return v)))))
445 (defun orde (a l)
446 (cond ((null l) (list a))
447 (t (cond ((< a (car l)) (cons a l))
448 (t (cons (car l) (orde a (cdr l))))))))
450 (defun pquo (x y)
451 (let (modulus)
452 (pquotient x y)))
454 ;; maintains order of list x
455 (defun intersect (x y)
456 (if x (if (member (car x) y :test #'equal)
457 (cons (car x) (intersect (cdr x) y))
458 (intersect (cdr x) y))))
460 ;; Like APL IOTA function.
461 (defun index* (k)
462 (declare (fixnum k))
463 (if (< k 2) (list 1) (cons k (index* (f1- k)))))
465 ; sets plim to a power of p1 likely to be a large enough modulus for polynomial u
466 ; returns limk, where plim = p1^(2^(limk+1))
467 (defun klim (u p1)
468 (prog (bcoef)
469 (setq bcoef (* 5 (maxcoefficient u)))
470 (when algfac* (setq bcoef (* bcoef intbs*)))
471 (when (< bcoef 10000.) (setq bcoef 20000.))
472 (setq limk 0)
473 test (setq p1 (* p1 p1))
474 (when (> p1 bcoef)
475 (setq plim p1)
476 (return limk))
477 (incf limk)
478 (go test)))
480 (declare-top (special b b2))
482 (defun cpberl (u)
483 (prog (ql d)
484 (setq ql (catch 'splt (cpber1 u)) u (caddr ql))
485 (setq d (car ql) ql (cadr ql))
486 (cond ((null ql)(return d))
487 ((null (cdr ql)) (return (cons u d))))
488 (return (append d
489 (cond ((or *alpha* (> modulus 70.))
490 (cpbgzass ql (pmod u) (length ql)))
491 (t (cpbg ql (pmod u) (length ql))))))))
493 ;; Returns a list of monomials in G of degree less than N.
494 (defun powrs (g n &aux (ans (ncons 1)))
495 (declare (fixnum n))
496 (do ((i 1 (1+ i))) ((= i n) ans)
497 (declare (fixnum i))
498 (push (make-poly g i 1) ans)))
500 ;; Finds polynomials A and B such that A*F+B*G=1 when MODULUS
501 ;; is non-NIL. Same algorithm as INVMOD.
502 (defun ppprog (f g)
503 (prog (a1 a2 b1 b2 r1 r2 ql ans ap bp g1 f1 s)
504 (cond ((> (cadr g) (cadr f)) (setq g1 g) (setq f1 f))
505 (t (setq g1 f) (setq f1 g) (setq s t)))
506 (setq ql (pmodquo g1 f1))
507 (setq a1 1)
508 (setq b1 0)
509 (setq a2 (pminus (car ql)))
510 (setq b2 1)
511 (setq r1 f1)
512 (setq r2 (cdr ql))
513 test (cond ((or (numberp r2) (and *alpha* (alg r2))) (go end)))
514 (setq ql (pmodquo r1 r2))
515 (setq ap (pdifference a1 (ptimes (car ql) a2)))
516 (setq bp (pdifference b1 (ptimes (car ql) b2)))
517 (setq r1 r2)
518 (setq r2 (cdr ql))
519 (setq a1 a2)
520 (setq b1 b2)
521 (setq a2 ap)
522 (setq b2 bp)
523 (go test)
524 end (cond ((pzerop r2)
525 (cond ((equal 1 (setq ans (caddr r1)))
526 (setq ans (list b1 a1)))
527 (t (setq ans (list (car (pmodquo b1 ans))
528 (car (pmodquo a1 ans))))))
529 (go out)))
530 (setq ans (list (car (pmodquo b2 r2)) (car (pmodquo a2 r2))))
531 out (cond ((not s) (return (reverse ans))) (t (return ans)))))
534 (defun zff (v f g)
535 (if many*
536 (z1 v f g)
537 (fact2z v f g limk)))
539 (defun zfact (u fl limk many*)
540 (prog (fcs* prodl)
541 (when many*
542 (set-modulus plim)
543 (setq dlp (reduce #'max (mapcar #'multideg (cdr (oddelm u))))))
544 (when (= (length fl) 1) (return (list u)))
545 (setq prodl (fsplit fl 'v))
546 (zfactsplit prodl u)
547 (return fcs*)))
549 (defun zfactsplit (fl v)
550 (prog (d)
551 (cond ((null (cdr fl)) (return (setq fcs* (cons v fcs*))))
552 ((null (cddr fl))
553 (setq fl (cadr fl))
554 (return (setq fcs* (nconc (zff v (car fl) (cadr fl)) fcs*))))
555 (t (setq fl (cdr fl))
556 (setq d (zff v (caar fl) (caadr fl)))
557 (setq v nil)
558 (zfactsplit (car fl) (car d))
559 (return (zfactsplit (cadr fl) (cadr d)))))))
561 (defun split2 (l)
