Remove commented out operators property
[maxima.git] / src / numerical / slatec / fortran / zbesi.f
blob1b48549c5e94e7690eeb57faaf8d31a3ad2100a2
1 *DECK ZBESI
2 SUBROUTINE ZBESI (ZR, ZI, FNU, KODE, N, CYR, CYI, NZ, IERR)
3 C***BEGIN PROLOGUE ZBESI
4 C***PURPOSE Compute a sequence of the Bessel functions I(a,z) for
5 C complex argument z and real nonnegative orders a=b,b+1,
6 C b+2,... where b>0. A scaling option is available to
7 C help avoid overflow.
8 C***LIBRARY SLATEC
9 C***CATEGORY C10B4
10 C***TYPE COMPLEX (CBESI-C, ZBESI-C)
11 C***KEYWORDS BESSEL FUNCTIONS OF COMPLEX ARGUMENT, I BESSEL FUNCTIONS,
12 C MODIFIED BESSEL FUNCTIONS
13 C***AUTHOR Amos, D. E., (SNL)
14 C***DESCRIPTION
16 C ***A DOUBLE PRECISION ROUTINE***
17 C On KODE=1, ZBESI computes an N-member sequence of complex
18 C Bessel functions CY(L)=I(FNU+L-1,Z) for real nonnegative
19 C orders FNU+L-1, L=1,...,N and complex Z in the cut plane
20 C -pi<arg(Z)<=pi where Z=ZR+i*ZI. On KODE=2, CBESI returns
21 C the scaled functions
23 C CY(L) = exp(-abs(X))*I(FNU+L-1,Z), L=1,...,N and X=Re(Z)
25 C which removes the exponential growth in both the left and
26 C right half-planes as Z goes to infinity.
28 C Input
29 C ZR - DOUBLE PRECISION real part of argument Z
30 C ZI - DOUBLE PRECISION imag part of argument Z
31 C FNU - DOUBLE PRECISION initial order, FNU>=0
32 C KODE - A parameter to indicate the scaling option
33 C KODE=1 returns
34 C CY(L)=I(FNU+L-1,Z), L=1,...,N
35 C =2 returns
36 C CY(L)=exp(-abs(X))*I(FNU+L-1,Z), L=1,...,N
37 C where X=Re(Z)
38 C N - Number of terms in the sequence, N>=1
40 C Output
41 C CYR - DOUBLE PRECISION real part of result vector
42 C CYI - DOUBLE PRECISION imag part of result vector
43 C NZ - Number of underflows set to zero
44 C NZ=0 Normal return
45 C NZ>0 CY(L)=0, L=N-NZ+1,...,N
46 C IERR - Error flag
47 C IERR=0 Normal return - COMPUTATION COMPLETED
48 C IERR=1 Input error - NO COMPUTATION
49 C IERR=2 Overflow - NO COMPUTATION
50 C (Re(Z) too large on KODE=1)
51 C IERR=3 Precision warning - COMPUTATION COMPLETED
52 C (Result has half precision or less
53 C because abs(Z) or FNU+N-1 is large)
54 C IERR=4 Precision error - NO COMPUTATION
55 C (Result has no precision because
56 C abs(Z) or FNU+N-1 is too large)
57 C IERR=5 Algorithmic error - NO COMPUTATION
58 C (Termination condition not met)
60 C *Long Description:
62 C The computation of I(a,z) is carried out by the power series
63 C for small abs(z), the asymptotic expansion for large abs(z),
64 C the Miller algorithm normalized by the Wronskian and a
65 C Neumann series for intermediate magnitudes of z, and the
66 C uniform asymptotic expansions for I(a,z) and J(a,z) for
67 C large orders a. Backward recurrence is used to generate
68 C sequences or reduce orders when necessary.
70 C The calculations above are done in the right half plane and
71 C continued into the left half plane by the formula
73 C I(a,z*exp(t)) = exp(t*a)*I(a,z), Re(z)>0
74 C t = i*pi or -i*pi
76 C For negative orders, the formula
78 C I(-a,z) = I(a,z) + (2/pi)*sin(pi*a)*K(a,z)
80 C can be used. However, for large orders close to integers the
81 C the function changes radically. When a is a large positive
82 C integer, the magnitude of I(-a,z)=I(a,z) is a large
83 C negative power of ten. But when a is not an integer,
84 C K(a,z) dominates in magnitude with a large positive power of
85 C ten and the most that the second term can be reduced is by
86 C unit roundoff from the coefficient. Thus, wide changes can
87 C occur within unit roundoff of a large integer for a. Here,
88 C large means a>abs(z).
90 C In most complex variable computation, one must evaluate ele-
