This is the commit for a fiz of the WxMaxima debug issue.
[maxima.git] / share / odepack / fortran / dstoka.f
blobec6c011b90a73fd063e02a525069d9474aac9b70
1 *DECK DSTOKA
2 SUBROUTINE DSTOKA (NEQ, Y, YH, NYH, YH1, EWT, SAVF, SAVX, ACOR,
3 1 WM, IWM, F, JAC, PSOL)
4 EXTERNAL F, JAC, PSOL
5 INTEGER NEQ, NYH, IWM
6 DOUBLE PRECISION Y, YH, YH1, EWT, SAVF, SAVX, ACOR, WM
7 DIMENSION NEQ(*), Y(*), YH(NYH,*), YH1(*), EWT(*), SAVF(*),
8 1 SAVX(*), ACOR(*), WM(*), IWM(*)
9 INTEGER IOWND, IALTH, IPUP, LMAX, MEO, NQNYH, NSLP,
10 1 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L,
11 2 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER,
12 3 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU
13 INTEGER NEWT, NSFI, NSLJ, NJEV
14 INTEGER JPRE, JACFLG, LOCWP, LOCIWP, LSAVX, KMP, MAXL, MNEWT,
15 1 NNI, NLI, NPS, NCFN, NCFL
16 DOUBLE PRECISION CONIT, CRATE, EL, ELCO, HOLD, RMAX, TESCO,
17 2 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND
18 DOUBLE PRECISION STIFR
19 DOUBLE PRECISION DELT, EPCON, SQRTN, RSQRTN
20 COMMON /DLS001/ CONIT, CRATE, EL(13), ELCO(13,12),
21 1 HOLD, RMAX, TESCO(3,12),
22 2 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND,
23 3 IOWND(6), IALTH, IPUP, LMAX, MEO, NQNYH, NSLP,
24 3 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L,
25 4 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER,
26 5 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU
27 COMMON /DLS002/ STIFR, NEWT, NSFI, NSLJ, NJEV
28 COMMON /DLPK01/ DELT, EPCON, SQRTN, RSQRTN,
29 1 JPRE, JACFLG, LOCWP, LOCIWP, LSAVX, KMP, MAXL, MNEWT,
30 2 NNI, NLI, NPS, NCFN, NCFL
31 C-----------------------------------------------------------------------
32 C DSTOKA performs one step of the integration of an initial value
33 C problem for a system of Ordinary Differential Equations.
35 C This routine was derived from Subroutine DSTODPK in the DLSODPK
36 C package by the addition of automatic functional/Newton iteration
37 C switching and logic for re-use of Jacobian data.
38 C-----------------------------------------------------------------------
39 C Note: DSTOKA is independent of the value of the iteration method
40 C indicator MITER, when this is .ne. 0, and hence is independent
41 C of the type of chord method used, or the Jacobian structure.
42 C Communication with DSTOKA is done with the following variables:
44 C NEQ = integer array containing problem size in NEQ(1), and
45 C passed as the NEQ argument in all calls to F and JAC.
46 C Y = an array of length .ge. N used as the Y argument in
47 C all calls to F and JAC.
48 C YH = an NYH by LMAX array containing the dependent variables
49 C and their approximate scaled derivatives, where
50 C LMAX = MAXORD + 1. YH(i,j+1) contains the approximate
51 C j-th derivative of y(i), scaled by H**j/factorial(j)
52 C (j = 0,1,...,NQ). On entry for the first step, the first
53 C two columns of YH must be set from the initial values.
54 C NYH = a constant integer .ge. N, the first dimension of YH.
55 C YH1 = a one-dimensional array occupying the same space as YH.
56 C EWT = an array of length N containing multiplicative weights
57 C for local error measurements. Local errors in y(i) are
58 C compared to 1.0/EWT(i) in various error tests.