562 (prog (s)
563 (setq s (nthcdr (1- (ash (length l) -1)) l))
564 (setq dn* (copy-list (cdr s)))
565 (rplacd s nil)
566 (setq nn* l)))
568 (defun fsplit (l ind)
569 (prog (nn* dn*)
570 (cond ((null (cdr l)) (return l))
571 ((null (cddr l))
572 (return (list (apply #'ptimes l) l))))
573 (split2 l)
574 (setq nn* (fsplit nn* nil))
575 (setq dn* (fsplit dn* nil))
576 (return (list (cond (ind ind) (t (ptimes (car nn*) (car dn*))))
578 dn*))))
580 ;; this page contains routines changed for non-monic hack
582 (defun pexptmod (p n q)
583 (prog (u x)
584 (when (pcoefp p) (return (cexpt p n)))
585 (setq q (cdr q) x (car p))
586 (cond ((oddp n)
587 (setq p (setq u (pgcd1 (cdr p) q)))
588 (go b))
589 (t (setq u '(0 1))))
590 (setq p (cdr p))
591 a (setq p (pgcd1 p q))
592 b (setq n (ash n -1))
593 (when (zerop n) (return (cons x u)))
594 (setq p (ptimes1 p p))
595 (when (oddp n) (setq u (pgcd1 (ptimes1 u p) q)))
596 (go a)))
598 (defun sqfrp (u var)
599 (cond ((and (equal 0 (ptterm (cdr u) 0)) (equal 0 (ptterm (cdr u) 1)))
600 nil)
601 ((onevarp u)
602 (setq u (pgcd u (pderivative u var)))
603 (or (numberp u) (alg u)))
604 (t (quick-sqfr-check u var))))
606 (declare-top (special p))
608 (defun fixvl0 (l1 l2 ov)
609 (prog (a b c)
610 loop (cond ((null ov) (setq subvar a subval b valist c) (return nil))
611 ((member (car ov) l1 :test #'eq)
612 (setq a (cons (car ov) a)
613 b (cons (assso (car ov) l1 l2) b)
614 c (cons (car b) c)))
615 (t (setq c (cons 0 c))))
616 (setq ov (cdr ov))
617 (go loop)))
619 (defun assso (a l1 l2)
620 (prog ()
621 loop (cond ((null l1) (return nil))
622 ((eq (car l1) a) (return (car l2))))
623 (setq l1 (cdr l1) l2 (cdr l2))
624 (go loop)))
626 (defun zerohk (l)
627 (prog (ans i)
628 (when (null l) (return nil))
629 ag (setq ans (car l)
630 i (count 0 ans))
631 loop (setq l (cdr l))
632 (cond ((null l) (return ans))
633 ((> (count 0 (car l)) i) (go ag)))
634 (go loop)))
636 (defun multfact (poly)
637 (prog (*inl3 *i* *min* *mx* nn* *odr* lc elm listelm plim origenvar ne var valist val1
638 ovarlist p subvar subvar1 subval1 subval dlp)
639 ;; (declare (special p))
640 (setq var (car poly) elm (listovars poly)
641 origenvar genvar
642 genvar (intersect genvar (if algfac*
643 (delete (car *alpha*) elm :test #'equal)
644 elm))
645 ovarlist (butlast genvar) ;this depends on the order of the above intersection!
646 nn* (1+ (length ovarlist)))
647 (setq listelm 0)
648 (setq lc (caddr poly))
649 (setq elm 1 *i* 1 ne 1)
650 (setq subval (reverse poly))
651 (setq *odr*(putodr (reverse ovarlist)))
652 (setq val1 (zerohk (nconc (degvector nil 1 lc)
653 (cond ((or (> (cadr subval) 0)
654 (> (cadddr subval) 1))
655 (degvector nil 1 (car subval)))))))
656 (setq subval nil)
657 (setq p poly)
658 (when (null val1)
659 (setq subvar1 ovarlist)
660 (setq subval1 (polysubst (make-list (length subvar1) :initial-element 0) subvar1))
661 (go tag))
662 (fixvl val1 ovarlist)
663 (fixvl1 val1 ovarlist)
664 (when subval1 (setq subval1 (polysubst subval1 subvar1)))
665 (setq subval (polysubst (completevector nil 0 (length subval) 1) subvar))
666 tag (fixvl subval1 subvar1)
667 (setq subval1 nil subvar1 nil)
668 (fixvl0 subvar subval (reverse ovarlist))
669 (when algfac* (push (car *alpha*) genvar))
670 (setq poly (cpber3 poly p))
671 (setq genvar origenvar)
672 (return poly)))
674 (defun polysubst (a b)
675 (prog (lc *inl3 d n modulus)
676 (when modulu* (setq modulus modulu*))
677 (setq *inl3 t lc (caddr p) n (length a))
