2 SUBROUTINE DQK41
(F
, A
, B
, RESULT
, ABSERR
, RESABS
, RESASC
)
3 C***BEGIN PROLOGUE DQK41
4 C***PURPOSE To compute I = Integral of F over (A,B), with error
6 C J = Integral of ABS(F) over (A,B)
7 C***LIBRARY SLATEC (QUADPACK)
9 C***TYPE DOUBLE PRECISION (QK41-S, DQK41-D)
10 C***KEYWORDS 41-POINT GAUSS-KRONROD RULES, QUADPACK, QUADRATURE
11 C***AUTHOR Piessens, Robert
12 C Applied Mathematics and Programming Division
15 C Applied Mathematics and Programming Division
20 C Standard fortran subroutine
21 C Double precision version
25 C F - Double precision
26 C Function subprogram defining the integrand
27 C FUNCTION F(X). The actual name for F needs to be
28 C declared E X T E R N A L in the calling program.
30 C A - Double precision
31 C Lower limit of integration
33 C B - Double precision
34 C Upper limit of integration
37 C RESULT - Double precision
38 C Approximation to the integral I
39 C RESULT is computed by applying the 41-POINT
40 C GAUSS-KRONROD RULE (RESK) obtained by optimal
41 C addition of abscissae to the 20-POINT GAUSS
44 C ABSERR - Double precision
45 C Estimate of the modulus of the absolute error,
46 C which should not exceed ABS(I-RESULT)
48 C RESABS - Double precision
49 C Approximation to the integral J
51 C RESASC - Double precision
52 C Approximation to the integral of ABS(F-I/(B-A))
56 C***ROUTINES CALLED D1MACH
57 C***REVISION HISTORY (YYMMDD)
59 C 890531 Changed all specific intrinsics to generic. (WRB)
60 C 890531 REVISION DATE from Version 3.2
61 C 891214 Prologue converted to Version 4.0 format. (BAB)
62 C***END PROLOGUE DQK41
64 DOUBLE PRECISION A
,ABSC
,ABSERR
,B
,CENTR
,DHLGTH
,
65 1 D1MACH
,EPMACH
,F
,FC
,FSUM
,FVAL1
,FVAL2
,FV1
,FV2
,HLGTH
,RESABS
,RESASC
,
66 2 RESG
,RESK
,RESKH
,RESULT
,UFLOW
,WG
,WGK
,XGK
70 DIMENSION FV1
(20),FV2
(20),XGK
(21),WGK
(21),WG
(10)