59 C SAVF = an array of working storage, of length N.
60 C Also used for input of YH(*,MAXORD+2) when JSTART = -1
61 C and MAXORD .lt. the current order NQ.
62 C SAVX = an array of working storage, of length N.
63 C ACOR = a work array of length N, used for the accumulated
64 C corrections. On a successful return, ACOR(i) contains
65 C the estimated one-step local error in y(i).
66 C WM,IWM = real and integer work arrays associated with matrix
67 C operations in chord iteration (MITER .ne. 0).
68 C CCMAX = maximum relative change in H*EL0 before DSETPK is called.
69 C H = the step size to be attempted on the next step.
70 C H is altered by the error control algorithm during the
71 C problem. H can be either positive or negative, but its
72 C sign must remain constant throughout the problem.
73 C HMIN = the minimum absolute value of the step size H to be used.
74 C HMXI = inverse of the maximum absolute value of H to be used.
75 C HMXI = 0.0 is allowed and corresponds to an infinite HMAX.
76 C HMIN and HMXI may be changed at any time, but will not
77 C take effect until the next change of H is considered.
78 C TN = the independent variable. TN is updated on each step taken.
79 C JSTART = an integer used for input only, with the following
80 C values and meanings:
81 C 0 perform the first step.
82 C .gt.0 take a new step continuing from the last.
83 C -1 take the next step with a new value of H, MAXORD,
84 C N, METH, MITER, and/or matrix parameters.
85 C -2 take the next step with a new value of H,
86 C but with other inputs unchanged.
87 C On return, JSTART is set to 1 to facilitate continuation.
88 C KFLAG = a completion code with the following meanings:
89 C 0 the step was succesful.
90 C -1 the requested error could not be achieved.
91 C -2 corrector convergence could not be achieved.
92 C -3 fatal error in DSETPK or DSOLPK.
93 C A return with KFLAG = -1 or -2 means either
94 C ABS(H) = HMIN or 10 consecutive failures occurred.
95 C On a return with KFLAG negative, the values of TN and
96 C the YH array are as of the beginning of the last
97 C step, and H is the last step size attempted.
98 C MAXORD = the maximum order of integration method to be allowed.
99 C MAXCOR = the maximum number of corrector iterations allowed.
100 C MSBP = maximum number of steps between DSETPK calls (MITER .gt. 0).
101 C MXNCF = maximum number of convergence failures allowed.
102 C METH/MITER = the method flags. See description in driver.
103 C N = the number of first-order differential equations.
104 C-----------------------------------------------------------------------
105 INTEGER I, I1, IREDO, IRET, J, JB, JOK, M, NCF, NEWQ, NSLOW
106 DOUBLE PRECISION DCON, DDN, DEL, DELP, DRC, DSM, DUP, EXDN, EXSM,
107 1 EXUP, DFNORM, R, RH, RHDN, RHSM, RHUP, ROC, STIFF, TOLD, DVNORM
109 KFLAG = 0
110 TOLD = TN
111 NCF = 0
112 IERPJ = 0
113 IERSL = 0
114 JCUR = 0
115 ICF = 0
116 DELP = 0.0D0
117 IF (JSTART .GT. 0) GO TO 200
118 IF (JSTART .EQ. -1) GO TO 100
119 IF (JSTART .EQ. -2) GO TO 160
120 C-----------------------------------------------------------------------
121 C On the first call, the order is set to 1, and other variables are
122 C initialized. RMAX is the maximum ratio by which H can be increased
