Rename *ll* and *ul* to ll and ul in strictly-in-interval
[maxima.git] / src / tlimit.lisp
blobf2275f3bd1453db546c8de03f7db7864884ada3f
1 ;;; -*- Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- ;;;;
2 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3 ;;; The data in this file contains enhancements. ;;;;;
4 ;;; ;;;;;
5 ;;; Copyright (c) 1984,1987 by William Schelter,University of Texas ;;;;;
6 ;;; All rights reserved ;;;;;
7 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
8 ;;; (c) Copyright 1980 Massachusetts Institute of Technology ;;;
9 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
11 (in-package :maxima)
13 (declare-top (special taylored))
15 (macsyma-module tlimit)
17 (load-macsyma-macros rzmac)
19 ;; TOP LEVEL FUNCTION(S): $TLIMIT $TLDEFINT
21 (defmfun $tlimit (&rest args)
22 (let ((limit-using-taylor t))
23 (declare (special limit-using-taylor))
24 (apply #'$limit args)))
26 (defmfun $tldefint (exp var ll ul)
27 (let ((limit-using-taylor t))
28 (declare (special limit-using-taylor))
29 ($ldefint exp var ll ul)))
31 ;; Taylor cannot handle conjugate, ceiling, floor, unit_step, or signum
32 ;; expressions, so let's tell tlimit to *not* try. We also disallow
33 ;; expressions containing $ind.
34 (defun tlimp (e)
35 (not (amongl '($conjugate $floor $ceiling $ind $unit_step %signum) e)))
37 ;; Dispatch Taylor, but recurse on the order until either the recursion
38 ;; depth is 15 or the Taylor polynomial is nonzero. When Taylor
39 ;; fails to find a nonzero Taylor polynomial or the recursion depth is
40 ;; too great, return nil.
42 ;; This recursion on the order attempts to handle limits such as
43 ;; tlimit(2^n/n^5, n, inf) correctly.
45 ;; We set up a reasonable environment for calling taylor. Arguably, setting
46 ;; these option variables is overly removes the users ability to adjust these
47 ;; option variables. When $taylor_logexpand is true, taylor does some
48 ;; principal branch violating transformations, so we set it to nil.
50 ;; I know of no compelling reason for defaulting the taylor order to
51 ;; lhospitallim, but this is documented in the user documentation).
53 (defun tlimit-taylor (e x pt n &optional (d 0))
54 (let ((ee 0)
55 (silent-taylor-flag t)
56 ($taylordepth 8)
57 ($taylor_logexpand nil)
58 ($taylor_simplifier #'sratsimp))
59 (setq ee (ratdisrep (catch 'taylor-catch ($taylor e x pt n))))
60 (cond ((and ee (not (alike1 ee 0))) ee)
61 ;; When taylor returns zero and the depth d is less than 16,
62 ;; declare a do-over; otherwise return nil.
63 ((and ee (< d 16))
64 (tlimit-taylor e x pt (* 4 (max 1 n)) (+ d 1)))
65 (t nil))))
67 ;; Previously when the taylor series failed, there was code for deciding
68 ;; whether to call limit1 or simplimit. The choice depended on the last
69 ;; argument to taylim (previously named *i*) and the main operator of the
70 ;; expression. This code dispenses with this logic and dispatches limit1
71 ;; when Maxima is unable to find the taylor polynomial. This change orphans
72 ;; the last argument of taylim.
73 (defun taylim (e var val flag)
74 (declare (ignore flag))
75 (let ((et nil))
76 (when (tlimp e)
77 (setq e (stirling0 e))
78 (setq et (tlimit-taylor e var (ridofab val) $lhospitallim 0)))
79 (if et (let ((taylored t)) (limit et var val 'think)) (limit1 e var val))))