1 ;;; -*- Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- ;;;;
2 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3 ;;; The data in this file contains enhancements. ;;;;;
5 ;;; Copyright (c) 1984,1987 by William Schelter,University of Texas ;;;;;
6 ;;; All rights reserved ;;;;;
7 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
8 ;;; (c) Copyright 1980 Massachusetts Institute of Technology ;;;
9 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
13 (macsyma-module mhayat macro
)
15 ;;; **************************************************************
16 ;;; ***** HAYAT ******* Finite Power Series Routines *************
17 ;;; **************************************************************
18 ;;; ** (c) Copyright 1980 Massachusetts Institute of Technology **
19 ;;; ****** This is a read-only file! (All writes reserved) *******
20 ;;; **************************************************************
22 ;;; Note: be sure to recompile this file if any modifications are made!
24 ;;; TOP LEVEL STRUCTURE
26 ;;; Power series have the following format when seen outside the power
29 ;;; ((MRAT SIMP <varlist> <genvar> <tlist> trunc) <poly-form>)
31 ;;; This is the form of the output of the expressions, to
32 ;;; be displayed they are RATDISREPed and passed to DISPLA.
34 ;;; The <poly-forms> consist of a header and list of exponent-coefficient
35 ;;; pairs as shown below. The PS is used to distinguish power series
36 ;;; from their coefficients which have a similar representation.
38 ;;; (PS (<var> . <ord-num>) (<trunc-lvl>)
39 ;;; (<exponent> . <coeff>) (<exponent> . <coeff>) . . .)
41 ;;; The <var> component of the power series is a gensym which represents the
42 ;;; kernel of the power series. If the package is called with the arguments:
43 ;;; Taylor(<expr>, x, a, n) then the kernel will be (x - a).
44 ;;; The <ord-num> is a relative ordering for the various kernels in a
45 ;;; multivariate expansion.
46 ;;; <trunc-lvl> is the highest degree of the variable <var> which is retained
47 ;;; in the current power series.
48 ;;; The terms in the list of exponent-coefficient pairs are ordered by
49 ;;; increasing degree.
51 (declare-top (special tlist ivars key-vars last-exp
))
53 ;; subtitle hayat macros
55 (defmacro pszero
(var pw
)
56 (declare (ignore var pw
))
57 ''(0 .
1)) ; until constants are fixed
59 (defmacro psp
(e) `(eq (car ,e
) 'ps
))
61 (defmacro pscoefp
(e) `(null (psp ,e
)))
63 (defmacro psquo
(ps1 &optional ps2
)
64 (cond ((not ps2
) `(psexpt ,ps1
(rcmone)))
65 (t `(pstimes ,ps1
(psexpt ,ps2
(rcmone))))))
67 (defmacro pslog-gvar
(gvar)
68 `(pslog2 (get-inverse ,gvar
)))
70 (defmacro gvar-o
(e) `(cadr ,e
))
72 (defmacro gvar
(e) `(car (gvar-o ,e
)))
74 (defmacro eqgvar
(x y
) `(eq (car ,x
) (car ,y
)))
76 (defmacro pointerp
(x y
) `(> (cdr ,x
) (cdr ,y
)))
78 (defmacro poly-data
(p) `(caddr ,p
))
80 (defmacro trunc-lvl
(p) `(car (poly-data ,p
)))
82 (defmacro terms
(p) `(cdddr ,p
))
84 (defmacro lt
(terms) `(car ,terms
))
86 (defmacro le
(terms) `(caar ,terms
))
88 (defmacro lc
(terms) `(cdar ,terms
))
90 (defmacro e
(term) `(car ,term
))
92 (defmacro c
(term) `(cdr ,term
))
94 (defmacro n-term
(terms) `(cdr ,terms
))
96 (defmacro mono-term?
(terms) `(null (n-term ,terms
)))
98 (defmacro nconc-terms
(oldterms newterms
) `(nconc ,oldterms
,newterms
))
100 (defmacro term
(e c
) `(cons ,e
,c
))
102 (defmacro make-ps
(var-or-data-poly pdata-or-terms
103 &optional
(terms () var-pdata-case?
))
105 `(cons 'ps
(cons ,var-or-data-poly
(cons ,pdata-or-terms
,terms
)))
106 `(cons 'ps
(cons (gvar-o ,var-or-data-poly
)
107 (cons (poly-data ,var-or-data-poly
)
110 ;; Be sure that PS has more than one term when deleting the first with del-lt
112 (defmacro del-lt
(ps) `(rplacd (cddr ,ps
) (cddddr ,ps
)))
114 (defmacro add-term
(terms &optional
(term-or-e nil adding?
) (c nil e-c?
))
115 (cond ((null adding?
) `(rplacd ,terms nil
))
117 `(rplacd ,terms
(cons ,term-or-e
(cdr ,terms
))))
118 (`(rplacd ,terms
(cons (cons ,term-or-e
,c
) (cdr ,terms
))))))
120 (defmacro add-term-
&-pop
(terms &rest args
)
121 `(progn (add-term ,terms .