123 C in a single step. It is initially 1.E4 to compensate for the small
124 C initial H, but then is normally equal to 10. If a failure
125 C occurs (in corrector convergence or error test), RMAX is set at 2
126 C for the next increase.
127 C-----------------------------------------------------------------------
128 LMAX = MAXORD + 1
129 NQ = 1
130 L = 2
131 IALTH = 2
132 RMAX = 10000.0D0
133 RC = 0.0D0
134 EL0 = 1.0D0
135 CRATE = 0.7D0
136 HOLD = H
137 MEO = METH
138 NSLP = 0
139 NSLJ = 0
140 IPUP = 0
141 IRET = 3
142 NEWT = 0
143 STIFR = 0.0D0
144 GO TO 140
145 C-----------------------------------------------------------------------
146 C The following block handles preliminaries needed when JSTART = -1.
147 C IPUP is set to MITER to force a matrix update.
148 C If an order increase is about to be considered (IALTH = 1),
149 C IALTH is reset to 2 to postpone consideration one more step.
150 C If the caller has changed METH, DCFODE is called to reset
151 C the coefficients of the method.
152 C If the caller has changed MAXORD to a value less than the current
153 C order NQ, NQ is reduced to MAXORD, and a new H chosen accordingly.
154 C If H is to be changed, YH must be rescaled.
155 C If H or METH is being changed, IALTH is reset to L = NQ + 1
156 C to prevent further changes in H for that many steps.
157 C-----------------------------------------------------------------------
158 100 IPUP = MITER
159 LMAX = MAXORD + 1
160 IF (IALTH .EQ. 1) IALTH = 2
161 IF (METH .EQ. MEO) GO TO 110
162 CALL DCFODE (METH, ELCO, TESCO)
163 MEO = METH
164 IF (NQ .GT. MAXORD) GO TO 120
165 IALTH = L
166 IRET = 1
167 GO TO 150
168 110 IF (NQ .LE. MAXORD) GO TO 160
169 120 NQ = MAXORD
170 L = LMAX
171 DO 125 I = 1,L
172 125 EL(I) = ELCO(I,NQ)
173 NQNYH = NQ*NYH
174 RC = RC*EL(1)/EL0
175 EL0 = EL(1)
176 CONIT = 0.5D0/(NQ+2)
177 EPCON = CONIT*TESCO(2,NQ)
178 DDN = DVNORM (N, SAVF, EWT)/TESCO(1,L)
179 EXDN = 1.0D0/L
180 RHDN = 1.0D0/(1.3D0*DDN**EXDN + 0.0000013D0)
181 RH = MIN(RHDN,1.0D0)
182 IREDO = 3
183 IF (H .EQ. HOLD) GO TO 170
184 RH = MIN(RH,ABS(H/HOLD))
185 H = HOLD
186 GO TO 175
187 C-----------------------------------------------------------------------
188 C DCFODE is called to get all the integration coefficients for the
189 C current METH. Then the EL vector and related constants are reset
190 C whenever the order NQ is changed, or at the start of the problem.
191 C-----------------------------------------------------------------------
192 140 CALL DCFODE (METH, ELCO, TESCO)
193 150 DO 155 I = 1,L
194 155 EL(I) = ELCO(I,NQ)
195 NQNYH = NQ*NYH
196 RC = RC*EL(1)/EL0
197 EL0 = EL(1)
198 CONIT = 0.5D0/(NQ+2)
199 EPCON = CONIT*TESCO(2,NQ)
200 GO TO (160, 170, 200), IRET
201 C-----------------------------------------------------------------------
202 C If H is being changed, the H ratio RH is checked against
203 C RMAX, HMIN, and HMXI, and the YH array rescaled. IALTH is set to
204 C L = NQ + 1 to prevent a change of H for that many steps, unless
205 C forced by a convergence or error test failure.
206 C-----------------------------------------------------------------------
207 160 IF (H .EQ. HOLD) GO TO 200
208 RH = H/HOLD
209 H = HOLD
210 IREDO = 3
211 GO TO 175
212 170 RH = MAX(RH,HMIN/ABS(H))
213 175 RH = MIN(RH,RMAX)
