Windows installer: Update README.txt.
[maxima.git] / src / nummod.lisp
blob2e34aa4f09de7f827e4f699a3c879414fa117bef
1 ;; Maxima functions for floor, ceiling, and friends
2 ;; Copyright (C) 2004, 2005, 2007 Barton Willis
4 ;; Barton Willis
5 ;; Department of Mathematics
6 ;; University of Nebraska at Kearney
7 ;; Kearney NE 68847
8 ;; willisb@unk.edu
10 ;; This source code is licensed under the terms of the Lisp Lesser
11 ;; GNU Public License (LLGPL). The LLGPL consists of a preamble, published
12 ;; by Franz Inc. (http://opensource.franz.com/preamble.html), and the GNU
13 ;; Library General Public License (LGPL), version 2, or (at your option)
14 ;; any later version. When the preamble conflicts with the LGPL,
15 ;; the preamble takes precedence.
17 ;; This library is distributed in the hope that it will be useful,
18 ;; but WITHOUT ANY WARRANTY; without even the implied warranty of
19 ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 ;; Library General Public License for details.
22 ;; You should have received a copy of the GNU Library General Public
23 ;; License along with this library; if not, write to the
24 ;; Free Software Foundation, Inc., 51 Franklin St, Fifth Floor,
25 ;; Boston, MA 02110-1301, USA.
27 (in-package :maxima)
29 (macsyma-module nummod)
31 ;; Let's have version numbers 1,2,3,...
33 (eval-when (:load-toplevel :execute)
34 ($put '$nummod 3 '$version)
35 ;; Let's remove built-in symbols from list for user-defined properties.
36 (setq $props (remove '$nummod $props)))
38 ;; Ideally this should be removed in favor of ftake* (in mopers.lisp),
39 ;; which is identical to what opcons used to do. But some share files
40 ;; use this, we need to keep this until those are fixed.
41 (defmacro opcons (op &rest args)
42 `(ftake* ,op ,@args))
44 ;; charfun(pred) evaluates to 1 when the predicate 'pred' evaluates
45 ;; to true; it evaluates to 0 when 'pred' evaluates to false; otherwise,
46 ;; it evaluates to a noun form.
48 (defprop $charfun simp-charfun operators)
49 (defprop %charfun simp-charfun operators)
51 (defun simp-charfun (e yy z)
52 (declare (ignore yy))
53 (oneargcheck e)
54 (setq e (take '($is) (simplifya (specrepcheck (second e)) z)))
55 (let* (($prederror nil)
56 (bool (mevalp e)))
57 (cond ((eq t bool) 1)
58 ((eq nil bool) 0)
59 ((op-equalp e '$is) `(($charfun simp) ,(second e)))
60 (t `(($charfun simp) ,e)))))
62 (defun integer-part-of-sum (e)
63 (let ((i-sum 0) (n-sum 0) (o-sum 0) (n))
64 (setq e (margs e))
65 (dolist (ei e)
66 (cond ((maxima-integerp ei)
67 (setq i-sum (add ei i-sum)))
68 ((or (ratnump ei) (floatp ei) ($bfloatp ei))
69 (setq n-sum (add ei n-sum)))
71 (setq o-sum (add ei o-sum)))))
72 (setq n (ftake* '$floor n-sum))
73 (setq i-sum (add i-sum n))
74 (setq o-sum (add o-sum (sub n-sum n)))
75 (values i-sum o-sum)))
77 (defprop $floor simp-floor operators)
79 (defprop $floor tex-matchfix tex)
80 (defprop $floor (("\\left \\lfloor " ) " \\right \\rfloor") texsym)
82 ;; $floor distributes over lists, matrices, and equations
83 (setf (get '$floor 'distribute_over) '(mlist $matrix mequal))
85 ; These defprops for $entier are copied from orthopoly/orthopoly-init.lisp.
87 (defprop $entier tex-matchfix tex)
88 (defprop $entier (("\\lfloor ") " \\rfloor") texsym)
90 ;; $entier and $fix distributes over lists, matrices, and equations
91 (setf (get '$entier 'distribute_over) '(mlist $matrix mequal))
92 (setf (get '$fix 'distribute_over) '(mlist $matrix mequal))
94 ;; For an example, see pretty-good-floor-or-ceiling. Code courtesy of Stavros Macrakis.
