This is the commit for a fiz of the WxMaxima debug issue.
[maxima.git] / share / odepack / fortran / dstoda.f
blobb522842264942e169137c29d5bfaae51b1249b61
1 *DECK DSTODA
2 SUBROUTINE DSTODA (NEQ, Y, YH, NYH, YH1, EWT, SAVF, ACOR,
3 1 WM, IWM, F, JAC, PJAC, SLVS)
4 EXTERNAL F, JAC, PJAC, SLVS
5 INTEGER NEQ, NYH, IWM
6 DOUBLE PRECISION Y, YH, YH1, EWT, SAVF, ACOR, WM
7 DIMENSION NEQ(*), Y(*), YH(NYH,*), YH1(*), EWT(*), SAVF(*),
8 1 ACOR(*), WM(*), IWM(*)
9 INTEGER IOWND, IALTH, IPUP, LMAX, MEO, NQNYH, NSLP,
10 1 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L,
11 2 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER,
12 3 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU
13 INTEGER IOWND2, ICOUNT, IRFLAG, JTYP, MUSED, MXORDN, MXORDS
14 DOUBLE PRECISION CONIT, CRATE, EL, ELCO, HOLD, RMAX, TESCO,
15 2 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND
16 DOUBLE PRECISION ROWND2, CM1, CM2, PDEST, PDLAST, RATIO,
17 1 PDNORM
18 COMMON /DLS001/ CONIT, CRATE, EL(13), ELCO(13,12),
19 1 HOLD, RMAX, TESCO(3,12),
20 2 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND,
21 3 IOWND(6), IALTH, IPUP, LMAX, MEO, NQNYH, NSLP,
22 4 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L,
23 5 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER,
24 6 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU
25 COMMON /DLSA01/ ROWND2, CM1(12), CM2(5), PDEST, PDLAST, RATIO,
26 1 PDNORM,
27 2 IOWND2(3), ICOUNT, IRFLAG, JTYP, MUSED, MXORDN, MXORDS
28 INTEGER I, I1, IREDO, IRET, J, JB, M, NCF, NEWQ
29 INTEGER LM1, LM1P1, LM2, LM2P1, NQM1, NQM2
30 DOUBLE PRECISION DCON, DDN, DEL, DELP, DSM, DUP, EXDN, EXSM, EXUP,
31 1 R, RH, RHDN, RHSM, RHUP, TOLD, DMNORM
32 DOUBLE PRECISION ALPHA, DM1,DM2, EXM1,EXM2,
33 1 PDH, PNORM, RATE, RH1, RH1IT, RH2, RM, SM1(12)
