2 [a,b,c,d,e]; rempart(%,[3,4]); /* RATMX:TRUE; */
3 /* Find out whether these functions are linearly dependent or
4 linearly independent. */ [sin(x),cos(x),sin(x-1)];
5 /* The Wronskian matrix */ wronskian(%,x);
6 /* The Wronskian determinant is zero. Thus the three given
7 functions are linearly dependent. */ expand(determinant(%));
9 (2-3*%i)/(%i+4); conjugate(%);
10 matrix([1,0,5*%i],[-2*%i,2,0],[1,1+%i,0]);
11 conjugate(%); expand(adjoint(%th(2))); tracematrix(%th(3));
12 (2+%i)/(3-%i); rational(%);
13 logand(15,5); logxor(5,6); logor(4,9);
14 /* uprobe([foo,bar]); uprobe([functs,demo,share]); */
16 nonzeroandfreeof(z,y+4); /* 3*z+(y+1)*z+y^2;
17 This expression is re-formed first as linear in z, then as
18 quadratic in y linear(%,z); quadratic(%th(2),y); */
19 gcdivide(a*x-b*x,a*x+b*x); gcdivide(a^2-b^2,a^2-2*a*b+b^2);
20 lcm(expand((x+y)^3),2,4,5,25,x^2-y^2);
21 arithmetic(0,17,7); geometric(8,8,5); harmonic(1,2,3,4);
22 arithsum(7/2,43/20,11); geosum(1,-21/10,6); geosum(1,21/10,6);
23 geosum(2,1/2,inf); gaussprob(223/100); gd(69/200); agd(%pi/6);
24 vers(19*%pi/90); covers(19*%pi/90); exsec(13*%pi/45);
25 hav(47*%pi/200); combination(9,3); permutation(9,3);