Rename *ll* and *ul* to ll and ul in strictly-in-interval
[maxima.git] / share / graphs / isomorphism.lisp
blob0f38e13c70585e210932224da5cc797c8e2d7da3
1 ;;;
2 ;;; GRAPHS - graph theory package for Maxima
3 ;;;
4 ;;; Copyright (C) 2007 Andrej Vodopivec <andrej.vodopivec@gmail.com>
5 ;;;
6 ;;; This program is free software; you can redistribute it and/or modify
7 ;;; it under the terms of the GNU General Public License as published by
8 ;;; the Free Software Foundation; either version 2 of the License, or
9 ;;; (at your option) any later version.
10 ;;;
11 ;;; This program is distributed in the hope that it will be useful,
12 ;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13 ;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 ;;; GNU General Public License for more details.
15 ;;;
16 ;;; You should have received a copy of the GNU General Public License
17 ;;; along with this program; if not, write to the Free Software
18 ;;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
19 ;;;
22 (defmfun $is_isomorphic (gr1 gr2)
23 (or (= 0 ($graph_order gr1) ($graph_order gr2))
24 (and (graph-p gr1) (graph-p gr2) (isomorphism-graphs gr1 gr2) t)
25 (and (digraph-p gr1) (digraph-p gr2) (isomorphism-digraphs gr1 gr2) t)))
27 (defmfun $isomorphism (gr1 gr2)
28 (cond ((graph-p gr1)
29 (if (graph-p gr2)
30 (let (res
31 (iso (isomorphism-graphs gr1 gr2)))
32 (when iso
33 (maphash
34 (lambda (key val)
35 (setq res (cons `((marrow simp) ,key ,val) res)))
36 iso))
37 (cons '(mlist simp) res))
38 (merror "Wrong inputs to isomorphism")))
39 ((digraph-p gr1)
40 (if (digraph-p gr2)
41 (let (res
42 (iso (isomorphism-digraphs gr1 gr2)))
43 (when iso
44 (maphash
45 (lambda (key val)
46 (setq res (cons `((marrow simp) ,key ,val) res)))
47 iso))
48 (cons '(mlist simp) res))
49 (merror "Wrong inputs to isomorphism")))
51 (merror "Wrong inputs to isomorphism"))))
53 (defun isomorphism-graphs (gr1 gr2)
55 ;; check the degree sequences
56 (let ((gr1-degrees (cdr ($degree_sequence gr1)))
57 (gr2-degrees (cdr ($degree_sequence gr2))))
58 (unless (= (length gr1-degrees)
59 (length gr2-degrees))
60 (return-from isomorphism-graphs nil))
61 (loop while (and gr1-degrees gr2-degrees) do
62 (unless (= (car gr1-degrees)
63 (car gr2-degrees))
64 (return-from isomorphism-graphs nil))
65 (pop gr1-degrees)
66 (pop gr2-degrees))
67 (when (or gr1-degrees gr2-degrees)
68 (return-from isomorphism-graphs nil)))
70 (let ((n (graph-order gr1))
71 (m (graph-size gr1)))
72 (when (< (* n (1- n)) (* 4 m))
73 (setq gr1 ($complement_graph gr1))
74 (setq gr2 ($complement_graph gr2))))
76 (let ((mapping (make-hash-table))
77 (m1) (m2) (out1) (out2))
78 (extend-isomorphism-graphs mapping m1 m2 out1 out2 gr1 gr2)))
80 (defun extend-isomorphism-graphs (mapping m1 m2 out1 out2 gr1 gr2)
81 ;; check if we have found an isomorphism
82 (when (= (length m1) ($graph_order gr1))
83 (return-from extend-isomorphism-graphs mapping))
85 ;; try extending the mapping
86 (let (n-set m)
87 ;; compute the new candidates for mattching
88 (cond
89 (out1
90 (unless out2
91 (return-from extend-isomorphism-graphs nil))
92 (setq n-set out1)
93 (setq m (apply #'min out2)))
94 (out2
95 (return-from extend-isomorphism-graphs nil))
97 (dolist (v (vertices gr1))
98 (unless (member v m1)
99 (push v n-set)))
100 (let ((m-set))
101 (dolist (v (vertices gr2))
102 (unless (member v m2)
103 (push v m-set)))
104 (setq m (apply #'min m-set)))))
106 ;; try extending the mapping
107 (dolist (n n-set)
109 ;; we have a pair (n->m)
110 (let ((ok t))
111 ;; n and m must have the same degree
112 (unless (= ($vertex_degree n gr1)
113 ($vertex_degree m gr2))
114 (setq ok nil))
115 ;; check if adjacencies are preserved
116 (loop for x in m1 while ok do
117 (if (member x (neighbors n gr1))
118 (unless (member (gethash x mapping)
119 (neighbors m gr2))
120 (setq ok nil))
121 (when (member (gethash x mapping)
122 (neighbors m gr2))
123 (setq ok nil))))
125 (when ok
126 ;; compute the new state
127 (let ((out1-prime) (out2-prime)
128 (m1-prime (cons n m1))
129 (m2-prime (cons m m2)))
130 ;; compute new out sets
131 (dolist (v m1-prime)
132 (dolist (u (neighbors v gr1))
133 (unless (or (member u out1-prime)
134 (member u m1-prime))
135 (push u out1-prime))))
136 (dolist (v m2-prime)
137 (dolist (u (neighbors v gr2))
138 (unless (or (member u out2-prime)
139 (member u m2-prime))
140 (push u out2-prime))))