678 loop (setq d (pcsubsty a b lc))
679 (when (equal 0 d) (go inl))
680 (let ((modulus nil))
681 (setq d (pcsubsty a b p)))
682 (when (sqfrp (pmod d) (car d))
683 (setq p d) (return a))
684 inl (setq a (increaselist a n))
685 (go loop)))
687 (declare-top (unspecial p))
689 (defun fixvl1 (l r)
690 (prog nil
691 loop (cond ((null l)
692 (setq subval1 (nreverse subval1) subvar1 (nreverse subvar1))
693 (return nil))
694 ((zerop (car l))
695 (setq subval1 (cons (car l) subval1))
696 (setq subvar1 (cons (car r) subvar1))))
697 (setq l (cdr l))
698 (setq r (cdr r))
699 (go loop)))
701 (defun fixvl (l r)
702 (prog nil
703 loop (cond ((null l)
704 (setq subval (nreverse subval) subvar (nreverse subvar))
705 (return nil))
706 ((not (zerop (car l)))
707 (setq subval (cons (car l) subval))
708 (setq subvar (cons (car r) subvar))))
709 (setq l (cdr l))
710 (setq r (cdr r))
711 (go loop)))
713 (defun maxcoef (p)
714 (maxcoefficient p))
716 (defun incrlimk (p)
717 (prog (v min-plim)
718 (cond (modulu* (setq plim modulu* *prime modulu* limk -1) (return nil))
719 ((null limk)(setq plim *alpha *prime *alpha limk -1)(return nil)))
720 (setq v (butlast (pdegreevector p)))
721 (setq v
722 (apply
724 (mapcar
725 #'(lambda (a b)
726 (cond ((equal b 0) 1)
727 (t (max (* (ftake '%binomial
729 (ash a -1))
730 (expt b (ash a -1)))
731 (expt b a)))))
733 valist)))
734 (setq min-plim (* (max (maxcoef p) plim) v))
735 loop (cond ((< min-plim plim) (return nil)))
736 (incf limk)
737 (setq plim (* plim plim))
738 (go loop)))
742 (defun increaselist (l n)
743 (cond (*inl3 (setq l (inlist3 l))))
744 (cond (*inl3 l)
745 (t (cond ((equal elm 2)
746 (cond (modulu*
747 (merror (intl:gettext "factor: not enough choices for substitution.")))
748 (t (rand n 13.))))
749 ((equal ne n)
750 (incf elm)
751 (setq ne 1)
752 (completevector (baselist ne) ne n listelm))
753 (t (cond ((equal *i* n)
754 (incf ne)
755 (completevector (baselist ne) ne n listelm))
756 (t (incf *i*)
757 (butlast (cons listelm l)))))))))
760 ;; Returns a list of N random numbers. If MODULUS is set, then the
761 ;; numbers will be modulo MODULUS. Otherwise, between 0 and 1000.
762 (defun rand (n modulus)
763 (declare (fixnum n))
764 (do ((i n (1- i)) (l))
765 ((= i 0) (cond (modulus (mapcar #'cmod l))
766 (t l)))
767 (declare (fixnum i))
768 (push (random 1000.) l)))
770 (defun trufac (v lp olfact many* modulus)
771 (prog (ans olc lc af qnt factor lfunct)
772 (setq lc 1 olc 1)
773 (set-modulus modulus)
774 (setq lfunct (setq olfact (cons nil olfact)))
775 test (cond
776 ((equal v 1) (setq ans factor) (go out))
777 ((null lp)
778 (setq
780 (cond ((< (length olfact) 4) (cons v factor))
781 (t (nconc factor
782 (nprod lc
784 (cons (let ((modulus plim))
785 (ptimes olc (cadr olfact)))
786 (cddr olfact)))))))
787 (go out))
788 ((and (null (cdr lp)) (or (null (cdr olfact)) (null (cddr olfact))))
789 (setq ans (cons v factor))
790 (go out)))
791 (setq af (car lp))
792 (cond ((setq qnt (let ((modulus modulu*))
793 (testdivide v af)))
794 (setq factor (cons af factor))
795 (setq lc (ptimes lc (caddr af)))
796 (setq v qnt)
797 (let ((modulus plim))
798 (setq olc (ptimes (caddr (cadr lfunct)) olc)))
799 (rplacd lfunct (cddr lfunct)))
800 (t (setq lfunct (cdr lfunct))))
801 (setq lp (cdr lp))
802 (go test)
803 out (return ans)))
805 (defun multideg (p)
806 (prog (m d)
807 (cond ((numberp p) (return 0)) ((onevarp p) (return (cadr p))))
808 (setq p (cdr p) m (car p))
