2 SUBROUTINE ZBESI
(ZR
, ZI
, FNU
, KODE
, N
, CYR
, CYI
, NZ
, IERR
)
3 C***BEGIN PROLOGUE ZBESI
4 C***PURPOSE Compute a sequence of the Bessel functions I(a,z) for
5 C complex argument z and real nonnegative orders a=b,b+1,
6 C b+2,... where b>0. A scaling option is available to
10 C***TYPE COMPLEX (CBESI-C, ZBESI-C)
11 C***KEYWORDS BESSEL FUNCTIONS OF COMPLEX ARGUMENT, I BESSEL FUNCTIONS,
12 C MODIFIED BESSEL FUNCTIONS
13 C***AUTHOR Amos, D. E., (SNL)
16 C ***A DOUBLE PRECISION ROUTINE***
17 C On KODE=1, ZBESI computes an N-member sequence of complex
18 C Bessel functions CY(L)=I(FNU+L-1,Z) for real nonnegative
19 C orders FNU+L-1, L=1,...,N and complex Z in the cut plane
20 C -pi<arg(Z)<=pi where Z=ZR+i*ZI. On KODE=2, CBESI returns
21 C the scaled functions
23 C CY(L) = exp(-abs(X))*I(FNU+L-1,Z), L=1,...,N and X=Re(Z)
25 C which removes the exponential growth in both the left and
26 C right half-planes as Z goes to infinity.
29 C ZR - DOUBLE PRECISION real part of argument Z
30 C ZI - DOUBLE PRECISION imag part of argument Z
31 C FNU - DOUBLE PRECISION initial order, FNU>=0
32 C KODE - A parameter to indicate the scaling option
34 C CY(L)=I(FNU+L-1,Z), L=1,...,N
36 C CY(L)=exp(-abs(X))*I(FNU+L-1,Z), L=1,...,N
38 C N - Number of terms in the sequence, N>=1
41 C CYR - DOUBLE PRECISION real part of result vector
42 C CYI - DOUBLE PRECISION imag part of result vector
43 C NZ - Number of underflows set to zero
45 C NZ>0 CY(L)=0, L=N-NZ+1,...,N
47 C IERR=0 Normal return - COMPUTATION COMPLETED
48 C IERR=1 Input error - NO COMPUTATION
49 C IERR=2 Overflow - NO COMPUTATION
50 C (Re(Z) too large on KODE=1)
51 C IERR=3 Precision warning - COMPUTATION COMPLETED
52 C (Result has half precision or less
53 C because abs(Z) or FNU+N-1 is large)
54 C IERR=4 Precision error - NO COMPUTATION
55 C (Result has no precision because
56 C abs(Z) or FNU+N-1 is too large)
57 C IERR=5 Algorithmic error - NO COMPUTATION
58 C (Termination condition not met)
62 C The computation of I(a,z) is carried out by the power series
63 C for small abs(z), the asymptotic expansion for large abs(z),
64 C the Miller algorithm normalized by the Wronskian and a
65 C Neumann series for intermediate magnitudes of z, and the
66 C uniform asymptotic expansions for I(a,z) and J(a,z) for
67 C large orders a. Backward recurrence is used to generate
68 C sequences or reduce orders when necessary.
70 C The calculations above are done in the right half plane and
71 C continued into the left half plane by the formula
73 C I(a,z*exp(t)) = exp(t*a)*I(a,z), Re(z)>0
76 C For negative orders, the formula
78 C I(-a,z) = I(a,z) + (2/pi)*sin(pi*a)*K(a,z)
80 C can be used. However, for large orders close to integers the
81 C the function changes radically. When a is a large positive
82 C integer, the magnitude of I(-a,z)=I(a,z) is a large
83 C negative power of ten. But when a is not an integer,
84 C K(a,z) dominates in magnitude with a large positive power of
85 C ten and the most that the second term can be reduced is by
86 C unit roundoff from the coefficient. Thus, wide changes can
87 C occur within unit roundoff of a large integer for a. Here,
88 C large means a>abs(z).