96 (defmacro bind-fpprec (val &body exprs)
97 `(let (fpprec bigfloatzero bigfloatone bfhalf bfmhalf)
98 (let (($fpprec (fpprec1 nil ,val)))
99 ,@exprs)))
101 ;; Return true if the expression can be formed using rational numbers, logs, mplus, mexpt, or mtimes.
103 (defun use-radcan-p (e)
104 (or ($ratnump e) (and (op-equalp e '%log 'mexpt 'mplus 'mtimes) (every 'use-radcan-p (cdr e)))))
106 ;; When constantp(x) is true, we use bfloat evaluation to try to determine
107 ;; the ceiling or floor. If numerical evaluation of e is ill-conditioned, this function
108 ;; can misbehave. I'm somewhat uncomfortable with this, but it is no worse
109 ;; than some other stuff. One safeguard -- the evaluation is done with three
110 ;; values for fpprec. When the floating point evaluations are
111 ;; inconsistent, bailout and return nil. I hope that this function is
112 ;; much more likely to return nil than it is to return a bogus value.
114 (defun pretty-good-floor-or-ceiling (x fn &optional digits)
115 (let (($float2bf t) ($algebraic t) (f1) (f2) (f3) (eps) (lb) (ub) (n))
117 (setq digits (if (and (integerp digits) (> 0 digits)) digits 25))
118 (catch 'done
120 ;; To handle ceiling(%i^%i), we need to apply rectform. If bfloat
121 ;; is improved, it might be possible to remove this call to rectform.
123 (setq x ($rectform x))
124 (if (not ($freeof '$%i '$minf '$inf '$und '$infinity x)) (throw 'done nil))
126 ;; When x doesn't evaluate to a bigfloat, bailout and return nil.
127 ;; This happens when, for example, x = asin(2). For now, bfloatp
128 ;; evaluates to nil for a complex big float. If this ever changes,
129 ;; this code might need to be repaired.
131 (bind-fpprec digits
132 (setq f1 ($bfloat x))
133 (if (not ($bfloatp f1)) (throw 'done nil)))
135 (incf digits 20)
136 (setq f2 (bind-fpprec digits ($bfloat x)))
137 (if (not ($bfloatp f2)) (throw 'done nil))
139 (incf digits 20)
140 (bind-fpprec digits
141 (setq f3 ($bfloat x))
142 (if (not ($bfloatp f3)) (throw 'done nil))
144 ;; Let's say that the true value of x is in the interval
145 ;; [f3 - |f3| * eps, f3 + |f3| * eps], where eps = 10^(20 - digits).
146 ;; Define n to be the number of integers in this interval; we have
148 (setq eps (power ($bfloat 10) (- 20 digits)))
149 (setq lb (sub f3 (mult (take '(mabs) f3) eps)))
150 (setq ub (add f3 (mult (take '(mabs) f3) eps)))
152 ;; If n > 1, we're going to give up. This is true iff ceiling(ub) -
153 ;; ceiling(lb) > 1. However, we don't want to blindly try to calculate
154 ;; that: if ub and lb are enormous, we probably won't have enough
155 ;; precision in the bigfloats to calculate either ceiling. Start by
156 ;; taking the difference: if it's at least 2, then we know that n >= 2.
157 (when (fpgreaterp (cdr (sub ub lb)) (cdr ($bfloat 2)))
158 (throw 'done nil))
160 (setq n (sub (take '($ceiling) ub)
161 (take '($ceiling) lb))))
163 (setq f1 (take (list fn) f1))
164 (setq f2 (take (list fn) f2))
165 (setq f3 (take (list fn) f3))
167 ;; Provided f1 = f2 = f3 and n = 0, return f1.
168 ;; If n = 1 and (use-radcan-p e) and ($radcan e) is a $ratnump, return
169 ;; floor / ceiling of radcan(x).