214 RH = RH/MAX(1.0D0,ABS(H)*HMXI*RH)
215 R = 1.0D0
216 DO 180 J = 2,L
217 R = R*RH
218 DO 180 I = 1,N
219 180 YH(I,J) = YH(I,J)*R
220 H = H*RH
221 RC = RC*RH
222 IALTH = L
223 IF (IREDO .EQ. 0) GO TO 690
224 C-----------------------------------------------------------------------
225 C This section computes the predicted values by effectively
226 C multiplying the YH array by the Pascal triangle matrix.
227 C The flag IPUP is set according to whether matrix data is involved
228 C (NEWT .gt. 0 .and. JACFLG .ne. 0) or not, to trigger a call to DSETPK.
229 C IPUP is set to MITER when RC differs from 1 by more than CCMAX,
230 C and at least every MSBP steps, when JACFLG = 1.
231 C RC is the ratio of new to old values of the coefficient H*EL(1).
232 C-----------------------------------------------------------------------
233 200 IF (NEWT .EQ. 0 .OR. JACFLG .EQ. 0) THEN
234 DRC = 0.0D0
235 IPUP = 0
236 CRATE = 0.7D0
237 ELSE
238 DRC = ABS(RC - 1.0D0)
239 IF (DRC .GT. CCMAX) IPUP = MITER
240 IF (NST .GE. NSLP+MSBP) IPUP = MITER
241 ENDIF
242 TN = TN + H
243 I1 = NQNYH + 1
244 DO 215 JB = 1,NQ
245 I1 = I1 - NYH
246 CDIR$ IVDEP
247 DO 210 I = I1,NQNYH
248 210 YH1(I) = YH1(I) + YH1(I+NYH)
249 215 CONTINUE
250 C-----------------------------------------------------------------------
251 C Up to MAXCOR corrector iterations are taken. A convergence test is
252 C made on the RMS-norm of each correction, weighted by the error
253 C weight vector EWT. The sum of the corrections is accumulated in the
254 C vector ACOR(i). The YH array is not altered in the corrector loop.
255 C Within the corrector loop, an estimated rate of convergence (ROC)
256 C and a stiffness ratio estimate (STIFF) are kept. Corresponding
257 C global estimates are kept as CRATE and stifr.
258 C-----------------------------------------------------------------------
259 220 M = 0
260 MNEWT = 0
261 STIFF = 0.0D0
262 ROC = 0.05D0
263 NSLOW = 0
264 DO 230 I = 1,N
265 230 Y(I) = YH(I,1)
266 CALL F (NEQ, TN, Y, SAVF)
267 NFE = NFE + 1
268 IF (NEWT .EQ. 0 .OR. IPUP .LE. 0) GO TO 250
269 C-----------------------------------------------------------------------
270 C If indicated, DSETPK is called to update any matrix data needed,
271 C before starting the corrector iteration.
272 C JOK is set to indicate if the matrix data need not be recomputed.
273 C IPUP is set to 0 as an indicator that the matrix data is up to date.
274 C-----------------------------------------------------------------------
275 JOK = 1
276 IF (NST .EQ. 0 .OR. NST .GT. NSLJ+50) JOK = -1
277 IF (ICF .EQ. 1 .AND. DRC .LT. 0.2D0) JOK = -1
278 IF (ICF .EQ. 2) JOK = -1
279 IF (JOK .EQ. -1) THEN
280 NSLJ = NST
281 NJEV = NJEV + 1
282 ENDIF
283 CALL DSETPK (NEQ, Y, YH1, EWT, ACOR, SAVF, JOK, WM, IWM, F, JAC)
284 IPUP = 0
285 RC = 1.0D0
286 DRC = 0.0D0
287 NSLP = NST
288 CRATE = 0.7D0
289 IF (IERPJ .NE. 0) GO TO 430
290 250 DO 260 I = 1,N
291 260 ACOR(I) = 0.0D0
292 270 IF (NEWT .NE. 0) GO TO 350
293 C-----------------------------------------------------------------------
294 C In the case of functional iteration, update Y directly from
295 C the result of the last function evaluation, and STIFF is set to 1.0.
296 C-----------------------------------------------------------------------
297 DO 290 I = 1,N
298 SAVF(I) = H*SAVF(I) - YH(I,2)
299 290 Y(I) = SAVF(I) - ACOR(I)
300 DEL = DVNORM (N, Y, EWT)
301 DO 300 I = 1,N
302 Y(I) = YH(I,1) + EL(1)*SAVF(I)
303 300 ACOR(I) = SAVF(I)