809 loop (cond ((null p) (return m)))
810 (setq d (+ (car p) (multideg (cadr p))) p (cddr p) m (max d m))
811 (go loop)))
813 (defun oddelm (list)
814 "return a list of the first. third etc. elements of list"
815 (loop for el in list by #'cddr
816 collect el))
818 (defun cpber3 (v u)
819 (prog (factz alcinv lc plim monic* sharpcont limk var vfact)
820 (setq var (car u))
821 (cond ((and algfac* (not (atom (caddr u))))
822 (setq alc (caddr u))
823 (setq u (ptimes u (car(setq alcinv(rainv alc))) ))
824 (setq v (ptimes v (car alcinv)))
825 (setq adn* (* adn* (cdr alcinv)))))
826 (setq u (oldcontent u))
827 (setq sharpcont (car u) u (cadr u))
828 (setq lc (caddr v))
829 (cond ((equal lc 1) (setq monic* t)))
830 (setq factz (fact5 u))
831 ;; this is the barry trick
832 (cond (*stop* (setq *stop* plim) (return (cons (car subval) factz))))
833 (setq u nil)
834 (cond ((null (cdr factz)) (return (list v)))
835 ((and algfac* (not (equal adn* 1)))
836 (setq v (pctimes adn* v) lc (pctimes adn* lc))))
837 (incrlimk v)
838 (setq modulus plim)
839 (setq u v v (newrep v))
840 (cond ((numberp (car factz))
841 (setq sharpcont (ptimes sharpcont (car factz)) factz (cdr factz))))
842 (cond ((not (equal sharpcont 1))
843 (setq factz (cons (ptimes sharpcont (car factz)) (cdr factz)))))
844 (setq vfact (zfact v factz limk t))
846 (setq factz (cond (monic* (reverse vfact))
847 (t (restorelc vfact (newrep lc)))))
848 (cond ((and algfac* (not (equal adn* 1)))
849 (setq v (pctimes (crecip adn*) v))(setq adn* 1)))
850 (setq vfact (trufac v factz (nreverse vfact) t modulu*))
851 (setq factz nil)
852 (cond ((null (cdr vfact)) (return (list u)))
853 (t (return (mapcar #'oldrep vfact))))))
857 (defun nprod (lc u lfunct)
858 (prog (stage v d2 af0 r lcindex factor llc ltuple lprod lindex qnt af
859 funct tuple ltemp lpr f l li lf modulus)
860 (setq lpr (copy-tree (setq ltemp (cons nil nil))))
861 (setq lprod (cons nil lfunct))
862 (setq d2 (ash (cadr u) -1))
863 (remov0 lprod d2)
864 (setq lfunct (cdr lprod))
865 (setq lindex (index* (setq r (length lfunct))))
866 (cond ((not monic*)
867 (setq llc (mapcar #'caddr lfunct))
868 (setq lcindex (copy-list lindex))
869 (remov3 llc lcindex)
870 (setq v (ptimes lc (ptimes (caddr u) u))))
871 (t (setq v u)))
872 (setq ltuple (cons nil (mapcar #'list lindex)))
873 (setq stage 1)
874 (setq lindex (cons nil lindex))
875 (setq lfunct (copy-list lprod))
876 tloop (incf stage)
877 nextuple (cond ((or (> stage d2) (> stage (1- r))
878 (null ltuple) (null (cdr ltuple)))
879 (return (cons u factor))))
880 (setq li (cdr lindex))
881 (setq lf (cdr lfunct))
882 (setq tuple (cadr ltuple))
883 (setq funct (cadr lprod))
884 (rplacd ltuple (cddr ltuple))
885 (rplacd lprod (cddr lprod))
886 iloop(setq l (car li))
887 (setq f (car lf))
888 (setq li (cdr li))
889 (setq lf (cdr lf))
890 (cond ((and (not (member l tuple :test #'equal))
891 (not (> (+ (cadr f) (cadr funct)) d2))
892 (not (member (setq l (orde l tuple)) ltemp :test #'equal)))
893 (set-modulus plim)
894 (setq af0 (setq af (ptimes(pmod f) (pmod funct))))
895 (cond (llc (setq af (ptimes (pmod (lchk llc lcindex l)) af))))
896 (cond (many* (setq af (dropterms af)))
897 ((and algfac* (not (equal intbs* 1)))(setq af (intbasehk af))))
898 (set-modulus nil)
899 (cond ((setq qnt (testdivide v af))
900 (cond (llc (setq af (oldcontent af))
901 (setq v (ptimes (car af) qnt)af (cadr af))
902 (setq u (cond (algfac*(car (ignore-rat-err
903 (rquotient u af))))