72 C THE ABSCISSAE AND WEIGHTS ARE GIVEN FOR THE INTERVAL (-1,1).
73 C BECAUSE OF SYMMETRY ONLY THE POSITIVE ABSCISSAE AND THEIR
74 C CORRESPONDING WEIGHTS ARE GIVEN.
76 C XGK - ABSCISSAE OF THE 41-POINT GAUSS-KRONROD RULE
77 C XGK(2), XGK(4), ... ABSCISSAE OF THE 20-POINT
79 C XGK(1), XGK(3), ... ABSCISSAE WHICH ARE OPTIMALLY
80 C ADDED TO THE 20-POINT GAUSS RULE
82 C WGK - WEIGHTS OF THE 41-POINT GAUSS-KRONROD RULE
84 C WG - WEIGHTS OF THE 20-POINT GAUSS RULE
87 C GAUSS QUADRATURE WEIGHTS AND KRONROD QUADRATURE ABSCISSAE AND WEIGHTS
88 C AS EVALUATED WITH 80 DECIMAL DIGIT ARITHMETIC BY L. W. FULLERTON,
89 C BELL LABS, NOV. 1981.
92 DATA WG
( 1) / 0.0176140071 3915211831 1861962351 853 D0
/
93 DATA WG
( 2) / 0.0406014298 0038694133 1039952274 932 D0
/
94 DATA WG
( 3) / 0.0626720483 3410906356 9506535187 042 D0
/
95 DATA WG
( 4) / 0.0832767415 7670474872 4758143222 046 D0
/
96 DATA WG
( 5) / 0.1019301198 1724043503 6750135480 350 D0
/
97 DATA WG
( 6) / 0.1181945319 6151841731 2377377711 382 D0
/
98 DATA WG
( 7) / 0.1316886384 4917662689 8494499748 163 D0
/
99 DATA WG
( 8) / 0.1420961093 1838205132 9298325067 165 D0
/
100 DATA WG
( 9) / 0.1491729864 7260374678 7828737001 969 D0
/
101 DATA WG
( 10) / 0.1527533871 3072585069 8084331955 098 D0
/
103 DATA XGK
( 1) / 0.9988590315 8827766383 8315576545 863 D0
/
104 DATA XGK
( 2) / 0.9931285991 8509492478 6122388471 320 D0
/
105 DATA XGK
( 3) / 0.9815078774 5025025919 3342994720 217 D0
/
106 DATA XGK
( 4) / 0.9639719272 7791379126 7666131197 277 D0
/
107 DATA XGK
( 5) / 0.9408226338 3175475351 9982722212 443 D0
/
108 DATA XGK
( 6) / 0.9122344282 5132590586 7752441203 298 D0
/
109 DATA XGK
( 7) / 0.8782768112 5228197607 7442995113 078 D0
/
110 DATA XGK
( 8) / 0.8391169718 2221882339 4529061701 521 D0
/
111 DATA XGK
( 9) / 0.7950414288 3755119835 0638833272 788 D0
/
112 DATA XGK
( 10) / 0.7463319064 6015079261 4305070355 642 D0
/
113 DATA XGK
( 11) / 0.6932376563 3475138480 5490711845 932 D0
/
114 DATA XGK
( 12) / 0.6360536807 2651502545 2836696226 286 D0
/
115 DATA XGK
( 13) / 0.5751404468 1971031534 2946036586 425 D0
/
116 DATA XGK
( 14) / 0.5108670019 5082709800 4364050955 251 D0
/
117 DATA XGK
( 15) / 0.4435931752 3872510319 9992213492 640 D0
/
118 DATA XGK
( 16) / 0.3737060887 1541956067 2548177024 927 D0
/
119 DATA XGK
( 17) / 0.3016278681 1491300432 0555356858 592 D0
/
120 DATA XGK
( 18) / 0.2277858511 4164507808 0496195368 575 D0
/
121 DATA XGK
( 19) / 0.1526054652 4092267550 5220241022 678 D0
/
122 DATA XGK
( 20) / 0.0765265211 3349733375 4640409398 838 D0
/
123 DATA XGK
( 21) / 0.0000000000 0000000000 0000000000 000 D0
/
125 DATA WGK
( 1) / 0.0030735837 1852053150 1218293246 031 D0
/
126 DATA WGK
( 2) / 0.0086002698 5564294219 8661787950 102 D0
/
127 DATA WGK