304 STIFF = 1.0D0
305 GO TO 400
306 C-----------------------------------------------------------------------
307 C In the case of the chord method, compute the corrector error,
308 C and solve the linear system with that as right-hand side and
309 C P as coefficient matrix. STIFF is set to the ratio of the norms
310 C of the residual and the correction vector.
311 C-----------------------------------------------------------------------
312 350 DO 360 I = 1,N
313 360 SAVX(I) = H*SAVF(I) - (YH(I,2) + ACOR(I))
314 DFNORM = DVNORM (N, SAVX, EWT)
315 CALL DSOLPK (NEQ, Y, SAVF, SAVX, EWT, WM, IWM, F, PSOL)
316 IF (IERSL .LT. 0) GO TO 430
317 IF (IERSL .GT. 0) GO TO 410
318 DEL = DVNORM (N, SAVX, EWT)
319 IF (DEL .GT. 1.0D-8) STIFF = MAX(STIFF, DFNORM/DEL)
320 DO 380 I = 1,N
321 ACOR(I) = ACOR(I) + SAVX(I)
322 380 Y(I) = YH(I,1) + EL(1)*ACOR(I)
323 C-----------------------------------------------------------------------
324 C Test for convergence. If M .gt. 0, an estimate of the convergence
325 C rate constant is made for the iteration switch, and is also used
326 C in the convergence test. If the iteration seems to be diverging or
327 C converging at a slow rate (.gt. 0.8 more than once), it is stopped.
328 C-----------------------------------------------------------------------
329 400 IF (M .NE. 0) THEN
330 ROC = MAX(0.05D0, DEL/DELP)
331 CRATE = MAX(0.2D0*CRATE,ROC)
332 ENDIF
333 DCON = DEL*MIN(1.0D0,1.5D0*CRATE)/EPCON
334 IF (DCON .LE. 1.0D0) GO TO 450
335 M = M + 1
336 IF (M .EQ. MAXCOR) GO TO 410
337 IF (M .GE. 2 .AND. DEL .GT. 2.0D0*DELP) GO TO 410
338 IF (ROC .GT. 10.0D0) GO TO 410
339 IF (ROC .GT. 0.8D0) NSLOW = NSLOW + 1
340 IF (NSLOW .GE. 2) GO TO 410
341 MNEWT = M
342 DELP = DEL
343 CALL F (NEQ, TN, Y, SAVF)
344 NFE = NFE + 1
345 GO TO 270
346 C-----------------------------------------------------------------------
347 C The corrector iteration failed to converge.
348 C If functional iteration is being done (NEWT = 0) and MITER .gt. 0
349 C (and this is not the first step), then switch to Newton
350 C (NEWT = MITER), and retry the step. (Setting STIFR = 1023 insures
351 C that a switch back will not occur for 10 step attempts.)
352 C If Newton iteration is being done, but using a preconditioner that
353 C is out of date (JACFLG .ne. 0 .and. JCUR = 0), then signal for a
354 C re-evalutation of the preconditioner, and retry the step.
355 C In all other cases, the YH array is retracted to its values
356 C before prediction, and H is reduced, if possible. If H cannot be
357 C reduced or MXNCF failures have occurred, exit with KFLAG = -2.
358 C-----------------------------------------------------------------------
359 410 ICF = 1
360 IF (NEWT .EQ. 0) THEN
361 IF (NST .EQ. 0) GO TO 430
362 IF (MITER .EQ. 0) GO TO 430
363 NEWT = MITER
364 STIFR = 1023.0D0
365 IPUP = MITER
366 GO TO 220
367 ENDIF
368 IF (JCUR.EQ.1 .OR. JACFLG.EQ.0) GO TO 430
369 IPUP = MITER
370 GO TO 220
371 430 ICF = 2
372 NCF = NCF + 1
373 NCFN = NCFN + 1
374 RMAX = 2.0D0
375 TN = TOLD
376 I1 = NQNYH + 1
377 DO 445 JB = 1,NQ
378 I1 = I1 - NYH
379 CDIR$ IVDEP
380 DO 440 I = I1,NQNYH
381 440 YH1(I) = YH1(I) - YH1(I+NYH)