34 SAVE SM1
35 DATA SM1/0.5D0, 0.575D0, 0.55D0, 0.45D0, 0.35D0, 0.25D0,
36 1 0.20D0, 0.15D0, 0.10D0, 0.075D0, 0.050D0, 0.025D0/
37 C-----------------------------------------------------------------------
38 C DSTODA performs one step of the integration of an initial value
39 C problem for a system of ordinary differential equations.
40 C Note: DSTODA is independent of the value of the iteration method
41 C indicator MITER, when this is .ne. 0, and hence is independent
42 C of the type of chord method used, or the Jacobian structure.
43 C Communication with DSTODA is done with the following variables:
45 C Y = an array of length .ge. N used as the Y argument in
46 C all calls to F and JAC.
47 C NEQ = integer array containing problem size in NEQ(1), and
48 C passed as the NEQ argument in all calls to F and JAC.
49 C YH = an NYH by LMAX array containing the dependent variables
50 C and their approximate scaled derivatives, where
51 C LMAX = MAXORD + 1. YH(i,j+1) contains the approximate
52 C j-th derivative of y(i), scaled by H**j/factorial(j)
53 C (j = 0,1,...,NQ). On entry for the first step, the first
54 C two columns of YH must be set from the initial values.
55 C NYH = a constant integer .ge. N, the first dimension of YH.
56 C YH1 = a one-dimensional array occupying the same space as YH.
57 C EWT = an array of length N containing multiplicative weights
58 C for local error measurements. Local errors in y(i) are
59 C compared to 1.0/EWT(i) in various error tests.
60 C SAVF = an array of working storage, of length N.
61 C ACOR = a work array of length N, used for the accumulated
62 C corrections. On a successful return, ACOR(i) contains
63 C the estimated one-step local error in y(i).
64 C WM,IWM = real and integer work arrays associated with matrix
65 C operations in chord iteration (MITER .ne. 0).
66 C PJAC = name of routine to evaluate and preprocess Jacobian matrix
67 C and P = I - H*EL0*Jac, if a chord method is being used.
68 C It also returns an estimate of norm(Jac) in PDNORM.
69 C SLVS = name of routine to solve linear system in chord iteration.
70 C CCMAX = maximum relative change in H*EL0 before PJAC is called.
71 C H = the step size to be attempted on the next step.
72 C H is altered by the error control algorithm during the
73 C problem. H can be either positive or negative, but its
74 C sign must remain constant throughout the problem.
75 C HMIN = the minimum absolute value of the step size H to be used.
76 C HMXI = inverse of the maximum absolute value of H to be used.
77 C HMXI = 0.0 is allowed and corresponds to an infinite HMAX.
78 C HMIN and HMXI may be changed at any time, but will not
79 C take effect until the next change of H is considered.
80 C TN = the independent variable. TN is updated on each step taken.
81 C JSTART = an integer used for input only, with the following
82 C values and meanings:
83 C 0 perform the first step.
84 C .gt.0 take a new step continuing from the last.
85 C -1 take the next step with a new value of H,
86 C N, METH, MITER, and/or matrix parameters.
87 C -2 take the next step with a new value of H,
88 C but with other inputs unchanged.
89 C On return, JSTART is set to 1 to facilitate continuation.
90 C KFLAG = a completion code with the following meanings:
91 C 0 the step was succesful.
92 C -1 the requested error could not be achieved.
93 C -2 corrector convergence could not be achieved.
94 C -3 fatal error in PJAC or SLVS.
95 C A return with KFLAG = -1 or -2 means either
96 C ABS(H) = HMIN or 10 consecutive failures occurred.
97 C On a return with KFLAG negative, the values of TN and
98 C the YH array are as of the beginning of the last
99 C step, and H is the last step size attempted.
100 C MAXORD = the maximum order of integration method to be allowed.
101 C MAXCOR = the maximum number of corrector iterations allowed.
102 C MSBP = maximum number of steps between PJAC calls (MITER .gt. 0).
