2 SUBROUTINE DQK31
(F
, A
, B
, RESULT
, ABSERR
, RESABS
, RESASC
)
3 C***BEGIN PROLOGUE DQK31
4 C***PURPOSE To compute I = Integral of F over (A,B) with error
6 C J = Integral of ABS(F) over (A,B)
7 C***LIBRARY SLATEC (QUADPACK)
9 C***TYPE DOUBLE PRECISION (QK31-S, DQK31-D)
10 C***KEYWORDS 31-POINT GAUSS-KRONROD RULES, QUADPACK, QUADRATURE
11 C***AUTHOR Piessens, Robert
12 C Applied Mathematics and Programming Division
15 C Applied Mathematics and Programming Division
20 C Standard fortran subroutine
21 C Double precision version
25 C F - Double precision
26 C Function subprogram defining the integrand
27 C FUNCTION F(X). The actual name for F needs to be
28 C Declared E X T E R N A L in the calling program.
30 C A - Double precision
31 C Lower limit of integration
33 C B - Double precision
34 C Upper limit of integration
37 C RESULT - Double precision
38 C Approximation to the integral I
39 C RESULT is computed by applying the 31-POINT
40 C GAUSS-KRONROD RULE (RESK), obtained by optimal
41 C addition of abscissae to the 15-POINT GAUSS
44 C ABSERR - Double precision
45 C Estimate of the modulus of the modulus,
46 C which should not exceed ABS(I-RESULT)
48 C RESABS - Double precision
49 C Approximation to the integral J
51 C RESASC - Double precision
52 C Approximation to the integral of ABS(F-I/(B-A))
56 C***ROUTINES CALLED D1MACH
57 C***REVISION HISTORY (YYMMDD)
59 C 890531 Changed all specific intrinsics to generic. (WRB)
60 C 890531 REVISION DATE from Version 3.2
61 C 891214 Prologue converted to Version 4.0 format. (BAB)
62 C***END PROLOGUE DQK31
63 DOUBLE PRECISION A
,ABSC
,ABSERR
,B
,CENTR
,DHLGTH
,
64 1 D1MACH
,EPMACH
,F
,FC
,FSUM
,FVAL1
,FVAL2
,FV1
,FV2
,HLGTH
,RESABS
,RESASC
,
65 2 RESG
,RESK
,RESKH
,RESULT
,UFLOW
,WG
,WGK
,XGK
69 DIMENSION FV1
(15),FV2
(15),XGK
(16),WGK
(16),WG
(8)
71 C THE ABSCISSAE AND WEIGHTS ARE GIVEN FOR THE INTERVAL (-1,1).
72 C BECAUSE OF SYMMETRY ONLY THE POSITIVE ABSCISSAE AND THEIR
73 C CORRESPONDING WEIGHTS ARE GIVEN.
75 C XGK - ABSCISSAE OF THE 31-POINT KRONROD RULE
76 C XGK(2), XGK(4), ... ABSCISSAE OF THE 15-POINT
78 C XGK(1), XGK(3), ... ABSCISSAE WHICH ARE OPTIMALLY
79 C ADDED TO THE 15-POINT GAUSS RULE
81 C WGK - WEIGHTS OF THE 31-POINT KRONROD RULE
83 C WG - WEIGHTS OF THE 15-POINT GAUSS RULE
86 C GAUSS QUADRATURE WEIGHTS AND KRONROD QUADRATURE ABSCISSAE AND WEIGHTS
87 C AS EVALUATED WITH 80 DECIMAL DIGIT ARITHMETIC BY L. W. FULLERTON,
88 C BELL LABS, NOV. 1981.
91 DATA WG
( 1) / 0.0307532419 9611726835 4628393577 204 D0
/
92 DATA WG
( 2) / 0.0703660474 8810812470 9267416450 667 D0
/
93 DATA WG
( 3) / 0.1071592204 6717193501 1869546685 869 D0
/
94 DATA WG
( 4) / 0.1395706779 2615431444 7804794511 028 D0
/
95 DATA WG
( 5) / 0.1662692058 1699393355 3200860481 209 D0
/
96 DATA WG
( 6) / 0.1861610000 1556221102 6800561866 423 D0
/
97 DATA WG
( 7) / 0.1984314853 2711157645 6118326443 839 D0
/
98 DATA WG
( 8) / 0.2025782419 2556127288 0620199967 519 D0
/
100 DATA XGK
( 1) / 0.9980022986 9339706028 5172840152 271 D0
/
101 DATA XGK
( 2) / 0.9879925180 2048542848 9565718586 613 D0
/
102 DATA XGK
( 3) / 0.9677390756 7913913425 7347978784 337 D0
/
103 DATA XGK
( 4) / 0.9372733924 0070590430 7758947710 209 D0
/
104 DATA XGK
( 5) / 0.8972645323 4408190088 2509656454 496 D0
/