382 445 CONTINUE
383 IF (IERPJ .LT. 0 .OR. IERSL .LT. 0) GO TO 680
384 IF (ABS(H) .LE. HMIN*1.00001D0) GO TO 670
385 IF (NCF .EQ. MXNCF) GO TO 670
386 RH = 0.5D0
387 IPUP = MITER
388 IREDO = 1
389 GO TO 170
390 C-----------------------------------------------------------------------
391 C The corrector has converged. JCUR is set to 0 to signal that the
392 C preconditioner involved may need updating later.
393 C The stiffness ratio STIFR is updated using the latest STIFF value.
394 C The local error test is made and control passes to statement 500
395 C if it fails.
396 C-----------------------------------------------------------------------
397 450 JCUR = 0
398 IF (NEWT .GT. 0) STIFR = 0.5D0*(STIFR + STIFF)
399 IF (M .EQ. 0) DSM = DEL/TESCO(2,NQ)
400 IF (M .GT. 0) DSM = DVNORM (N, ACOR, EWT)/TESCO(2,NQ)
401 IF (DSM .GT. 1.0D0) GO TO 500
402 C-----------------------------------------------------------------------
403 C After a successful step, update the YH array.
404 C If Newton iteration is being done and STIFR is less than 1.5,
405 C then switch to functional iteration.
406 C Consider changing H if IALTH = 1. Otherwise decrease IALTH by 1.
407 C If IALTH is then 1 and NQ .lt. MAXORD, then ACOR is saved for
408 C use in a possible order increase on the next step.
409 C If a change in H is considered, an increase or decrease in order
410 C by one is considered also. A change in H is made only if it is by a
411 C factor of at least 1.1. If not, IALTH is set to 3 to prevent
412 C testing for that many steps.
413 C-----------------------------------------------------------------------
414 KFLAG = 0
415 IREDO = 0
416 NST = NST + 1
417 IF (NEWT .EQ. 0) NSFI = NSFI + 1
418 IF (NEWT .GT. 0 .AND. STIFR .LT. 1.5D0) NEWT = 0
419 HU = H
420 NQU = NQ
421 DO 470 J = 1,L
422 DO 470 I = 1,N
423 470 YH(I,J) = YH(I,J) + EL(J)*ACOR(I)
424 IALTH = IALTH - 1
425 IF (IALTH .EQ. 0) GO TO 520
426 IF (IALTH .GT. 1) GO TO 700
427 IF (L .EQ. LMAX) GO TO 700
428 DO 490 I = 1,N
429 490 YH(I,LMAX) = ACOR(I)
430 GO TO 700
431 C-----------------------------------------------------------------------
432 C The error test failed. KFLAG keeps track of multiple failures.
433 C Restore TN and the YH array to their previous values, and prepare
434 C to try the step again. Compute the optimum step size for this or
435 C one lower order. After 2 or more failures, H is forced to decrease
436 C by a factor of 0.2 or less.
437 C-----------------------------------------------------------------------
438 500 KFLAG = KFLAG - 1
439 TN = TOLD
440 I1 = NQNYH + 1
441 DO 515 JB = 1,NQ
442 I1 = I1 - NYH
443 CDIR$ IVDEP
444 DO 510 I = I1,NQNYH
445 510 YH1(I) = YH1(I) - YH1(I+NYH)