103 C MXNCF = maximum number of convergence failures allowed.
104 C METH = current method.
105 C METH = 1 means Adams method (nonstiff)
106 C METH = 2 means BDF method (stiff)
107 C METH may be reset by DSTODA.
108 C MITER = corrector iteration method.
109 C MITER = 0 means functional iteration.
110 C MITER = JT .gt. 0 means a chord iteration corresponding
111 C to Jacobian type JT. (The DLSODA/DLSODAR argument JT is
112 C communicated here as JTYP, but is not used in DSTODA
113 C except to load MITER following a method switch.)
114 C MITER may be reset by DSTODA.
115 C N = the number of first-order differential equations.
116 C-----------------------------------------------------------------------
117 KFLAG = 0
118 TOLD = TN
119 NCF = 0
120 IERPJ = 0
121 IERSL = 0
122 JCUR = 0
123 ICF = 0
124 DELP = 0.0D0
125 IF (JSTART .GT. 0) GO TO 200
126 IF (JSTART .EQ. -1) GO TO 100
127 IF (JSTART .EQ. -2) GO TO 160
128 C-----------------------------------------------------------------------
129 C On the first call, the order is set to 1, and other variables are
130 C initialized. RMAX is the maximum ratio by which H can be increased
131 C in a single step. It is initially 1.E4 to compensate for the small
132 C initial H, but then is normally equal to 10. If a failure
133 C occurs (in corrector convergence or error test), RMAX is set at 2
134 C for the next increase.
135 C DCFODE is called to get the needed coefficients for both methods.
136 C-----------------------------------------------------------------------
137 LMAX = MAXORD + 1
138 NQ = 1
139 L = 2
140 IALTH = 2
141 RMAX = 10000.0D0
142 RC = 0.0D0
143 EL0 = 1.0D0
144 CRATE = 0.7D0
145 HOLD = H
146 NSLP = 0
147 IPUP = MITER
148 IRET = 3
149 C Initialize switching parameters. METH = 1 is assumed initially. -----
150 ICOUNT = 20
151 IRFLAG = 0
152 PDEST = 0.0D0
153 PDLAST = 0.0D0
154 RATIO = 5.0D0
155 CALL DCFODE (2, ELCO, TESCO)
156 DO 10 I = 1,5
157 10 CM2(I) = TESCO(2,I)*ELCO(I+1,I)
158 CALL DCFODE (1, ELCO, TESCO)
159 DO 20 I = 1,12
160 20 CM1(I) = TESCO(2,I)*ELCO(I+1,I)
161 GO TO 150
162 C-----------------------------------------------------------------------
163 C The following block handles preliminaries needed when JSTART = -1.
164 C IPUP is set to MITER to force a matrix update.
165 C If an order increase is about to be considered (IALTH = 1),
166 C IALTH is reset to 2 to postpone consideration one more step.
167 C If the caller has changed METH, DCFODE is called to reset
168 C the coefficients of the method.
169 C If H is to be changed, YH must be rescaled.
170 C If H or METH is being changed, IALTH is reset to L = NQ + 1
171 C to prevent further changes in H for that many steps.
172 C-----------------------------------------------------------------------
173 100 IPUP = MITER
174 LMAX = MAXORD + 1
175 IF (IALTH .EQ. 1) IALTH = 2
176 IF (METH .EQ. MUSED) GO TO 160
177 CALL DCFODE (METH, ELCO, TESCO)
178 IALTH = L
179 IRET = 1
180 C-----------------------------------------------------------------------
181 C The el vector and related constants are reset
182 C whenever the order NQ is changed, or at the start of the problem.
183 C-----------------------------------------------------------------------
184 150 DO 155 I = 1,L
185 155 EL(I) = ELCO(I,NQ)
186 NQNYH = NQ*NYH
187 RC = RC*EL(1)/EL0
188 EL0 = EL(1)
189 CONIT = 0.5D0/(NQ+2)
190 GO TO (160, 170, 200), IRET
191 C-----------------------------------------------------------------------
192 C If H is being changed, the H ratio RH is checked against
193 C RMAX, HMIN, and HMXI, and the YH array rescaled. IALTH is set to
194 C L = NQ + 1 to prevent a change of H for that many steps, unless
195 C forced by a convergence or error test failure.
196 C-----------------------------------------------------------------------
197 160 IF (H .EQ. HOLD) GO TO 200
198 RH = H/HOLD
199 H = HOLD
200 IREDO = 3
201 GO TO 175
202 170 RH = MAX(RH,HMIN/ABS(H))
203 175 RH = MIN(RH,RMAX)