105 DATA XGK
( 6) / 0.8482065834 1042721620 0648320774 217 D0
/
106 DATA XGK
( 7) / 0.7904185014 4246593296 7649294817 947 D0
/
107 DATA XGK
( 8) / 0.7244177313 6017004741 6186054613 938 D0
/
108 DATA XGK
( 9) / 0.6509967412 9741697053 3735895313 275 D0
/
109 DATA XGK
( 10) / 0.5709721726 0853884753 7226737253 911 D0
/
110 DATA XGK
( 11) / 0.4850818636 4023968069 3655740232 351 D0
/
111 DATA XGK
( 12) / 0.3941513470 7756336989 7207370981 045 D0
/
112 DATA XGK
( 13) / 0.2991800071 5316881216 6780024266 389 D0
/
113 DATA XGK
( 14) / 0.2011940939 9743452230 0628303394 596 D0
/
114 DATA XGK
( 15) / 0.1011420669 1871749902 7074231447 392 D0
/
115 DATA XGK
( 16) / 0.0000000000 0000000000 0000000000 000 D0
/
117 DATA WGK
( 1) / 0.0053774798 7292334898 7792051430 128 D0
/
118 DATA WGK
( 2) / 0.0150079473 2931612253 8374763075 807 D0
/
119 DATA WGK
( 3) / 0.0254608473 2671532018 6874001019 653 D0
/
120 DATA WGK
( 4) / 0.0353463607 9137584622 2037948478 360 D0
/
121 DATA WGK
( 5) / 0.0445897513 2476487660 8227299373 280 D0
/
122 DATA WGK
( 6) / 0.0534815246 9092808726 5343147239 430 D0
/
123 DATA WGK
( 7) / 0.0620095678 0067064028 5139230960 803 D0
/
124 DATA WGK
( 8) / 0.0698541213 1872825870 9520077099 147 D0
/
125 DATA WGK
( 9) / 0.0768496807 5772037889 4432777482 659 D0
/
126 DATA WGK
( 10) / 0.0830805028 2313302103 8289247286 104 D0
/
127 DATA WGK
( 11) / 0.0885644430 5621177064 7275443693 774 D0
/
128 DATA WGK
( 12) / 0.0931265981 7082532122 5486872747 346 D0
/
129 DATA WGK
( 13) / 0.0966427269 8362367850 5179907627 589 D0
/
130 DATA WGK
( 14) / 0.0991735987 2179195933 2393173484 603 D0
/
131 DATA WGK
( 15) / 0.1007698455 2387559504 4946662617 570 D0
/
132 DATA WGK
( 16) / 0.1013300070 1479154901 7374792767 493 D0
/
135 C LIST OF MAJOR VARIABLES
136 C -----------------------
137 C CENTR - MID POINT OF THE INTERVAL
138 C HLGTH - HALF-LENGTH OF THE INTERVAL
140 C FVAL* - FUNCTION VALUE
141 C RESG - RESULT OF THE 15-POINT GAUSS FORMULA
142 C RESK - RESULT OF THE 31-POINT KRONROD FORMULA
143 C RESKH - APPROXIMATION TO THE MEAN VALUE OF F OVER (A,B),
146 C MACHINE DEPENDENT CONSTANTS
147 C ---------------------------
148 C EPMACH IS THE LARGEST RELATIVE SPACING.
149 C UFLOW IS THE SMALLEST POSITIVE MAGNITUDE.
150 C***FIRST EXECUTABLE STATEMENT DQK31
154 CENTR
= 0.5D
+00*(A
+B
)
155 HLGTH
= 0.5D
+00*(B
-A
)
158 C COMPUTE THE 31-POINT KRONROD APPROXIMATION TO
159 C THE INTEGRAL, AND ESTIMATE THE ABSOLUTE ERROR.
167 ABSC
= HLGTH*XGK
(JTW
)
168 FVAL1
= F
(CENTR
-ABSC
)
169 FVAL2
= F
(CENTR
+ABSC
)
173 RESG
= RESG
+WG
(J
)*FSUM
174 RESK
= RESK
+WGK
(JTW
)*FSUM
175 RESABS
= RESABS
+WGK
(JTW
)*(ABS
(FVAL1
)+ABS
(FVAL2
))
179 ABSC
= HLGTH*XGK
(JTWM1
)
180 FVAL1
= F
(CENTR
-ABSC
)
181 FVAL2
= F
(CENTR
+ABSC
)
185 RESK
= RESK
+WGK
(JTWM1
)*FSUM
186 RESABS
= RESABS
+WGK
(JTWM1
)*(ABS
(FVAL1
)+ABS
(FVAL2
))
189 RESASC
= WGK
(16)*ABS
(FC
-RESKH
)
191 RESASC
= RESASC
+WGK
(J
)*(ABS
(FV1
(J
)-RESKH
)+ABS
(FV2
(J
)-RESKH
))
194 RESABS
= RESABS*DHLGTH
195 RESASC
= RESASC*DHLGTH
196 ABSERR
= ABS
((RESK
-RESG
)*HLGTH
)
197 IF(RESASC
.NE
.0.0D
+00.AND
.ABSERR
.NE
.0.0D
+00)
198 1 ABSERR
= RESASC*MIN
(0.1D
+01,(0.2D
+03*ABSERR
/RESASC
)**1.5D
+00)
199 IF(RESABS
.GT
.UFLOW
/(0.5D
+02*EPMACH
)) ABSERR
= MAX
200 1 ((EPMACH*0
.5D
+02)*RESABS
,ABSERR
)