446 515 CONTINUE
447 RMAX = 2.0D0
448 IF (ABS(H) .LE. HMIN*1.00001D0) GO TO 660
449 IF (KFLAG .LE. -3) GO TO 640
450 IREDO = 2
451 RHUP = 0.0D0
452 GO TO 540
453 C-----------------------------------------------------------------------
454 C Regardless of the success or failure of the step, factors
455 C RHDN, RHSM, and RHUP are computed, by which H could be multiplied
456 C at order NQ - 1, order NQ, or order NQ + 1, respectively.
457 C in the case of failure, RHUP = 0.0 to avoid an order increase.
458 C the largest of these is determined and the new order chosen
459 C accordingly. If the order is to be increased, we compute one
460 C additional scaled derivative.
461 C-----------------------------------------------------------------------
462 520 RHUP = 0.0D0
463 IF (L .EQ. LMAX) GO TO 540
464 DO 530 I = 1,N
465 530 SAVF(I) = ACOR(I) - YH(I,LMAX)
466 DUP = DVNORM (N, SAVF, EWT)/TESCO(3,NQ)
467 EXUP = 1.0D0/(L+1)
468 RHUP = 1.0D0/(1.4D0*DUP**EXUP + 0.0000014D0)
469 540 EXSM = 1.0D0/L
470 RHSM = 1.0D0/(1.2D0*DSM**EXSM + 0.0000012D0)
471 RHDN = 0.0D0
472 IF (NQ .EQ. 1) GO TO 560
473 DDN = DVNORM (N, YH(1,L), EWT)/TESCO(1,NQ)
474 EXDN = 1.0D0/NQ
475 RHDN = 1.0D0/(1.3D0*DDN**EXDN + 0.0000013D0)
476 560 IF (RHSM .GE. RHUP) GO TO 570
477 IF (RHUP .GT. RHDN) GO TO 590
478 GO TO 580
479 570 IF (RHSM .LT. RHDN) GO TO 580
480 NEWQ = NQ
481 RH = RHSM
482 GO TO 620
483 580 NEWQ = NQ - 1
484 RH = RHDN
485 IF (KFLAG .LT. 0 .AND. RH .GT. 1.0D0) RH = 1.0D0
486 GO TO 620
487 590 NEWQ = L
488 RH = RHUP
489 IF (RH .LT. 1.1D0) GO TO 610
490 R = EL(L)/L
491 DO 600 I = 1,N
492 600 YH(I,NEWQ+1) = ACOR(I)*R
493 GO TO 630
494 610 IALTH = 3
495 GO TO 700
496 620 IF ((KFLAG .EQ. 0) .AND. (RH .LT. 1.1D0)) GO TO 610
497 IF (KFLAG .LE. -2) RH = MIN(RH,0.2D0)
498 C-----------------------------------------------------------------------
499 C If there is a change of order, reset NQ, L, and the coefficients.
500 C In any case H is reset according to RH and the YH array is rescaled.
501 C Then exit from 690 if the step was OK, or redo the step otherwise.
502 C-----------------------------------------------------------------------
503 IF (NEWQ .EQ. NQ) GO TO 170
504 630 NQ = NEWQ
505 L = NQ + 1
506 IRET = 2
507 GO TO 150
508 C-----------------------------------------------------------------------
509 C Control reaches this section if 3 or more failures have occured.
510 C If 10 failures have occurred, exit with KFLAG = -1.
511 C It is assumed that the derivatives that have accumulated in the
512 C YH array have errors of the wrong order. Hence the first
513 C derivative is recomputed, and the order is set to 1. Then
514 C H is reduced by a factor of 10, and the step is retried,
515 C until it succeeds or H reaches HMIN.
516 C-----------------------------------------------------------------------
517 640 IF (KFLAG .EQ. -10) GO TO 660
518 RH = 0.1D0
519 RH = MAX(HMIN/ABS(H),RH)
520 H = H*RH
521 DO 645 I = 1,N
522 645 Y(I) = YH(I,1)
523 CALL F (NEQ, TN, Y, SAVF)
524 NFE = NFE + 1
525 DO 650 I = 1,N
526 650 YH(I,2) = H*SAVF(I)
527 IPUP = MITER
528 IALTH = 5
529 IF (NQ .EQ. 1) GO TO 200
530 NQ = 1
531 L = 2
532 IRET = 3
533 GO TO 150
534 C-----------------------------------------------------------------------
535 C All returns are made through this section. H is saved in HOLD
536 C to allow the caller to change H on the next step.
537 C-----------------------------------------------------------------------
538 660 KFLAG = -1
539 GO TO 720
540 670 KFLAG = -2
541 GO TO 720
542 680 KFLAG = -3
543 GO TO 720
544 690 RMAX = 10.0D0
545 700 R = 1.0D0/TESCO(2,NQU)
546 DO 710 I = 1,N
547 710 ACOR(I) = ACOR(I)*R
548 720 HOLD = H
549 JSTART = 1
550 RETURN
551 C----------------------- End of Subroutine DSTOKA ----------------------