171 (cond ((and (= f1 f2 f3) (= n 0)) f1)
172 ((and (= f1 f2 f3) (= n 1) (use-radcan-p x))
173 (setq x ($radcan x))
174 (if ($ratnump x) (take (list fn) x) nil))
175 (t nil)))))
178 ;; (a) The function fpentier rounds a bigfloat towards zero--we need to
179 ;; check for that.
181 ;; (b) Since limit(f(x))=(m)inf implies limit(floor(f(x)))=(m)inf,
182 ;; floor(inf/minf) = inf/minf. Since minf<limit(f(x))<inf implies
183 ;; minf<limit(floor(f(x)))<inf, floor(ind)=ind
185 ;; I think floor(complex number) should be undefined too. Some folks
186 ;; might like floor(a + %i b) --> floor(a) + %i floor(b). But
187 ;; this would violate the integer-valuedness of floor.
188 ;; So floor(infinity) remains unsimplified
190 (defun simp-floor (e e1 z)
191 (oneargcheck e)
192 (setq e (simplifya (specrepcheck (nth 1 e)) z))
194 (cond ((numberp e) (floor e))
196 ((ratnump e) (floor (cadr e) (caddr e)))
198 (($bfloatp e)
199 (setq e1 (fpentier e))
200 (if (and (minusp (cadr e)) (not (zerop1 (sub e1 e))))
201 (1- e1)
202 e1))
204 ((maxima-integerp e) e)
206 (($orderlessp e (neg e))
207 (sub 0 (ftake* '$ceiling (neg e))))
209 ((and (setq e1 (mget e '$numer)) (floor e1)))
211 ((member e '($inf $minf $ind $und)) e)
212 ;; leave floor(infinity) as is
213 ((or (eq e '$zerob)) -1)
214 ((or (eq e '$zeroa)) 0)
216 ((and ($constantp e) (pretty-good-floor-or-ceiling e '$floor)))
218 ((mplusp e)
219 (let ((i-sum) (o-sum))
220 (multiple-value-setq (i-sum o-sum) (integer-part-of-sum e))
221 (setq o-sum (if (equal i-sum 0) `(($floor simp) ,o-sum)
222 (ftake* '$floor o-sum)))
223 (add i-sum o-sum)))
225 ;; handle 0 <= e < 1 implies floor(e) = 0 and
226 ;; -1 <= e < 0 implies floor(e) = -1.
228 ((and (member ($compare 0 e) '("<" "<=") :test #'equal)
229 (equal ($compare e 1) "<"))
231 ((and (member ($compare -1 e) '("<" "<=") :test #'equal)
232 (equal ($compare e 0) "<"))
234 (t `(($floor simp) ,e))))
236 (defun floor-integral (x)
237 (let ((f (take '($floor) x)))
238 (mul f (div 1 2) (add (mul 2 x) -1 (neg f)))))
240 (defun ceiling-integral (x)
241 (let ((f (take '($ceiling) x)))
242 (mul f (div 1 2) (add 1 (mul 2 x) (neg f)))))
244 (putprop '$floor `((x) ,'floor-integral) 'integral)
245 (putprop '$ceiling `((x) ,'ceiling-integral) 'integral)
247 (defprop $ceiling simp-ceiling operators)
249 (defprop $floor simplim%floor simplim%function)
251 (defun simplim%floor (expr var val)
252 (let* ((arg (cadr expr))
253 (b (behavior arg var val))
254 (arglimab (limit arg var val 'think)) ; with $zeroa $zerob
255 (arglim (ridofab arglimab)))
256 (cond ((and (= b -1)
257 (maxima-integerp arglim))
258 (m- arglim 1))
259 ((and (= b 1)
260 (maxima-integerp arglim))
261 arglim)
262 ((and ($constantp arglim)
263 (not (maxima-integerp arglim)))
264 (simplify (list '($floor) arglim)))
266 (throw 'limit nil)))))
268 (defprop $ceiling tex-matchfix tex)
269 (defprop $ceiling (("\\left \\lceil " ) " \\right \\rceil") texsym)
271 ;; $ceiling distributes over lists, matrices, and equations.