142 ;; if we are compatible try extending
143 (when (= (length out1-prime) (length out2-prime))
144 (setf (gethash n mapping) m)
145 (let ((extended (extend-isomorphism-graphs mapping
146 m1-prime m2-prime
147 out1-prime out2-prime
148 gr1 gr2)))
149 (when extended
150 (return-from extend-isomorphism-graphs extended)))
151 (remhash n mapping)))) ))))
153 (defun isomorphism-digraphs (gr1 gr2)
155 ;; check the degree sequences
156 (let ((indegrees1) (outdegrees1)
157 (indegrees2) (outdegrees2))
158 (dolist (v (vertices gr1))
159 (push ($vertex_in_degree v gr1) indegrees1)
160 (push ($vertex_out_degree v gr1) outdegrees1))
161 (dolist (v (vertices gr2))
162 (push ($vertex_in_degree v gr2) indegrees2)
163 (push ($vertex_out_degree v gr2) outdegrees2))
164 (setq indegrees1 (sort indegrees1 #'<))
165 (setq indegrees2 (sort indegrees2 #'<))
166 (setq outdegrees1 (sort outdegrees1 #'<))
167 (setq outdegrees2 (sort outdegrees2 #'<))
168 (loop while (and indegrees1 indegrees2) do
169 (unless (and (= (car indegrees1) (car indegrees2))
170 (= (car outdegrees1) (car outdegrees2)))
171 (return-from isomorphism-digraphs nil))
172 (setq indegrees1 (cdr indegrees1))
173 (setq indegrees2 (cdr indegrees2))
174 (setq outdegrees1 (cdr outdegrees1))
175 (setq outdegrees2 (cdr outdegrees2)))
176 (when (or indegrees1 indegrees2)
177 (return-from isomorphism-digraphs nil)))
179 (let ((mapping (make-hash-table))
180 (m1) (m2) (out1) (out2) (in1) (in2))
181 (extend-isomorphism-digraphs mapping m1 m2 out1 out2 in1 in2 gr1 gr2)))
183 (defun extend-isomorphism-digraphs (mapping m1 m2 out1 out2 in1 in2 gr1 gr2)
184 ;; check if we have found an isomorphism
185 (when (= (length m1) ($graph_order gr1))
186 (return-from extend-isomorphism-digraphs mapping))
188 ;; try extending the mapping
189 (let (n-set m)
190 ;; compute the new candidates for mattching
191 (cond
192 (out1
193 (unless out2
194 (return-from extend-isomorphism-digraphs nil))
195 (setq n-set out1)
196 (setq m (apply #'min out2)))
197 (out2
198 (return-from extend-isomorphism-digraphs nil))
199 (in1
200 (unless in2
201 (return-from extend-isomorphism-digraphs nil))
202 (setq n-set in1)
203 (setq m (apply #'min in2)))
205 (dolist (v (vertices gr1))
206 (unless (member v m1)
207 (push v n-set)))
208 (let ((m-set))
209 (dolist (v (vertices gr2))
210 (unless (member v m2)
211 (push v m-set)))
212 (setq m (apply #'min m-set)))))
214 ;; try extending the mapping
215 (dolist (n n-set)
217 ;; we have a pair (n->m)
218 (let ((ok t))
219 ;; n and m must have the same degree
220 (unless (and (= ($vertex_in_degree n gr1)
221 ($vertex_in_degree m gr2))
222 (= ($vertex_out_degree n gr1)
223 ($vertex_out_degree m gr2)))
224 (setq ok nil))
225 ;; check if adjacencies are preserved
226 (loop for x in m1 while ok do
227 (if (member x (out-neighbors n gr1))
228 (unless (member (gethash x mapping)
229 (out-neighbors m gr2))
230 (setq ok nil))
231 (when (member (gethash x mapping)
232 (out-neighbors m gr2))
233 (setq ok nil)))
234 (if (member x (out-neighbors n gr1))
235 (unless (member (gethash x mapping)
236 (out-neighbors m gr2))
237 (setq ok nil))
238 (when (member (gethash x mapping)
239 (out-neighbors m gr2))
240 (setq ok nil))))
242 (when ok
243 ;; compute the new state
244 (let ((out1-prime) (out2-prime)
245 (in1-prime) (in2-prime)
246 (m1-prime (cons n m1))
247 (m2-prime (cons m m2)))
248 ;; compute new out sets
249 (dolist (v m1-prime)
250 (dolist (u (in-neighbors v gr1))
251 (unless (or (member u in1-prime)
252 (member u m1-prime))
253 (push u in1-prime)))
254 (dolist (u (out-neighbors v gr1))
255 (unless (or (member u out1-prime)
256 (member u m1-prime))
257 (push u out1-prime))))
258 (dolist (v m2-prime)
259 (dolist (u (in-neighbors v gr2))
260 (unless (or (member u in2-prime)
261 (member u m2-prime))
262 (push u in2-prime)))
263 (dolist (u (out-neighbors v gr2))
264 (unless (or (member u out2-prime)
265 (member u m2-prime))
266 (push u out2-prime))))
268 ;; if we are compatible try extending
269 (when (and (= (length out1-prime) (length out2-prime))
270 (= (length in1-prime) (length in2-prime)))
271 (setf (gethash n mapping) m)
272 (let ((extended (extend-isomorphism-digraphs mapping
273 m1-prime m2-prime
274 out1-prime out2-prime
275 in1-prime in2-prime
276 gr1 gr2)))
277 (when extended
278 (return-from extend-isomorphism-digraphs extended)))
279 (remhash n mapping)))) ))))