204 RH = RH/MAX(1.0D0,ABS(H)*HMXI*RH)
205 C-----------------------------------------------------------------------
206 C If METH = 1, also restrict the new step size by the stability region.
207 C If this reduces H, set IRFLAG to 1 so that if there are roundoff
208 C problems later, we can assume that is the cause of the trouble.
209 C-----------------------------------------------------------------------
210 IF (METH .EQ. 2) GO TO 178
211 IRFLAG = 0
212 PDH = MAX(ABS(H)*PDLAST,0.000001D0)
213 IF (RH*PDH*1.00001D0 .LT. SM1(NQ)) GO TO 178
214 RH = SM1(NQ)/PDH
215 IRFLAG = 1
216 178 CONTINUE
217 R = 1.0D0
218 DO 180 J = 2,L
219 R = R*RH
220 DO 180 I = 1,N
221 180 YH(I,J) = YH(I,J)*R
222 H = H*RH
223 RC = RC*RH
224 IALTH = L
225 IF (IREDO .EQ. 0) GO TO 690
226 C-----------------------------------------------------------------------
227 C This section computes the predicted values by effectively
228 C multiplying the YH array by the Pascal triangle matrix.
229 C RC is the ratio of new to old values of the coefficient H*EL(1).
230 C When RC differs from 1 by more than CCMAX, IPUP is set to MITER
231 C to force PJAC to be called, if a Jacobian is involved.
232 C In any case, PJAC is called at least every MSBP steps.
233 C-----------------------------------------------------------------------
234 200 IF (ABS(RC-1.0D0) .GT. CCMAX) IPUP = MITER
235 IF (NST .GE. NSLP+MSBP) IPUP = MITER
236 TN = TN + H
237 I1 = NQNYH + 1
238 DO 215 JB = 1,NQ
239 I1 = I1 - NYH
240 CDIR$ IVDEP
241 DO 210 I = I1,NQNYH
242 210 YH1(I) = YH1(I) + YH1(I+NYH)
243 215 CONTINUE
244 PNORM = DMNORM (N, YH1, EWT)
245 C-----------------------------------------------------------------------
246 C Up to MAXCOR corrector iterations are taken. A convergence test is
247 C made on the RMS-norm of each correction, weighted by the error
248 C weight vector EWT. The sum of the corrections is accumulated in the
249 C vector ACOR(i). The YH array is not altered in the corrector loop.
250 C-----------------------------------------------------------------------
251 220 M = 0
252 RATE = 0.0D0
253 DEL = 0.0D0
254 DO 230 I = 1,N
255 230 Y(I) = YH(I,1)
256 CALL F (NEQ, TN, Y, SAVF)
257 NFE = NFE + 1
258 IF (IPUP .LE. 0) GO TO 250
259 C-----------------------------------------------------------------------
260 C If indicated, the matrix P = I - H*EL(1)*J is reevaluated and
261 C preprocessed before starting the corrector iteration. IPUP is set
262 C to 0 as an indicator that this has been done.
263 C-----------------------------------------------------------------------
264 CALL PJAC (NEQ, Y, YH, NYH, EWT, ACOR, SAVF, WM, IWM, F, JAC)
265 IPUP = 0
266 RC = 1.0D0
267 NSLP = NST
268 CRATE = 0.7D0
269 IF (IERPJ .NE. 0) GO TO 430
270 250 DO 260 I = 1,N
271 260 ACOR(I) = 0.0D0
272 270 IF (MITER .NE. 0) GO TO 350
273 C-----------------------------------------------------------------------
274 C In the case of functional iteration, update Y directly from
275 C the result of the last function evaluation.
276 C-----------------------------------------------------------------------
277 DO 290 I = 1,N
278 SAVF(I) = H*SAVF(I) - YH(I,2)
279 290 Y(I) = SAVF(I) - ACOR(I)
280 DEL = DMNORM (N, Y, EWT)
281 DO 300 I = 1,N
282 Y(I) = YH(I,1) + EL(1)*SAVF(I)
283 300 ACOR(I) = SAVF(I)
284 GO TO 400
285 C-----------------------------------------------------------------------
286 C In the case of the chord method, compute the corrector error,
287 C and solve the linear system with that as right-hand side and
288 C P as coefficient matrix.
289 C-----------------------------------------------------------------------
290 350 DO 360 I = 1,N
291 360 Y(I) = H*SAVF(I) - (YH(I,2) + ACOR(I))
292 CALL SLVS (WM, IWM, Y, SAVF)
293 IF (IERSL .LT. 0) GO TO 430
294 IF (IERSL .GT. 0) GO TO 410
295 DEL = DMNORM (N, Y, EWT)
296 DO 380 I = 1,N
297 ACOR(I) = ACOR(I) + Y(I)
298 380 Y(I) = YH(I,1) + EL(1)*ACOR(I)