904 (t (pquotient u af)))))
905 (t (setq u qnt v qnt)))
906 (setq factor (cons af factor))
907 (cond ((equal u 1) (return factor)))
908 (setq d2 (ash (cadr u) -1))
909 (cond ((< d2 stage) (return (cons u factor))))
910 (remov1 l ltuple lprod d2)
911 (remov1 l ltemp lpr d2)
912 (remov2 l lindex lfunct d2)
913 (setq r (- r stage))
914 (setq li nil)) ; exit iloop
915 (t (setq ltemp (nconc ltemp (list l)))
916 (setq lpr (nconc lpr (list af0)))))))
917 (cond (li (go iloop)) ((cdr ltuple) (go nextuple)))
918 (setq ltuple ltemp lprod lpr ltemp nil lpr nil)
919 (go tloop)))
921 (defun remov2 (a b c d2)
922 (prog nil
923 tag1 (cond ((null (cdr b)) (return nil))
924 ((or (member (cadr b) a :test #'equal) (> (cadadr c) d2))
925 (rplacd b (cddr b))
926 (rplacd c (cddr c))
927 (go tag1)))
928 (setq b (cdr b))
929 (setq c (cdr c))
930 (go tag1)))
932 (defun remov1 (a lt1 lp1 d2)
933 (prog nil
934 tag1 (cond ((null (cdr lt1)) (return nil))
935 ((and (not (> (cadadr lp1) d2))
936 (null (intersection a (cadr lt1) :test #'equal)))
937 (setq lt1 (cdr lt1))
938 (setq lp1 (cdr lp1))
939 (go tag1)))
940 (rplacd lt1 (cddr lt1))
941 (rplacd lp1 (cddr lp1))
942 (go tag1)))
944 (defun remov0 (lf d2)
945 (prog (d)(setq d lf)
946 tag (cond ((null (cdr lf)) (return nil))
947 ((> (cadadr lf) d2)(setq d2 (caddr (cadr lf))) (rplacd lf (cddr lf))
948 (cond ((equal d2 1) nil)(t (rplacd d (cons (ptimes d2 (cadr d)) (cddr d)))))
949 (return nil)))
950 (setq lf (cdr lf))
951 (go tag)))
953 (defun remov3 (a b)
954 (prog nil
955 loop (cond ((null (cdr a)) (return nil))
956 ((equal (cadr a) 1)
957 (rplacd a (cddr a))
958 (rplacd b (cddr b))(go loop)))
959 (setq a (cdr a) b (cdr b))(go loop)))
961 (defun lchk (a b c)
962 (prog (ans)
963 (setq ans 1)
964 loop (cond ((null a) (return ans))
965 ((not (member (car b) c :test #'equal)) (setq ans (ptimes ans (car a)))))
966 (setq a (cdr a) b (cdr b))
967 (go loop)))
971 (defun lcprodl (l)
972 (prog (ans d)
973 (setq d 1 l (reverse l) ans '(1))
974 loop (cond ((null (cdr l)) (return ans)))
975 (setq d (ptimes d (caddar l)))
976 (setq l (cdr l))
977 (setq ans (cons d ans))
978 (go loop)))
981 (defun fact5 (poly)
982 (prog (ql trl* linfac uu* lc deg factp factz modulus monic* split* var
983 anotype fctc invc *afixn* *fctcfixn* *invcfixn*)
984 (setq var (car poly))
985 (cond ((null (cdddr poly)) (return (list poly))))
986 (cond((and algfac* (not (atom (caddr poly))))
987 (setq alc (caddr poly))
988 (setq poly (rattimes (cons poly 1) (setq alcinv(rainv alc)) t))
989 (setq adn*(* adn* (cdr poly)))
990 (setq poly (car poly))))
991 (cond((and algfac* minpoly* (or $nalgfac (equal (cdr minpoly*) '(4 1 0 1))))
992 (setq ql 'splitcase) (go tag0)))
993 (setq uu* poly)
994 (cond ((equal (setq lc (caddr uu*)) 1) (setq monic* t)))
995 (setq deg (cadr poly))
996 (cond ((not algfac*)
997 (setq *fctcfixn* (make-array deg :initial-element 0)
998 *invcfixn* (make-array deg :initial-element 0)
999 *afixn* (make-array (list deg deg) :initial-element 0)))
1000 (t (setq fctc (make-array deg)
1001 invc (make-array deg)
1002 anotype (make-array (list deg deg))
1003 *fctcfixn* (make-array mm* :initial-element 0)
1004 *invcfixn* (make-array mm* :initial-element 0)
1005 *afixn* (make-array (list mm* mm*) :initial-element 0))))
1006 (cond (modulu* (return (fact5mod poly))))
1007 (cond ((not (atom (setq ql (choozp uu*))))
1008 (setq linfac (car ql) uu* (caddr ql) ql (cadr ql))))
1009 (setq *prime modulus)