272 (setf (get '$ceiling 'distribute_over) '(mlist $matrix mequal))
274 (defun simp-ceiling (e e1 z)
275 (oneargcheck e)
276 (setq e (simplifya (specrepcheck (nth 1 e)) z))
277 (cond ((numberp e) (ceiling e))
279 ((ratnump e) (ceiling (cadr e) (caddr e)))
281 (($bfloatp e)
282 (sub 0 (ftake* '$floor (sub 0 e))))
284 ((maxima-integerp e) e)
286 (($orderlessp e (neg e))
287 (sub* 0 (ftake* '$floor (neg e))))
289 ((and (setq e1 (mget e '$numer)) (ceiling e1)))
291 ((member e '($inf $minf $ind $und)) e)
292 ;; leave ceiling(infinity) as is
293 ((or (eq e '$zerob)) 0)
294 ((or (eq e '$zeroa)) 1)
296 ((and ($constantp e) (pretty-good-floor-or-ceiling e '$ceiling)))
298 ((mplusp e)
299 (let ((i-sum) (o-sum))
300 (multiple-value-setq (i-sum o-sum) (integer-part-of-sum e))
301 (setq o-sum (if (equal i-sum 0) `(($ceiling simp) ,o-sum)
302 (ftake* '$ceiling o-sum)))
303 (add i-sum o-sum)))
305 ;; handle 0 < e <= 1 implies ceiling(e) = 1 and
306 ;; -1 < e <= 0 implies ceiling(e) = 0.
308 ((and (equal ($compare 0 e) "<")
309 (member ($compare e 1) '("<" "<=") :test #'equal))
311 ((and (equal ($compare -1 e) "<")
312 (member ($compare e 0) '("<" "<=") :test #'equal))
314 (t `(($ceiling simp) ,e))))
316 (defprop $ceiling simplim%ceiling simplim%function)
318 (defun simplim%ceiling (expr var val)
319 (let* ((arg (cadr expr))
320 (b (behavior arg var val))
321 (arglimab (limit arg var val 'think)) ; with $zeroa $zerob
322 (arglim (ridofab arglimab)))
323 (cond ((and (= b -1)
324 (maxima-integerp arglim))
325 arglim)
326 ((and (= b 1)
327 (maxima-integerp arglim))
328 (m+ arglim 1))
329 ((and ($constantp arglim)
330 (not (maxima-integerp arglim)))
331 (simplify (list '($ceiling) arglim)))
333 (throw 'limit nil)))))
336 (defprop $mod simp-nummod operators)
337 (defprop $mod tex-infix tex)
338 (defprop $mod (" \\rm{mod} ") texsym)
339 (defprop $mod 180. tex-lbp)
340 (defprop $mod 180. tex-rbp)
342 ;; $mod distributes over lists, matrices, and equations
343 (setf (get '$mod 'distribute_over) '(mlist $matrix mequal))
345 ;; See "Concrete Mathematics," Section 3.21.
347 (defun simp-nummod (e e1 z)
348 (twoargcheck e)
349 (let ((x (simplifya (specrepcheck (cadr e)) z))
350 (y (simplifya (specrepcheck (caddr e)) z)))
351 (cond ((or (equal 0 y) (equal 0 x)) x)
352 ((equal 1 y) (sub x (ftake* '$floor x)))
353 ((and ($constantp x) ($constantp y))
354 (sub x (mul y (ftake* '$floor (div x y)))))
355 ((not (equal 1 (setq e1 ($gcd x y))))
356 (mul e1 (ftake* '$mod (div x e1) (div y e1))))
357 (t `(($mod simp) ,x ,y)))))
359 ;; The function 'round' rounds a number to the nearest integer. For a tie, round to the
360 ;; nearest even integer.
362 ;; This property is important to get round(round(x)) => round(x).
363 (setf (get '%round 'integer-valued) t)
364 (setf (get '%round 'reflection-rule) 'odd-function-reflect)
365 ;; round distributes over lists, matrices, and equations.
366 (setf (get '%round 'distribute_over) '(mlist $matrix mequal))
368 (def-simplifier round (e)
369 (cond (($featurep e '$integer)
370 ;; takes care of round(round(x)) --> round(x).