299 C-----------------------------------------------------------------------
300 C Test for convergence. If M .gt. 0, an estimate of the convergence
301 C rate constant is stored in CRATE, and this is used in the test.
303 C We first check for a change of iterates that is the size of
304 C roundoff error. If this occurs, the iteration has converged, and a
305 C new rate estimate is not formed.
306 C In all other cases, force at least two iterations to estimate a
307 C local Lipschitz constant estimate for Adams methods.
308 C On convergence, form PDEST = local maximum Lipschitz constant
309 C estimate. PDLAST is the most recent nonzero estimate.
310 C-----------------------------------------------------------------------
311 400 CONTINUE
312 IF (DEL .LE. 100.0D0*PNORM*UROUND) GO TO 450
313 IF (M .EQ. 0 .AND. METH .EQ. 1) GO TO 405
314 IF (M .EQ. 0) GO TO 402
315 RM = 1024.0D0
316 IF (DEL .LE. 1024.0D0*DELP) RM = DEL/DELP
317 RATE = MAX(RATE,RM)
318 CRATE = MAX(0.2D0*CRATE,RM)
319 402 DCON = DEL*MIN(1.0D0,1.5D0*CRATE)/(TESCO(2,NQ)*CONIT)
320 IF (DCON .GT. 1.0D0) GO TO 405
321 PDEST = MAX(PDEST,RATE/ABS(H*EL(1)))
322 IF (PDEST .NE. 0.0D0) PDLAST = PDEST
323 GO TO 450
324 405 CONTINUE
325 M = M + 1
326 IF (M .EQ. MAXCOR) GO TO 410
327 IF (M .GE. 2 .AND. DEL .GT. 2.0D0*DELP) GO TO 410
328 DELP = DEL
329 CALL F (NEQ, TN, Y, SAVF)
330 NFE = NFE + 1
331 GO TO 270
332 C-----------------------------------------------------------------------
333 C The corrector iteration failed to converge.
334 C If MITER .ne. 0 and the Jacobian is out of date, PJAC is called for
335 C the next try. Otherwise the YH array is retracted to its values
336 C before prediction, and H is reduced, if possible. If H cannot be
337 C reduced or MXNCF failures have occurred, exit with KFLAG = -2.
338 C-----------------------------------------------------------------------
339 410 IF (MITER .EQ. 0 .OR. JCUR .EQ. 1) GO TO 430
340 ICF = 1
341 IPUP = MITER
342 GO TO 220
343 430 ICF = 2
344 NCF = NCF + 1
345 RMAX = 2.0D0
346 TN = TOLD
347 I1 = NQNYH + 1
348 DO 445 JB = 1,NQ
349 I1 = I1 - NYH
350 CDIR$ IVDEP
351 DO 440 I = I1,NQNYH
352 440 YH1(I) = YH1(I) - YH1(I+NYH)