1010 tag0 (cond ((eq ql 'splitcase)
1011 (setq poly(nalgfac poly (cons (car *alpha*) (cdr minpoly*))))
1012 (setq plim *alpha *prime plim limk -1)
1013 (return poly))
1014 ((null (cdr (append linfac ql)))
1015 (setq poly (list poly))
1016 (go out))
1017 ((equal uu* 1) (setq factp nil) (go on)))
1018 (cond (algfac* (setq factp (cpbgzass ql uu* (length ql))))
1019 ((not (equal uu* 1))
1020 (setq factp (cpbg ql uu* (length ql)))))
1021 (setq uu* nil)
1022 on (setq factp (nconc factp linfac)
1023 linfac nil
1024 factp (cons (pctimes (pmod lc) (car factp)) (cdr factp)))
1025 (setq limk (klim poly modulus))
1026 (setq factz (zfact poly factp limk nil)factp nil)
1027 (setq poly (trufac poly
1028 (let ((modulus plim))
1029 (restorelc factz lc))
1030 (nreverse factz)
1032 nil))
1033 (setq modulus nil)
1034 out (return poly)))
1036 (defun fact5mod (u)
1037 (prog (lc poly)
1038 (setq poly (copy-list u))
1039 (set-modulus modulu*)
1040 (setq poly (pmod poly))
1041 (setq lc (caddr poly))
1042 (pmonicize (cdr poly))
1043 (setq poly (cpberl poly))
1044 (cond ((null (cdr poly))
1045 (return (list u)))
1046 (t (return (if (= lc 1)
1047 poly
1048 (cons lc poly)))))))
1050 (defun cpbg (qlist v m)
1051 (declare (fixnum m))
1052 (prog (y vj factors u w (j 0)
1053 (p1 (ash modulus -1))
1054 (p2 1)
1055 fnj fnq oldfac)
1056 (declare (fixnum j p1 p2))
1057 (when (= m 1) (return (list v)))
1058 (setq p1 (ash modulus -1))
1059 (setq p2 1)
1060 (setq qlist (cdr (nreverse qlist)))
1061 (setq oldfac (list nil v))
1062 (setq v nil)
1063 tag3 (setq vj (nconc (car qlist) (list 0 0)))
1064 (setq qlist (cdr qlist))
1065 (setq j (- p1))
1066 (setq oldfac (nconc oldfac fnq))
1067 (setq fnq nil)
1068 incrj(setq factors (nconc oldfac fnj))
1069 (setq fnj nil)
1070 (pcdifconc vj j)
1071 tag2 (setq u (cadr factors))
1072 (setq w (pgcdu vj u))
1073 (cond ((or (numberp w) (= (cadr w) (cadr u))) (go agg)))
1074 (setq y (car (pmodquo u w)))
1075 (setq fnq (cons (copy-list w) fnq))
1076 (setq fnj (cons y fnj))
1077 (incf p2)
1078 (rplacd factors (cddr factors))
1079 (cond ((equal p2 m) (go out)) (t (go tag1)))
1080 agg (setq factors (cdr factors))
1081 tag1 (cond ((cdr factors) (go tag2))
1082 ((< j p1) (incf j) (go incrj))
1083 (qlist (go tag3)))
1084 out (return (nconc fnq fnj (cdr oldfac)))))
1089 (defun fact2z (u f g limk)
1090 (prog (a a1 w pk mpk b c r p ql qlp h (k 0) b1)
1091 (declare (fixnum k))
1092 (setq p modulus)
1093 (setq r (ppprog f g))
1094 (setq a (car r))
1095 (setq b (cadr r))
1096 (let ((modulus nil))
1097 (setq r (pdifference (ptimes f g) u)))
1098 sharp (cond ((or (equal r 0) (> k limk)) (go on)))
1099 (setq pk modulus mpk (- pk))
1100 (setq modulus (* modulus modulus))
1101 (setq w (pmod r))
1102 (cond ((equal w 0) (go tag1)))
1103 (setq c (npquo w pk))(setq w nil)
1104 (setq ql (pmodquo (ptimes a c) g))
1105 (setq a1 (npctimes mpk
1106 (pplus (ptimes (car ql) f)
1107 (ptimes b c))))
1108 (setq b1 (npctimes mpk (cdr ql)))
1109 (let ((modulus plim))
1110 (setq r (pplus (pplus r (ptimes a1 b1))
1111 (pplus (ptimes a1 g) (ptimes b1 f))))
1112 (setq f (pplus f a1))
1113 (setq g (pplus g b1)))
1114 (setq a1 nil b1 nil)
1115 tag1 (cond ((or (equal r 0)(> (incf k) limk)) (go on)))
1116 (setq h (npquo (pplus (pplus (ptimes a f)
1117 (ptimes b g))
1119 pk))
1120 (setq qlp (pmodquo (ptimes a h) g))
1121 (setq b1 (pplus (ptimes b h) (ptimes (car qlp) f)))
1122 (setq a (pplus a (npctimes mpk (cdr qlp))))
1123 (setq b (pplus b (npctimes mpk b1)))
