1 /* a few sample plots */
6 /* some nice figures. fig1.ps from fig1.mac
7 shows the units of a quadratic number field
8 as lying on the yx= +- 1
13 /* REal part of z ^ 1/3 */
15 viewps("maxout-3.ps");
17 plot2d(sin(x),[-%pi,%pi]);
18 plot2d(3*sin(x),[-%pi,%pi]);
20 block([ps_scale:[40,20],ps_translate:[5,15]],
22 plot2d(3*x^2*sin(x),[-%pi,%pi]));
26 /* REal part of z ^ 1/3 */
28 block([ps_scale:[200,200],
29 ps_translate:[1.5,1.5],
30 colour_z:true,transform_xy:polar_to_xy],
32 plot3d(r^.3333*cos(th/3),[1,1,1.4],[0,1,0,6*%pi],[12,81]),
37 /* REal part of z ^ 1/6 */
38 block([ps_scale:[200,200],
39 ps_translate:[1.5,1.5],
40 colour_z:true,transform_xy:polar_to_xy],
41 plot3d(r^(1/6.0)*cos(th/6),[1,1,1.4],[0,1,0,2*6*%pi],[12,121]),
49 set_up_dot_simplifications([z.z+y.y+y.x+x.y,-a*z.z+y.x+x.y+x.x,a*z.y,z.x-a*y.z-x.z],4);
50 centrals:fast_central_elements([x,y,z],3);
51 centrals4: fast_central_elements([x,y,z],4);
52 set_up_dot_simplifications(append(centrals,centrals4,[z.z+y.y+y.x+x.y,-a*z.z+y.x+x.y+x.x,a*z.y,z.x-a*y.z-x.z]),8);
53 monomial_dimensions(8);