90 C In most complex variable computation, one must evaluate ele-
91 C mentary functions. When the magnitude of Z or FNU+N-1 is
92 C large, losses of significance by argument reduction occur.
93 C Consequently, if either one exceeds U1=SQRT(0.5/UR), then
94 C losses exceeding half precision are likely and an error flag
95 C IERR=3 is triggered where UR=MAX(D1MACH(4),1.0D-18) is double
96 C precision unit roundoff limited to 18 digits precision. Also,
97 C if either is larger than U2=0.5/UR, then all significance is
98 C lost and IERR=4. In order to use the INT function, arguments
99 C must be further restricted not to exceed the largest machine
100 C integer, U3=I1MACH(9). Thus, the magnitude of Z and FNU+N-1
101 C is restricted by MIN(U2,U3). In IEEE arithmetic, U1,U2, and
102 C U3 approximate 2.0E+3, 4.2E+6, 2.1E+9 in single precision
103 C and 4.7E+7, 2.3E+15 and 2.1E+9 in double precision. This
104 C makes U2 limiting in single precision and U3 limiting in
105 C double precision. This means that one can expect to retain,
106 C in the worst cases on IEEE machines, no digits in single pre-
107 C cision and only 6 digits in double precision. Similar con-
108 C siderations hold for other machines.
110 C The approximate relative error in the magnitude of a complex
111 C Bessel function can be expressed as P*10**S where P=MAX(UNIT
112 C ROUNDOFF,1.0E-18) is the nominal precision and 10**S repre-
113 C sents the increase in error due to argument reduction in the
114 C elementary functions. Here, S=MAX(1,ABS(LOG10(ABS(Z))),
115 C ABS(LOG10(FNU))) approximately (i.e., S=MAX(1,ABS(EXPONENT OF
116 C ABS(Z),ABS(EXPONENT OF FNU)) ). However, the phase angle may
117 C have only absolute accuracy. This is most likely to occur
118 C when one component (in magnitude) is larger than the other by
119 C several orders of magnitude. If one component is 10**K larger
120 C than the other, then one can expect only MAX(ABS(LOG10(P))-K,
121 C 0) significant digits; or, stated another way, when K exceeds
122 C the exponent of P, no significant digits remain in the smaller
123 C component. However, the phase angle retains absolute accuracy
124 C because, in complex arithmetic with precision P, the smaller
125 C component will not (as a rule) decrease below P times the
126 C magnitude of the larger component. In these extreme cases,
127 C the principal phase angle is on the order of +P, -P, PI/2-P,
130 C***REFERENCES 1. M. Abramowitz and I. A. Stegun, Handbook of Mathe-
131 C matical Functions, National Bureau of Standards
132 C Applied Mathematics Series 55, U. S. Department
133 C of Commerce, Tenth Printing (1972) or later.
134 C 2. D. E. Amos, Computation of Bessel Functions of
135 C Complex Argument, Report SAND83-0086, Sandia National
136 C Laboratories, Albuquerque, NM, May 1983.
137 C 3. D. E. Amos, Computation of Bessel Functions of
138 C Complex Argument and Large Order, Report SAND83-0643,
139 C Sandia National Laboratories, Albuquerque, NM, May
141 C 4. D. E. Amos, A Subroutine Package for Bessel Functions
142 C of a Complex Argument and Nonnegative Order, Report
143 C SAND85-1018, Sandia National Laboratory, Albuquerque,
145 C 5. D. E. Amos, A portable package for Bessel functions