353 445 CONTINUE
354 IF (IERPJ .LT. 0 .OR. IERSL .LT. 0) GO TO 680
355 IF (ABS(H) .LE. HMIN*1.00001D0) GO TO 670
356 IF (NCF .EQ. MXNCF) GO TO 670
357 RH = 0.25D0
358 IPUP = MITER
359 IREDO = 1
360 GO TO 170
361 C-----------------------------------------------------------------------
362 C The corrector has converged. JCUR is set to 0
363 C to signal that the Jacobian involved may need updating later.
364 C The local error test is made and control passes to statement 500
365 C if it fails.
366 C-----------------------------------------------------------------------
367 450 JCUR = 0
368 IF (M .EQ. 0) DSM = DEL/TESCO(2,NQ)
369 IF (M .GT. 0) DSM = DMNORM (N, ACOR, EWT)/TESCO(2,NQ)
370 IF (DSM .GT. 1.0D0) GO TO 500
371 C-----------------------------------------------------------------------
372 C After a successful step, update the YH array.
373 C Decrease ICOUNT by 1, and if it is -1, consider switching methods.
374 C If a method switch is made, reset various parameters,
375 C rescale the YH array, and exit. If there is no switch,
376 C consider changing H if IALTH = 1. Otherwise decrease IALTH by 1.
377 C If IALTH is then 1 and NQ .lt. MAXORD, then ACOR is saved for
378 C use in a possible order increase on the next step.
379 C If a change in H is considered, an increase or decrease in order
380 C by one is considered also. A change in H is made only if it is by a
381 C factor of at least 1.1. If not, IALTH is set to 3 to prevent
382 C testing for that many steps.
383 C-----------------------------------------------------------------------
384 KFLAG = 0
385 IREDO = 0
386 NST = NST + 1
387 HU = H
388 NQU = NQ
389 MUSED = METH
390 DO 460 J = 1,L
391 DO 460 I = 1,N
392 460 YH(I,J) = YH(I,J) + EL(J)*ACOR(I)
393 ICOUNT = ICOUNT - 1
394 IF (ICOUNT .GE. 0) GO TO 488
395 IF (METH .EQ. 2) GO TO 480
396 C-----------------------------------------------------------------------
397 C We are currently using an Adams method. Consider switching to BDF.
398 C If the current order is greater than 5, assume the problem is
399 C not stiff, and skip this section.
400 C If the Lipschitz constant and error estimate are not polluted
401 C by roundoff, go to 470 and perform the usual test.
402 C Otherwise, switch to the BDF methods if the last step was
403 C restricted to insure stability (irflag = 1), and stay with Adams
404 C method if not. When switching to BDF with polluted error estimates,
405 C in the absence of other information, double the step size.
407 C When the estimates are OK, we make the usual test by computing
408 C the step size we could have (ideally) used on this step,
409 C with the current (Adams) method, and also that for the BDF.
410 C If NQ .gt. MXORDS, we consider changing to order MXORDS on switching.
411 C Compare the two step sizes to decide whether to switch.
412 C The step size advantage must be at least RATIO = 5 to switch.
413 C-----------------------------------------------------------------------
414 IF (NQ .GT. 5) GO TO 488
415 IF (DSM .GT. 100.0D0*PNORM*UROUND .AND. PDEST .NE. 0.0D0)
416 1 GO TO 470
417 IF (IRFLAG .EQ. 0) GO TO 488
418 RH2 = 2.0D0
419 NQM2 = MIN(NQ,MXORDS)
420 GO TO 478
421 470 CONTINUE
422 EXSM = 1.0D0/L
423 RH1 = 1.0D0/(1.2D0*DSM**EXSM + 0.0000012D0)
424 RH1IT = 2.0D0*RH1
425 PDH = PDLAST*ABS(H)
426 IF (PDH*RH1 .GT. 0.00001D0) RH1IT = SM1(NQ)/PDH
427 RH1 = MIN(RH1,RH1IT)
428 IF (NQ .LE. MXORDS) GO TO 474
429 NQM2 = MXORDS
430 LM2 = MXORDS + 1
431 EXM2 = 1.0D0/LM2
432 LM2P1 = LM2 + 1
433 DM2 = DMNORM (N, YH(1,LM2P1), EWT)/CM2(MXORDS)
434 RH2 = 1.0D0/(1.2D0*DM2**EXM2 + 0.0000012D0)
435 GO TO 476
436 474 DM2 = DSM*(CM1(NQ)/CM2(NQ))