372 ((member e '($inf $minf $und $ind) :test #'eq)
374 ((eq e '$zerob)
376 ((eq e '$zeroa)
379 (let* ((lb (take '($floor) e))
380 (ub (take '($ceiling) e))
381 (sgn (csign (sub (sub ub e) (sub e lb)))))
382 (cond ((eq sgn t)
383 (give-up))
384 ((eq sgn '$neg)
386 ((eq sgn '$pos)
388 ((alike lb ub)
389 ;; For floats that are integers, this can
390 ;; happen. Maybe featurep should catch this.
392 ((and (eq sgn '$zero)
393 ($featurep lb '$even))
395 ((and (eq sgn '$zero)
396 ($featurep ub '$even))
398 ((apply-reflection-simp (mop form) e t))
399 (t (give-up)))))))
401 (defprop %round simplim%round simplim%function)
403 (defun simplim%round (expr var val)
404 (let* ((arg (cadr expr))
405 (b (behavior arg var val))
406 (arglimab (limit arg var val 'think)) ; with $zeroa $zerob
407 (arglim (ridofab arglimab)))
408 (cond ((and (= b -1)
409 (maxima-integerp (m+ 1//2 arglim)))
410 (m- arglim 1//2))
411 ((and (= b 1)
412 (maxima-integerp (m+ 1//2 arglim)))
413 (m+ arglim 1//2))
414 ((and ($constantp arglim)
415 (not (maxima-integerp (m+ 1//2 arglim))))
416 (simplify (list '(%round) arglim)))
418 (throw 'limit nil)))))
420 ;; Round a number towards zero.
423 ;; This property is important to get truncate(truncate(x)) =>
424 ;; truncate(x).
425 (setf (get '%truncate 'integer-valued) t)
426 (setf (get '%truncate 'reflection-rule) 'odd-function-reflect)
428 ;; truncate distributes over lists, matrices, and equations.
429 (setf (get '%truncate 'distribute_over) '(mlist $matrix mequal))
431 (def-simplifier truncate (e)
432 (cond (($featurep e '$integer)
433 ;; takes care of truncate(truncate(x)) --> truncate(x).
435 ((member e '($inf $minf $und $ind) :test #'eq)
437 ((eq e '$zerob)
439 ((eq e '$zeroa)
442 (let ((sgn (csign e)))
443 (cond ((member sgn '($neg $nz) :test #'eq)
444 (take '($ceiling) e))
445 ((member sgn '($zero $pz $pos) :test #'eq)
446 (take '($floor) e))
447 ((apply-reflection-simp (mop form) e t))
448 (t (give-up)))))))
450 ;;; integration for signum, unit_step, and mod.
452 ;; integrate(signum(x),x) = |x|
453 (defun signum-integral (x)
454 (take '(mabs) x))
456 ;; integrate(unit_step(x),x) = (x + |x|)/2
457 (defun unit-step-integral (x)
458 (div (add x (take '(mabs) x)) 2))
460 ;; We have mod(x,a) = x-a*floor(x/a). This gives
461 ;; integrate(mod(x,a),x) = (a^2 floor(x/a)^2 + (a^2 - 2 a x) floor(x/a) + x^2)/2
462 ;; In terms of mod(x,a), an antiderivative is
463 ;; integrate(mod(x,a),x) = (mod(x,a)^2-a*mod(x,a)+a*x)/2
464 ;; Before this function is called, Maxima checks if a explicitly depends on x. So
465 ;; this function doesn't need to do that check.
466 (defun mod-integral (x a)
467 (let ((q (take '($mod) x a)))
468 (div (add (mul q q) (mul -1 a q) (mul a x)) 2)))
470 (putprop '%signum (list (list 'x) 'signum-integral) 'integral)
471 (putprop '$unit_step (list (list 'x) 'unit-step-integral) 'integral)
473 ;; integrate(mod(x,a),a) doesn't have representation in terms of functions
474 ;; known to Maxima, I think. (Barton Willis, 2020).
475 (putprop '$mod (list (list 'x 'y) 'mod-integral nil) 'integral)