91 C mentary functions. When the magnitude of Z or FNU+N-1 is
92 C large, losses of significance by argument reduction occur.
93 C Consequently, if either one exceeds U1=SQRT(0.5/UR), then
94 C losses exceeding half precision are likely and an error flag
95 C IERR=3 is triggered where UR=MAX(D1MACH(4),1.0D-18) is double
96 C precision unit roundoff limited to 18 digits precision. Also,
97 C if either is larger than U2=0.5/UR, then all significance is
98 C lost and IERR=4. In order to use the INT function, arguments
99 C must be further restricted not to exceed the largest machine
100 C integer, U3=I1MACH(9). Thus, the magnitude of Z and FNU+N-1
101 C is restricted by MIN(U2,U3). In IEEE arithmetic, U1,U2, and
102 C U3 approximate 2.0E+3, 4.2E+6, 2.1E+9 in single precision
103 C and 4.7E+7, 2.3E+15 and 2.1E+9 in double precision. This
104 C makes U2 limiting in single precision and U3 limiting in
105 C double precision. This means that one can expect to retain,
106 C in the worst cases on IEEE machines, no digits in single pre-
107 C cision and only 6 digits in double precision. Similar con-
108 C siderations hold for other machines.
110 C The approximate relative error in the magnitude of a complex
111 C Bessel function can be expressed as P*10**S where P=MAX(UNIT
112 C ROUNDOFF,1.0E-18) is the nominal precision and 10**S repre-
113 C sents the increase in error due to argument reduction in the
114 C elementary functions. Here, S=MAX(1,ABS(LOG10(ABS(Z))),
115 C ABS(LOG10(FNU))) approximately (i.e., S=MAX(1,ABS(EXPONENT OF
116 C ABS(Z),ABS(EXPONENT OF FNU)) ). However, the phase angle may
117 C have only absolute accuracy. This is most likely to occur
118 C when one component (in magnitude) is larger than the other by
119 C several orders of magnitude. If one component is 10**K larger
120 C than the other, then one can expect only MAX(ABS(LOG10(P))-K,
121 C 0) significant digits; or, stated another way, when K exceeds
122 C the exponent of P, no significant digits remain in the smaller
123 C component. However, the phase angle retains absolute accuracy
124 C because, in complex arithmetic with precision P, the smaller
125 C component will not (as a rule) decrease below P times the
126 C magnitude of the larger component. In these extreme cases,
127 C the principal phase angle is on the order of +P, -P, PI/2-P,
128 C or -PI/2+P.
130 C***REFERENCES 1. M. Abramowitz and I. A. Stegun, Handbook of Mathe-
131 C matical Functions, National Bureau of Standards
132 C Applied Mathematics Series 55, U. S. Department
133 C of Commerce, Tenth Printing (1972) or later.
134 C 2. D. E. Amos, Computation of Bessel Functions of
135 C Complex Argument, Report SAND83-0086, Sandia National
136 C Laboratories, Albuquerque, NM, May 1983.
137 C 3. D. E. Amos, Computation of Bessel Functions of
138 C Complex Argument and Large Order, Report SAND83-0643,
139 C Sandia National Laboratories, Albuquerque, NM, May
140 C 1983.
141 C 4. D. E. Amos, A Subroutine Package for Bessel Functions
142 C of a Complex Argument and Nonnegative Order, Report
143 C SAND85-1018, Sandia National Laboratory, Albuquerque,
144 C NM, May 1985.
145 C 5. D. E. Amos, A portable package for Bessel functions
146 C of a complex argument and nonnegative order, ACM
147 C Transactions on Mathematical Software, 12 (September
148 C 1986), pp. 265-273.
150 C***ROUTINES CALLED D1MACH, I1MACH, ZABS, ZBINU
151 C***REVISION HISTORY (YYMMDD)
152 C 830501 DATE WRITTEN
153 C 890801 REVISION DATE from Version 3.2
154 C 910415 Prologue converted to Version 4.0 format. (BAB)
155 C 920128 Category corrected. (WRB)
156 C 920811 Prologue revised. (DWL)
157 C***END PROLOGUE ZBESI
158 C COMPLEX CONE,CSGN,CW,CY,CZERO,Z,ZN