437 RH2 = 1.0D0/(1.2D0*DM2**EXSM + 0.0000012D0)
438 NQM2 = NQ
439 476 CONTINUE
440 IF (RH2 .LT. RATIO*RH1) GO TO 488
441 C THE SWITCH TEST PASSED. RESET RELEVANT QUANTITIES FOR BDF. ----------
442 478 RH = RH2
443 ICOUNT = 20
444 METH = 2
445 MITER = JTYP
446 PDLAST = 0.0D0
447 NQ = NQM2
448 L = NQ + 1
449 GO TO 170
450 C-----------------------------------------------------------------------
451 C We are currently using a BDF method. Consider switching to Adams.
452 C Compute the step size we could have (ideally) used on this step,
453 C with the current (BDF) method, and also that for the Adams.
454 C If NQ .gt. MXORDN, we consider changing to order MXORDN on switching.
455 C Compare the two step sizes to decide whether to switch.
456 C The step size advantage must be at least 5/RATIO = 1 to switch.
457 C If the step size for Adams would be so small as to cause
458 C roundoff pollution, we stay with BDF.
459 C-----------------------------------------------------------------------
460 480 CONTINUE
461 EXSM = 1.0D0/L
462 IF (MXORDN .GE. NQ) GO TO 484
463 NQM1 = MXORDN
464 LM1 = MXORDN + 1
465 EXM1 = 1.0D0/LM1
466 LM1P1 = LM1 + 1
467 DM1 = DMNORM (N, YH(1,LM1P1), EWT)/CM1(MXORDN)
468 RH1 = 1.0D0/(1.2D0*DM1**EXM1 + 0.0000012D0)
469 GO TO 486
470 484 DM1 = DSM*(CM2(NQ)/CM1(NQ))
471 RH1 = 1.0D0/(1.2D0*DM1**EXSM + 0.0000012D0)
472 NQM1 = NQ
473 EXM1 = EXSM
474 486 RH1IT = 2.0D0*RH1
475 PDH = PDNORM*ABS(H)
476 IF (PDH*RH1 .GT. 0.00001D0) RH1IT = SM1(NQM1)/PDH
477 RH1 = MIN(RH1,RH1IT)
478 RH2 = 1.0D0/(1.2D0*DSM**EXSM + 0.0000012D0)
479 IF (RH1*RATIO .LT. 5.0D0*RH2) GO TO 488
480 ALPHA = MAX(0.001D0,RH1)
481 DM1 = (ALPHA**EXM1)*DM1
482 IF (DM1 .LE. 1000.0D0*UROUND*PNORM) GO TO 488
483 C The switch test passed. Reset relevant quantities for Adams. --------
484 RH = RH1
485 ICOUNT = 20
486 METH = 1
487 MITER = 0
488 PDLAST = 0.0D0
489 NQ = NQM1
490 L = NQ + 1
491 GO TO 170
493 C No method switch is being made. Do the usual step/order selection. --
494 488 CONTINUE
495 IALTH = IALTH - 1
496 IF (IALTH .EQ. 0) GO TO 520
497 IF (IALTH .GT. 1) GO TO 700
498 IF (L .EQ. LMAX) GO TO 700
499 DO 490 I = 1,N
500 490 YH(I,LMAX) = ACOR(I)
501 GO TO 700
502 C-----------------------------------------------------------------------
503 C The error test failed. KFLAG keeps track of multiple failures.
504 C Restore TN and the YH array to their previous values, and prepare
505 C to try the step again. Compute the optimum step size for this or
506 C one lower order. After 2 or more failures, H is forced to decrease
507 C by a factor of 0.2 or less.
508 C-----------------------------------------------------------------------
509 500 KFLAG = KFLAG - 1
510 TN = TOLD
511 I1 = NQNYH + 1
512 DO 515 JB = 1,NQ
513 I1 = I1 - NYH
514 CDIR$ IVDEP
515 DO 510 I = I1,NQNYH
516 510 YH1(I) = YH1(I) - YH1(I+NYH)