1124 (setq h nil b1 nil qlp nil)
1125 (go sharp)
1126 on (set-modulus p)
1127 (return (list f g))))
1131 (defun npctimes (c p)
1132 (setq p (npctimes1 c p))
1133 (if (and (not (atom p)) (null (cdr p)))
1137 (defun npquo (p c)
1138 (prog (u modulus)
1139 (cond ((equal c 1) (return p))
1140 ((pcoefp p) (return (quotient p c))))
1141 (setq u p)
1142 loop (cond ((null (cdr u)) (return p)))
1143 (setq u (cddr u))
1144 (rplaca u (cond ((pcoefp (car u))
1145 (quotient (car u) c))
1146 (t (npquo (copy-list (car u)) c))))
1147 (go loop)))
1149 (defun npctimes1 (c p)
1150 (prog (u a)
1151 (cond((equal c 1)(return p))
1152 ((pcoefp p)(return (ctimes c p))))
1153 (setq u p)
1154 loop (cond ((null (cdr u))(return p)))
1155 (setq a (cond ((pcoefp (caddr u)) (ctimes c (caddr u)))
1156 (t (npctimes c (copy-list (caddr u))))))
1157 (cond ((equal a 0) (rplacd u (cdddr u)))
1158 (t (setq u (cddr u))
1159 (rplaca u a)))
1160 (go loop)))
1162 (defun x**q1 (term u m p)
1163 (declare (fixnum m))
1164 (prog ((i 1))
1165 (declare (fixnum i))
1166 (setq trl* (list term))
1167 loop (when (= i m) (return (pexptmod term p u)))
1168 (setq term (pexptmod term p u))
1169 (setq trl* (cons term trl*))
1170 (incf i)
1171 (go loop)))
1173 (defun cptomf (p u n)
1174 (declare (fixnum n p))
1175 (prog (l s *xn (j 0) (i 0) ind (n-1 (1- n)) )
1176 (declare (fixnum i j))
1177 loop (incf j)
1178 (cond ((= j n) (return nil))
1179 (ind (go sa))
1180 ((> (* p j) n-1)
1181 (setq *xn (mapcar #'- (p2cpol (cddr u) n-1))
1182 s (copy-tree *xn)
1183 ind t)
1184 (setq i (- (* p j) n))
1185 (go sa1)))
1186 (setq s (p2cpol (list var (* p j) 1) n-1))
1187 (go st)
1188 sa (setq i p)
1189 sa1 (cond ((= i 0) (go st)))
1190 (cptimesx s)
1191 (decf i)
1192 (go sa1)
1193 st (cond ((and (= j 1)
1194 (equal '(1 0) (last s 2))
1195 (= 1 (apply #'+ s)))
1196 (return (setq split* t))))
1197 (setq l s)
1198 (setq i n-1)
1199 sharp2 (when (null l) (go on))
1200 (setf (aref *afixn* j i) (car l))
1201 (setq l (cdr l))
1202 (decf i)
1203 (go sharp2)
1204 on (decf (aref *afixn* j j))
1205 (go loop)))
1207 (defun p2cpol (p n)
1208 (declare (fixnum n))
1209 (prog (l)
1210 (setq p (cdr p))
1211 loop (cond ((= n -1) (return (nreverse l)))
1212 ((or (null p) (> n (car p))) (setq l (cons 0 l)))
1213 ((= n (car p))
1214 (setq l (cons (cadr p) l))
1215 (setq p (cddr p))))
1216 (decf n)
1217 (go loop)))
1219 (defun cptimesx (p)
1220 (prog (xn q lc)
1221 (setq xn *xn q p lc (car p))
1222 loop (cond ((cdr q)
1223 (rplaca q (cplus (cadr q) (ctimes lc (car xn))))
1224 (setq q (cdr q) xn (cdr xn)))
1225 (t (rplaca q (ctimes lc (car xn))) (return p)))
1226 (go loop)))
1229 (defun cmnullf (n)
1230 (declare (fixnum n))
1231 (prog (nullsp mone (k 1) (j 0) s (n-1 (1- n)) nullv vj m aks)
1232 (declare (fixnum k j n-1))
1233 (setq mone (cmod -1))
1234 (do ((i 0 (1+ i))) ((> i n-1))
1235 (setf (aref *fctcfixn* i) -1)
1236 (setf (aref *invcfixn* i) -1))
1237 (setq nullsp (list 1))
1238 n2 (when (> k n-1) (return nullsp))
1239 (setq j 0)
1240 n3a (cond ((> j n-1) (go null))
1241 ((or (= (aref *afixn* k j) 0) (> (aref *fctcfixn* j) -1))
1242 (incf j)
1243 (go n3a)))
1244 (setf (aref *invcfixn* k) j)
1245 (setf (aref *fctcfixn* j) k)
1246 (setq m (aref *afixn* k j))
1247 (setq m (crecip (ctimes mone m)))
1248 (do ((s k (1+ s))) ((> s n-1))
1249 (setf (aref *afixn* s j) (ctimes m (aref *afixn* s j))))
1250 ;; go through columns
1251 (setq s 0)
1252 sharp2 (when (> s n-1) (go nextk))