159 DOUBLE PRECISION AA, ALIM, ARG, CONEI, CONER, CSGNI, CSGNR, CYI,
160 * CYR, DIG, ELIM, FNU, FNUL, PI, RL, R1M5, STR, TOL, ZI, ZNI, ZNR,
161 * ZR, D1MACH, AZ, BB, FN, ZABS, ASCLE, RTOL, ATOL, STI
162 INTEGER I, IERR, INU, K, KODE, K1,K2,N,NZ,NN, I1MACH
163 DIMENSION CYR(N), CYI(N)
164 EXTERNAL ZABS
165 DATA PI /3.14159265358979324D0/
166 DATA CONER, CONEI /1.0D0,0.0D0/
168 C***FIRST EXECUTABLE STATEMENT ZBESI
169 IERR = 0
170 NZ=0
171 IF (FNU.LT.0.0D0) IERR=1
172 IF (KODE.LT.1 .OR. KODE.GT.2) IERR=1
173 IF (N.LT.1) IERR=1
174 IF (IERR.NE.0) RETURN
175 C-----------------------------------------------------------------------
176 C SET PARAMETERS RELATED TO MACHINE CONSTANTS.
177 C TOL IS THE APPROXIMATE UNIT ROUNDOFF LIMITED TO 1.0E-18.
178 C ELIM IS THE APPROXIMATE EXPONENTIAL OVER- AND UNDERFLOW LIMIT.
179 C EXP(-ELIM).LT.EXP(-ALIM)=EXP(-ELIM)/TOL AND
180 C EXP(ELIM).GT.EXP(ALIM)=EXP(ELIM)*TOL ARE INTERVALS NEAR
181 C UNDERFLOW AND OVERFLOW LIMITS WHERE SCALED ARITHMETIC IS DONE.
182 C RL IS THE LOWER BOUNDARY OF THE ASYMPTOTIC EXPANSION FOR LARGE Z.
183 C DIG = NUMBER OF BASE 10 DIGITS IN TOL = 10**(-DIG).
184 C FNUL IS THE LOWER BOUNDARY OF THE ASYMPTOTIC SERIES FOR LARGE FNU.
185 C-----------------------------------------------------------------------
186 TOL = MAX(D1MACH(4),1.0D-18)
187 K1 = I1MACH(15)
188 K2 = I1MACH(16)
189 R1M5 = D1MACH(5)
190 K = MIN(ABS(K1),ABS(K2))
191 ELIM = 2.303D0*(K*R1M5-3.0D0)
192 K1 = I1MACH(14) - 1
193 AA = R1M5*K1
194 DIG = MIN(AA,18.0D0)
195 AA = AA*2.303D0
196 ALIM = ELIM + MAX(-AA,-41.45D0)
197 RL = 1.2D0*DIG + 3.0D0
198 FNUL = 10.0D0 + 6.0D0*(DIG-3.0D0)
199 C-----------------------------------------------------------------------
200 C TEST FOR PROPER RANGE
201 C-----------------------------------------------------------------------
202 AZ = ZABS(ZR,ZI)
203 FN = FNU+(N-1)
204 AA = 0.5D0/TOL
205 BB=I1MACH(9)*0.5D0
206 AA = MIN(AA,BB)
207 IF (AZ.GT.AA) GO TO 260
208 IF (FN.GT.AA) GO TO 260
209 AA = SQRT(AA)
210 IF (AZ.GT.AA) IERR=3
211 IF (FN.GT.AA) IERR=3
212 ZNR = ZR
213 ZNI = ZI
214 CSGNR = CONER
215 CSGNI = CONEI
216 IF (ZR.GE.0.0D0) GO TO 40
217 ZNR = -ZR
218 ZNI = -ZI
219 C-----------------------------------------------------------------------
220 C CALCULATE CSGN=EXP(FNU*PI*I) TO MINIMIZE LOSSES OF SIGNIFICANCE
221 C WHEN FNU IS LARGE
222 C-----------------------------------------------------------------------
223 INU = FNU
224 ARG = (FNU-INU)*PI
225 IF (ZI.LT.0.0D0) ARG = -ARG
226 CSGNR = COS(ARG)
227 CSGNI = SIN(ARG)
228 IF (MOD(INU,2).EQ.0) GO TO 40
229 CSGNR = -CSGNR
230 CSGNI = -CSGNI
231 40 CONTINUE
232 CALL ZBINU(ZNR, ZNI, FNU, KODE, N, CYR, CYI, NZ, RL, FNUL, TOL,
233 * ELIM, ALIM)
234 IF (NZ.LT.0) GO TO 120
235 IF (ZR.GE.0.0D0) RETURN
236 C-----------------------------------------------------------------------
237 C ANALYTIC CONTINUATION TO THE LEFT HALF PLANE
238 C-----------------------------------------------------------------------
239 NN = N - NZ
240 IF (NN.EQ.0) RETURN
241 RTOL = 1.0D0/TOL
242 ASCLE = D1MACH(1)*RTOL*1.0D+3
243 DO 50 I=1,NN
244 C STR = CYR(I)*CSGNR - CYI(I)*CSGNI
245 C CYI(I) = CYR(I)*CSGNI + CYI(I)*CSGNR
246 C CYR(I) = STR
247 AA = CYR(I)
248 BB = CYI(I)
249 ATOL = 1.0D0
250 IF (MAX(ABS(AA),ABS(BB)).GT.ASCLE) GO TO 55
251 AA = AA*RTOL
252 BB = BB*RTOL
253 ATOL = TOL
254 55 CONTINUE
255 STR = AA*CSGNR - BB*CSGNI
256 STI = AA*CSGNI + BB*CSGNR
257 CYR(I) = STR*ATOL
258 CYI(I) = STI*ATOL
259 CSGNR = -CSGNR
260 CSGNI = -CSGNI
261 50 CONTINUE
262 RETURN
263 120 CONTINUE
264 IF(NZ.EQ.(-2)) GO TO 130
265 NZ = 0
266 IERR=2
267 RETURN
268 130 CONTINUE
269 NZ=0
270 IERR=5
271 RETURN
272 260 CONTINUE
273 NZ=0
274 IERR=4
275 RETURN