517 515 CONTINUE
518 RMAX = 2.0D0
519 IF (ABS(H) .LE. HMIN*1.00001D0) GO TO 660
520 IF (KFLAG .LE. -3) GO TO 640
521 IREDO = 2
522 RHUP = 0.0D0
523 GO TO 540
524 C-----------------------------------------------------------------------
525 C Regardless of the success or failure of the step, factors
526 C RHDN, RHSM, and RHUP are computed, by which H could be multiplied
527 C at order NQ - 1, order NQ, or order NQ + 1, respectively.
528 C In the case of failure, RHUP = 0.0 to avoid an order increase.
529 C The largest of these is determined and the new order chosen
530 C accordingly. If the order is to be increased, we compute one
531 C additional scaled derivative.
532 C-----------------------------------------------------------------------
533 520 RHUP = 0.0D0
534 IF (L .EQ. LMAX) GO TO 540
535 DO 530 I = 1,N
536 530 SAVF(I) = ACOR(I) - YH(I,LMAX)
537 DUP = DMNORM (N, SAVF, EWT)/TESCO(3,NQ)
538 EXUP = 1.0D0/(L+1)
539 RHUP = 1.0D0/(1.4D0*DUP**EXUP + 0.0000014D0)
540 540 EXSM = 1.0D0/L
541 RHSM = 1.0D0/(1.2D0*DSM**EXSM + 0.0000012D0)
542 RHDN = 0.0D0
543 IF (NQ .EQ. 1) GO TO 550
544 DDN = DMNORM (N, YH(1,L), EWT)/TESCO(1,NQ)
545 EXDN = 1.0D0/NQ
546 RHDN = 1.0D0/(1.3D0*DDN**EXDN + 0.0000013D0)
547 C If METH = 1, limit RH according to the stability region also. --------
548 550 IF (METH .EQ. 2) GO TO 560
549 PDH = MAX(ABS(H)*PDLAST,0.000001D0)
550 IF (L .LT. LMAX) RHUP = MIN(RHUP,SM1(L)/PDH)
551 RHSM = MIN(RHSM,SM1(NQ)/PDH)
552 IF (NQ .GT. 1) RHDN = MIN(RHDN,SM1(NQ-1)/PDH)
553 PDEST = 0.0D0
554 560 IF (RHSM .GE. RHUP) GO TO 570
555 IF (RHUP .GT. RHDN) GO TO 590
556 GO TO 580
557 570 IF (RHSM .LT. RHDN) GO TO 580
558 NEWQ = NQ
559 RH = RHSM
560 GO TO 620
561 580 NEWQ = NQ - 1
562 RH = RHDN
563 IF (KFLAG .LT. 0 .AND. RH .GT. 1.0D0) RH = 1.0D0
564 GO TO 620
565 590 NEWQ = L
566 RH = RHUP
567 IF (RH .LT. 1.1D0) GO TO 610
568 R = EL(L)/L
569 DO 600 I = 1,N
570 600 YH(I,NEWQ+1) = ACOR(I)*R
571 GO TO 630
572 610 IALTH = 3
573 GO TO 700
574 C If METH = 1 and H is restricted by stability, bypass 10 percent test.
575 620 IF (METH .EQ. 2) GO TO 622
576 IF (RH*PDH*1.00001D0 .GE. SM1(NEWQ)) GO TO 625
577 622 IF (KFLAG .EQ. 0 .AND. RH .LT. 1.1D0) GO TO 610
578 625 IF (KFLAG .LE. -2) RH = MIN(RH,0.2D0)
579 C-----------------------------------------------------------------------
580 C If there is a change of order, reset NQ, L, and the coefficients.
581 C In any case H is reset according to RH and the YH array is rescaled.
582 C Then exit from 690 if the step was OK, or redo the step otherwise.
583 C-----------------------------------------------------------------------
584 IF (NEWQ .EQ. NQ) GO TO 170
585 630 NQ = NEWQ
586 L = NQ + 1
587 IRET = 2
588 GO TO 150
589 C-----------------------------------------------------------------------
590 C Control reaches this section if 3 or more failures have occured.
591 C If 10 failures have occurred, exit with KFLAG = -1.
592 C It is assumed that the derivatives that have accumulated in the
593 C YH array have errors of the wrong order. Hence the first
594 C derivative is recomputed, and the order is set to 1. Then
595 C H is reduced by a factor of 10, and the step is retried,
596 C until it succeeds or H reaches HMIN.
597 C-----------------------------------------------------------------------
598 640 IF (KFLAG .EQ. -10) GO TO 660
599 RH = 0.1D0
600 RH = MAX(HMIN/ABS(H),RH)
601 H = H*RH
602 DO 645 I = 1,N
603 645 Y(I) = YH(I,1)
604 CALL F (NEQ, TN, Y, SAVF)
605 NFE = NFE + 1
606 DO 650 I = 1,N
607 650 YH(I,2) = H*SAVF(I)
608 IPUP = MITER
609 IALTH = 5
610 IF (NQ .EQ. 1) GO TO 200
611 NQ = 1
612 L = 2
613 IRET = 3
614 GO TO 150
615 C-----------------------------------------------------------------------
616 C All returns are made through this section. H is saved in HOLD
617 C to allow the caller to change H on the next step.
618 C-----------------------------------------------------------------------
619 660 KFLAG = -1
620 GO TO 720
621 670 KFLAG = -2
622 GO TO 720
623 680 KFLAG = -3
624 GO TO 720
625 690 RMAX = 10.0D0
626 700 R = 1.0D0/TESCO(2,NQU)
627 DO 710 I = 1,N
628 710 ACOR(I) = ACOR(I)*R
629 720 HOLD = H
630 JSTART = 1
631 RETURN
632 C----------------------- End of Subroutine DSTODA ----------------------