1253 ;; go through rows in each column
1254 (cond ((= s j) nil)
1255 (t (setq aks (aref *afixn* k s))
1256 (do ((i k (1+ i)))
1257 ((> i n-1))
1258 (setf (aref *afixn* i s)
1259 (cplus (aref *afixn* i s)
1260 (ctimes (aref *afixn* i j) aks))))))
1261 (incf s)
1262 (go sharp2)
1263 null (setq nullv nil)
1264 (do ((s 0 (1+ s))) ((> s n-1))
1265 (cond ((= s k) (setq nullv (cons s (cons 1 nullv))))
1266 ((> (aref *invcfixn* s) -1)
1267 (setq vj (aref *afixn* k (aref *invcfixn* s)))
1268 (cond ((= vj 0) nil)
1269 (t (setq nullv (cons s (cons vj nullv))))))))
1270 (cond ((equal (car nullv) 0) (setq nullv (cadr nullv)))
1271 ((setq nullv (cons var nullv))))
1272 (setq nullsp (cons nullv nullsp))
1273 nextk (incf k)
1274 (go n2)))
1277 (defun choozp (v)
1278 (prog (lchar1 u tr n (ncont 1) bmod b1 b mincont (lmin 0) (nf 0)
1279 (deg (cadr v)) (algcont 0))
1280 (declare (special ncont lmin nf deg algcont))
1281 (setq nf (integer-length deg))
1282 (setq lchar1 (if gauss '(3 7 11. 19. 23. 29. 31. 37.) (cdr *small-primes*)))
1283 test (setq modulus (car lchar1))
1284 (setq u (pmod v))
1285 (cond ((or (zerop (rem sharpcont modulus))
1286 (and (not monic*)
1287 (or (pcoefp u)
1288 (> deg (cadr u)))))
1289 (go nextp)))
1290 (cond ((or (null (sqfrp u var))
1291 (and algfac*
1292 (not gauss)
1293 (not (iredup (pmod minpoly*)))))
1294 (incf algcont)
1295 (go nextp)))
1296 (pmonicize (cdr u))
1297 (setq b1 (catch 'splt (cpber1 u)))(setq algcont 0)
1298 (incf ncont)
1299 (setq n (+ (length (car b1)) (length (cadr b1))))
1300 (cond ((or (zerop lmin) (< n lmin))
1301 (setq lmin n mincont 1 bmod modulus b b1)
1302 (cond (algfac* (setq tr trl*))))
1303 ((= n lmin) (incf mincont)))
1304 (cond ((or (> ncont nf) (not(> n nf)) (= mincont 3)) (go out)))
1305 nextp (setq lchar1 (cdr lchar1))
1306 (cond ((null lchar1)
1307 (cond ((not (zerop lmin)) (go out))
1308 (t (merror (intl:gettext "factor: ran out of primes.")))))
1309 ((and algfac* minpoly* (> algcont 6))
1310 (cond ((ziredup minpoly*)(setq trl* tr)(setq modulus nil)
1311 (return 'splitcase))
1312 (t (merror (intl:gettext "factor: the minimal polynomial must be irreducible over the integers."))))))
1313 (go test)
1314 out (setq modulus bmod trl* tr)
1315 (return b)))
1318 (defun cpbq1 (a n)
1319 (declare (fixnum n ))
1320 (prog ()
1321 (setq split* nil)
1322 (cond ((not (integerp modulus)) (*array 'a t n n)))
1323 (cond ((or algfac* (not (integerp modulus)))
1324 (cptom modulus mm* a n))
1325 (t (cptomf modulus a n)))
1326 (cond (split*
1327 (return (powrs (car a) (cadr a)))))
1328 (return (cond ((or algfac* (not (integerp modulus)))
1329 (cmnull n))
1330 (t (cmnullf n))))))
1333 (defun cpber1 (u)
1334 (prog (linfac)
1335 (setq var (car u))
1336 (setq linfac
1337 (linout u)
1339 (car linfac)
1340 linfac
1341 (cadr linfac))
1342 (cond ((equal u 1) (return (list linfac nil u))))
1343 (return (list linfac (cpbq1 u (cadr u)) u))))
1346 (defun factor1972 (p)
1347 (let ((modulu* modulus) many* *stop* modulus mcflag *negflag*)
1348 (if (or (atom p) (numberp p) (and algfac* (alg p)))
1349 (list p)
1350 (factor72 p))))
1352 (defun factor72 (p)
1353 (let ((sharpcont 1) plim)
1354 (setq p (cond ((onevarp p)
1355 (mapcar #'posize (fact5 p)))
1357 (setq many* t)
1358 (multfact p))))
1359 (if *negflag*
1360 (cons (pminus (car p)) (cdr p))
1361 p)))
1363 (defun posize (p)
1364 (cond ((pminusp p)
1365 (setq *negflag* (not *negflag*))
1366 (pminus p))
1367 (t p)))