,args
) (setq ,terms
(n-term ,terms
))))
123 ;; Keep both def'ns around until a new hayat is stable.
125 (defmacro change-coef
(terms coef
) `(rplacd (lt ,terms
) ,coef
))
127 (defmacro change-lc
(terms coef
) `(rplacd (lt ,terms
) ,coef
))
129 (defmacro getdisrep
(var) `(get (car ,var
) 'disrep
))
131 (defmacro getdiff
(var) `(get (car ,var
) 'diff
))
133 (defmacro lt-poly
(p)
134 `(make-ps (gvar-o ,p
) (poly-data ,p
)
135 (list (lt (terms ,p
)))))
137 (defmacro oper-name
(func) `(if (atom ,func
) ,func
(caar ,func
)))
139 (defmacro oper-namep
(oper-form) `(atom ,oper-form
))
141 (defmacro integer-subscriptp
(subscr-fun)
142 `(apply 'and
(mapcar #'integerp
(cdr ,subscr-fun
))))
144 (defmacro mlet
(varl vals comp
)
145 `(mbinding (,varl
,vals
) ,comp
))
148 ;;; these macros access "tlist" to get various global information
149 ;;; "tlist" is structured as a list of datums, each datum having
152 ;;; (<var> <trunc-lvl stack> <pt of expansion>
153 ;;; <list of switches> <internal var = gvar> . <ord-num>)
155 ;;; possible switches are:
156 ;;; $asymp = t asymptotic expansion
157 ;;; multi variable in a multivariate expansion
158 ;;; multivar the actual variable of expansion in a multi-
159 ;;; variate expansion
162 ;;; macros for external people to access the tlist
164 ;;; ((MRAT SIMP <varlist> <genvar> <tlist> trunc) <poly-form>)
166 (defmacro mrat-header
(mrat) `(car ,mrat
))
167 (defmacro mrat-varlist
(mrat) `(third (mrat-header ,mrat
)))
168 (defmacro mrat-genvar
(mrat) `(fourth (mrat-header ,mrat
)))
169 (defmacro mrat-tlist
(mrat) `(fifth (mrat-header ,mrat
)))
170 (defmacro mrat-ps
(mrat) `(cdr ,mrat
))
172 ;;; The following two macros are now functions.
174 ;; (defmacro push-pw (datum pw)
175 ;; `(rplaca (cdr ,datum) (cons ,pw (cadr ,datum))))
177 ;; (defmacro pop-pw (datum)
178 ;; `(rplaca (cdr ,datum) (cdadr ,datum)))
180 (defmacro datum-var
(datum) `(car ,datum
))
182 (defmacro trunc-stack
(datum) `(cadr ,datum
))
184 (defmacro current-trunc
(datum) `(car (trunc-stack ,datum
)))
186 (defmacro orig-trunc
(datum) `(car (last (trunc-stack ,datum
))))
188 (defmacro exp-pt
(datum) `(caddr ,datum
))
190 (defmacro switches
(datum) `(cadddr ,datum
))
192 (defmacro switch
(sw datum
)
193 `(cdr (assoc ,sw
(switches ,datum
) :test
#'eq
)))
195 (defmacro int-var
(datum) `(cddddr ,datum
))
197 (defmacro data-gvar-o
(data) `(cddddr ,data
))
199 (defmacro int-gvar
(datum) `(car (int-var ,datum
)))
201 (defmacro data-gvar
(data) `(car (data-gvar-o ,data
)))
203 (defmacro get-inverse
(gensym)
204 `(cdr (assoc ,gensym ivars
:test
#'eq
)))
206 (defmacro get-key-var
(gensym)
207 `(cdr (assoc ,gensym key-vars
:test
#'eq
)))
209 (defmacro gvar-
>var
(gvar)
210 `(cdr (assoc ,gvar key-vars
:test
#'eq
)))
212 (defmacro dummy-var
() '(cdar key-vars
))
214 (defmacro first-datum
() '(car tlist
))
216 (defmacro get-datum
(expr &optional not-canonicalized?
)
217 (if not-canonicalized?
219 `(assoc ,expr tlist
:test
#'equal
)))
221 (defmacro var-data
(var)
222 `(assoc ,var tlist
:test
#'equal
))
224 (defmacro gvar-data
(gvar) `(var-data (gvar->var
,gvar
)))
226 (defmacro ps-data
(ps) `(gvar-data (gvar ,ps
)))
228 (defmacro t-o-var
(gensym) `(current-trunc (get-datum (get-key-var ,gensym
))))
230 (defmacro gvar-trunc
(gvar) `(current-trunc (gvar-data ,gvar
)))
232 (defmacro ps-arg-trunc
(ps) `(gvar-trunc (gvar ,ps
)))
234 (defmacro ps-le
(ps) `(le (terms ,ps
)))
236 (defmacro ps-le
* (ps) `(if (psp ,ps
) (ps-le ,ps
) '(0 .