146 C of a complex argument and nonnegative order, ACM
147 C Transactions on Mathematical Software, 12 (September
148 C 1986), pp. 265-273.
150 C***ROUTINES CALLED D1MACH, I1MACH, ZABS, ZBINU
151 C***REVISION HISTORY (YYMMDD)
152 C 830501 DATE WRITTEN
153 C 890801 REVISION DATE from Version 3.2
154 C 910415 Prologue converted to Version 4.0 format. (BAB)
155 C 920128 Category corrected. (WRB)
156 C 920811 Prologue revised. (DWL)
157 C***END PROLOGUE ZBESI
158 C COMPLEX CONE,CSGN,CW,CY,CZERO,Z,ZN
159 DOUBLE PRECISION AA
, ALIM
, ARG
, CONEI
, CONER
, CSGNI
, CSGNR
, CYI
,
160 * CYR
, DIG
, ELIM
, FNU
, FNUL
, PI
, RL
, R1M5
, STR
, TOL
, ZI
, ZNI
, ZNR
,
161 * ZR
, D1MACH
, AZ
, BB
, FN
, ZABS
, ASCLE
, RTOL
, ATOL
, STI
162 INTEGER I
, IERR
, INU
, K
, KODE
, K1
,K2
,N
,NZ
,NN
, I1MACH
163 DIMENSION CYR
(N
), CYI
(N
)
165 DATA PI
/3.14159265358979324D0
/
166 DATA CONER
, CONEI
/1.0D0
,0.0D0
/
168 C***FIRST EXECUTABLE STATEMENT ZBESI
171 IF (FNU
.LT
.0.0D0
) IERR
=1
172 IF (KODE
.LT
.1 .OR
. KODE
.GT
.2) IERR
=1
174 IF (IERR
.NE
.0) RETURN
175 C-----------------------------------------------------------------------
176 C SET PARAMETERS RELATED TO MACHINE CONSTANTS.
177 C TOL IS THE APPROXIMATE UNIT ROUNDOFF LIMITED TO 1.0E-18.
178 C ELIM IS THE APPROXIMATE EXPONENTIAL OVER- AND UNDERFLOW LIMIT.
179 C EXP(-ELIM).LT.EXP(-ALIM)=EXP(-ELIM)/TOL AND
180 C EXP(ELIM).GT.EXP(ALIM)=EXP(ELIM)*TOL ARE INTERVALS NEAR
181 C UNDERFLOW AND OVERFLOW LIMITS WHERE SCALED ARITHMETIC IS DONE.
182 C RL IS THE LOWER BOUNDARY OF THE ASYMPTOTIC EXPANSION FOR LARGE Z.
183 C DIG = NUMBER OF BASE 10 DIGITS IN TOL = 10**(-DIG).
184 C FNUL IS THE LOWER BOUNDARY OF THE ASYMPTOTIC SERIES FOR LARGE FNU.
185 C-----------------------------------------------------------------------
186 TOL
= MAX
(D1MACH
(4),1.0D
-18)
190 K
= MIN
(ABS
(K1
),ABS
(K2
))
191 ELIM
= 2.303D0*
(K*R1M5
-3.0D0
)
196 ALIM
= ELIM
+ MAX
(-AA
,-41.45D0
)
197 RL
= 1.2D0*DIG
+ 3.0D0
198 FNUL
= 10.0D0
+ 6.0D0*
(DIG
-3.0D0
)
199 C-----------------------------------------------------------------------
200 C TEST FOR PROPER RANGE
201 C-----------------------------------------------------------------------
207 IF (AZ
.GT
.AA
) GO TO 260
208 IF (FN
.GT
.AA
) GO TO 260
216 IF (ZR
.GE
.0.0D0
) GO TO 40
219 C-----------------------------------------------------------------------
220 C CALCULATE CSGN=EXP(FNU*PI*I) TO MINIMIZE LOSSES OF SIGNIFICANCE
222 C-----------------------------------------------------------------------
225 IF (ZI
.LT
.0.0D0
) ARG
= -ARG
228 IF (MOD
(INU
,2).EQ
.0) GO TO 40
232 CALL ZBINU
(ZNR
, ZNI
, FNU
, KODE
, N
, CYR
, CYI
, NZ
, RL
, FNUL
, TOL
,
234 IF (NZ
.LT
.0) GO TO 120
235 IF (ZR
.GE
.0.0D0
) RETURN
236 C-----------------------------------------------------------------------
237 C ANALYTIC CONTINUATION TO THE LEFT HALF PLANE
238 C-----------------------------------------------------------------------
242 ASCLE
= D1MACH
(1)*RTOL*1
.0D
+3
244 C STR = CYR(I)*CSGNR - CYI(I)*CSGNI
245 C CYI(I) = CYR(I)*CSGNI + CYI(I)*CSGNR
250 IF (MAX
(ABS
(AA
),ABS
(BB
)).GT
.ASCLE
) GO TO 55
255 STR
= AA*CSGNR
- BB*CSGNI
256 STI
= AA*CSGNI
+ BB*CSGNR
264 IF(NZ
.EQ
.(-2)) GO TO 130