( 3) / 0.0146261692 5697125298 3787960308 868 D0
/
128 DATA WGK
( 4) / 0.0203883734 6126652359 8010231432 755 D0
/
129 DATA WGK
( 5) / 0.0258821336 0495115883 4505067096 153 D0
/
130 DATA WGK
( 6) / 0.0312873067 7703279895 8543119323 801 D0
/
131 DATA WGK
( 7) / 0.0366001697 5820079803 0557240707 211 D0
/
132 DATA WGK
( 8) / 0.0416688733 2797368626 3788305936 895 D0
/
133 DATA WGK
( 9) / 0.0464348218 6749767472 0231880926 108 D0
/
134 DATA WGK
( 10) / 0.0509445739 2372869193 2707670050 345 D0
/
135 DATA WGK
( 11) / 0.0551951053 4828599474 4832372419 777 D0
/
136 DATA WGK
( 12) / 0.0591114008 8063957237 4967220648 594 D0
/
137 DATA WGK
( 13) / 0.0626532375 5478116802 5870122174 255 D0
/
138 DATA WGK
( 14) / 0.0658345971 3361842211 1563556969 398 D0
/
139 DATA WGK
( 15) / 0.0686486729 2852161934 5623411885 368 D0
/
140 DATA WGK
( 16) / 0.0710544235 5344406830 5790361723 210 D0
/
141 DATA WGK
( 17) / 0.0730306903 3278666749 5189417658 913 D0
/
142 DATA WGK
( 18) / 0.0745828754 0049918898 6581418362 488 D0
/
143 DATA WGK
( 19) / 0.0757044976 8455667465 9542775376 617 D0
/
144 DATA WGK
( 20) / 0.0763778676 7208073670 5502835038 061 D0
/
145 DATA WGK
( 21) / 0.0766007119 1799965644 5049901530 102 D0
/
148 C LIST OF MAJOR VARIABLES
149 C -----------------------
151 C CENTR - MID POINT OF THE INTERVAL
152 C HLGTH - HALF-LENGTH OF THE INTERVAL
154 C FVAL* - FUNCTION VALUE
155 C RESG - RESULT OF THE 20-POINT GAUSS FORMULA
156 C RESK - RESULT OF THE 41-POINT KRONROD FORMULA
157 C RESKH - APPROXIMATION TO MEAN VALUE OF F OVER (A,B), I.E.
160 C MACHINE DEPENDENT CONSTANTS
161 C ---------------------------
163 C EPMACH IS THE LARGEST RELATIVE SPACING.
164 C UFLOW IS THE SMALLEST POSITIVE MAGNITUDE.
166 C***FIRST EXECUTABLE STATEMENT DQK41
170 CENTR
= 0.5D
+00*(A
+B
)
171 HLGTH
= 0.5D
+00*(B
-A
)
174 C COMPUTE THE 41-POINT GAUSS-KRONROD APPROXIMATION TO
175 C THE INTEGRAL, AND ESTIMATE THE ABSOLUTE ERROR.
183 ABSC
= HLGTH*XGK
(JTW
)
184 FVAL1
= F
(CENTR
-ABSC
)
185 FVAL2
= F
(CENTR
+ABSC
)
189 RESG
= RESG
+WG
(J
)*FSUM
190 RESK
= RESK
+WGK
(JTW
)*FSUM
191 RESABS
= RESABS
+WGK
(JTW
)*(ABS
(FVAL1
)+ABS
(FVAL2
))
195 ABSC
= HLGTH*XGK
(JTWM1
)
196 FVAL1
= F
(CENTR
-ABSC
)
197 FVAL2
= F
(CENTR
+ABSC
)
201 RESK
= RESK
+WGK
(JTWM1
)*FSUM
202 RESABS
= RESABS
+WGK
(JTWM1
)*(ABS
(FVAL1
)+ABS
(FVAL2
))
205 RESASC
= WGK
(21)*ABS
(FC
-RESKH
)
207 RESASC
= RESASC
+WGK
(J
)*(ABS
(FV1
(J
)-RESKH
)+ABS
(FV2
(J
)-RESKH
))
210 RESABS
= RESABS*DHLGTH
211 RESASC
= RESASC*DHLGTH
212 ABSERR
= ABS
((RESK
-RESG
)*HLGTH
)
213 IF(RESASC
.NE
.0.0D
+00.AND
.ABSERR
.NE
.0.D
+00)
214 1 ABSERR
= RESASC*MIN
(0.1D
+01,(0.2D
+03*ABSERR
/RESASC
)**1.5D
+00)
215 IF(RESABS
.GT
.UFLOW
/(0.5D
+02*EPMACH
)) ABSERR
= MAX
216 1 ((EPMACH*0
.5D
+02)*RESABS
,ABSERR
)