1)))
238 (defmacro ps-lc
(ps) `(lc (terms ,ps
)))
240 (defmacro ps-lc
* (ps) `(if (psp ,ps
) (ps-lc ,ps
) ,ps
))
242 (defmacro ps-lt
(ps) `(lt (terms ,ps
)))
244 (defmacro getexp-le
(fun) `(car (getexp-lt ,fun
)))
246 (defmacro getexp-lc
(fun) `(cdr (getexp-lt ,fun
)))
248 (defmacro let-pw
(datum pw comp
)
250 (prog2 (push-pw d
,pw
)
254 (defmacro tlist-mapc
(datum-var &rest comp
)
255 `(mapc #'(lambda (,datum-var
) .
,comp
) tlist
))
257 (defmacro find-lexp
(exp &optional e-start errflag accum-vars
)
258 `(get-lexp ,exp
,e-start
,errflag
,(and accum-vars
'(ncons t
))))
260 (defmacro tay-err
(msg) `(throw 'tay-err
(list ,msg last-exp
)))
262 (defmacro zero-warn
(exp)
263 `(mtell (intl:gettext
"taylor: assumed to be zero: ~M~%")
264 `((mlabel) () ,,exp
)))
266 ;;There is a duplicate version of this in MAXMAC
267 ;;(defmacro infinities () ''($inf $minf $infinity))
269 ;; Macros for manipulating expansion data in the expansion table.
271 (defmacro exp-datum-lt
(fun exp-datum
)
272 `(if (atom (cadr ,exp-datum
))
273 (funcall (cadr ,exp-datum
) (cdr ,fun
))
274 (copy-tree (cadr ,exp-datum
))))
276 (defmacro exp-datum-le
(fun exp-datum
) `(e (exp-datum-lt ,fun
,exp-datum
)))
278 (defmacro exp-fun
(exp-datum)
279 `(if (atom (car ,exp-datum
)) (car ,exp-datum
) (caar ,exp-datum
)))
281 ;;; These macros are used to access the various extendable
282 ;;; portions of a polynomial.
284 (defmacro ext-fun
(p) `(cadr (poly-data ,p
)))
286 (defmacro ext-args
(p) `(caddr (poly-data ,p
)))
288 (defmacro extendablep
(p)
294 (defmacro exactp
(p) `(null (trunc-lvl ,p
)))
296 (defmacro nexactp
(p) `(trunc-lvl ,p
))
298 ;;; These macros are used to access user supplied information.
300 (defmacro get-ps-form
(fun) `(get ,fun
'sp2
))
302 (defmacro term-disrep
(term p
) `(m* (srdis (c ,term
))
303 (m^
(get-inverse (gvar ,p
))
304 (edisrep (e ,term
)))))
307 ;; coefficient arithmetic
309 (defmacro rczero
() ''(0 .
1))
311 (defmacro rcone
() ''(1 .
1))
313 (defmacro rcfone
() ''(1.0 .
1.0))
315 (defmacro rctwo
() ''(2 .
1))
317 (defmacro rcmone
() ''(-1 .
1))
319 (defmacro rczerop
(r)
322 (defmacro rcintegerp
(c) `(and (integerp (car ,c
)) (equal (cdr ,c
) 1)))
324 (defmacro rcpintegerp
(c)
325 `(and (rcintegerp ,c
)
327 ;What is this obsession with signp? Even in maclisp it's slower
328 ; and more code, since it doesn't assume the thing is a number.
329 ;The car is integerp, after all (as implied by rcintegerp).
332 (defmacro rcmintegerp
(c)
333 `(and (rcintegerp ,c
)
338 (defmacro rcplus
(x y
) `(ratplus ,x
,y
))
340 (defmacro rcdiff
(x y
) `(ratdif ,x
,y
))
342 (defmacro rcminus
(x) `(ratminus ,x
))
344 (defmacro rctimes
(x y
) `(rattimes ,x
,y t
))
346 (defmacro rcquo
(x y
) `(ratquotient ,x
,y
))
348 (defmacro rcdisrep
(x) `(cdisrep ,x
))
350 (defmacro rcderiv
(x v
) `(ratderivative ,x
,v
))
352 (defmacro rcderivx
(x) `(ratdx1 (car ,x
) (cdr ,x
)))
354 ;; exponent arithmetic
356 ;; These macros are also used in BMT;PADE and RAT;NALGFA.
358 (defmacro infp
(x) `(null ,x
))
360 (defmacro inf nil nil
)
362 (defmacro e-
(e1 &optional
(e2 nil
2e?
))
363 (cond (2e?
`(ediff ,e1
,e2
))
364 (`(cons (f- (car ,e1
)) (cdr ,e1
)))))
366 (defmacro e
// (e1 &optional
(e2 nil
2e?
))
367 (cond (2e?
`(equo ,e1
,e2
))
370 (defmacro e
>= (e1 e2
) `(or (e> ,e1
,e2
) (e= ,e1
,e2
)))
372 (defmacro ezero
() ''(0 .
1))
374 (defmacro eone
() ''(1 .
1))
376 (defmacro rcinv
(r) `(ratinvert ,r
))