Add xref for ctranspose.
[maxima.git] / src / bessel.lisp
blob9b3268150f8fd9b4dac10ee438eb8dbb6b07fa8c
1 ;;; -*- Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- ;;;;
2 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3 ;;; The data in this file contains enhancements. ;;;;;
4 ;;; ;;;;;
5 ;;; Copyright (c) 1984,1987 by William Schelter,University of Texas ;;;;;
6 ;;; All rights reserved ;;;;;
7 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
9 (in-package :maxima)
11 ;; When non-NIL, the Bessel functions of half-integral order are
12 ;; expanded in terms of elementary functions.
14 (defmvar $besselexpand nil)
16 ;; When T Bessel functions with an integer order are reduced to order 0 and 1
17 (defmvar $bessel_reduce nil)
19 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
21 ;;; Helper functions for this file
23 ;; If E is a maxima ratio with a denominator of DEN, return the ratio
24 ;; as a Lisp rational. Otherwise NIL.
25 (defun max-numeric-ratio-p (e den)
26 (if (and (listp e)
27 (eq 'rat (caar e))
28 (= den (third e))
29 (integerp (second e)))
30 (/ (second e) (third e))
31 nil))
33 (defun bessel-numerical-eval-p (order arg)
34 ;; Return non-NIL if we should numerically evaluate a bessel
35 ;; function. Basically, both args have to be numbers. If both args
36 ;; are integers, we don't evaluate unless $numer is true.
37 (or (and (numberp order) (complex-number-p arg)
38 (or (floatp order)
39 (floatp ($realpart arg))
40 (floatp ($imagpart arg))))
41 (and $numer (numberp order)
42 (complex-number-p arg))))
44 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
45 ;;;
46 ;;; Implementation of the Bessel J function
47 ;;;
48 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
50 ;; Bessel J distributes over lists, matrices, and equations
52 (defprop %bessel_j (mlist $matrix mequal) distribute_over)
54 ;; Derivatives of the Bessel function.
55 (defprop %bessel_j
56 ((n x)
57 ;; Derivative wrt to order n. A&S 9.1.64. Do we really want to
58 ;; do this? It's quite messy.
60 ;; J[n](x)*log(x/2)
61 ;; - (x/2)^n*sum((-1)^k*psi(n+k+1)/gamma(n+k+1)*(x^2/4)^k/k!,k,0,inf)
62 ((mplus)
63 ((mtimes)
64 ((%bessel_j) n x)
65 ((%log) ((mtimes) ((rat) 1 2) x)))
66 ((mtimes) -1
67 ((mexpt) ((mtimes) x ((rat) 1 2)) n)
68 ((%sum)
69 ((mtimes) ((mexpt) -1 $%k)
70 ((mexpt) ((mfactorial) $%k) -1)
71 ((mqapply) (($psi array) 0) ((mplus) 1 $%k n))
72 ((mexpt) ((%gamma) ((mplus) 1 $%k n)) -1)
73 ((mexpt) ((mtimes) x x ((rat) 1 4)) $%k))
74 $%k 0 $inf)))
76 ;; Derivative wrt to arg x.
77 ;; A&S 9.1.27; changed from 9.1.30 so that taylor works on Bessel functions
78 ((mtimes)
79 ((mplus)
80 ((%bessel_j) ((mplus) -1 n) x)
81 ((mtimes) -1 ((%bessel_j) ((mplus) 1 n) x)))
82 ((rat) 1 2)))
83 grad)
85 ;; Integral of the Bessel function wrt z
86 (defun bessel-j-integral-2 (v z)
87 (case v
88 (0
89 ;; integrate(bessel_j(0,z),z)
90 ;; = (1/2)*z*(%pi*bessel_j(1,z)*struve_h(0,z)
91 ;; +bessel_j(0,z)*(2-%pi*struve_h(1,z)))
92 `((mtimes) ((rat) 1 2) ,z
93 ((mplus)
94 ((mtimes) $%pi
95 ((%bessel_j) 1 ,z)
96 ((%struve_h) 0 ,z))
97 ((mtimes)
98 ((%bessel_j) 0 ,z)
99 ((mplus) 2 ((mtimes) -1 $%pi ((%struve_h) 1 ,z)))))))
101 ;; integrate(bessel_j(1,z),z) = -bessel_j(0,z)
102 `((mtimes) -1 ((%bessel_j) 0 ,z)))
103 (otherwise
104 ;; http://functions.wolfram.com/03.01.21.0002.01
105 ;; integrate(bessel_j(v,z),z)
106 ;; = 2^(-v-1)*z^(v+1)*gamma(v/2+1/2)
107 ;; * hypergeometric_regularized([v/2+1/2],[v+1,v/2+3/2],-z^2/4)
108 ;; = 2^(-v)*z^(v+1)*hypergeometric([v/2+1/2],[v+1,v/2+3/2],-z^2/4)
109 ;; / gamma(v+2)
110 `((mtimes)
111 ((%hypergeometric)
112 ((mlist)
113 ((mplus) ((rat) 1 2) ((mtimes) ((rat) 1 2) ,v)))
114 ((mlist)
115 ((mplus) ((rat) 3 2) ((mtimes) ((rat) 1 2) ,v))
116 ((mplus) 1 ,v))
117 ((mtimes) ((rat) -1 4) ((mexpt) ,z 2)))
118 ((mexpt) 2 ((mtimes) -1 ,v))
119 ((mexpt) ((%gamma) ((mplus) 2 ,v)) -1)
120 ((mexpt) z ((mplus) 1 ,v))))))
122 (putprop '%bessel_j `((v z) nil ,'bessel-j-integral-2) 'integral)
124 ;; Support a simplim%bessel_j function to handle specific limits
126 (defprop %bessel_j simplim%bessel_j simplim%function)
128 (defun simplim%bessel_j (expr var val)
129 ;; Look for the limit of the arguments.
130 (let ((v (limit (cadr expr) var val 'think))
131 (z (limit (caddr expr) var val 'think)))
132 (cond
133 ;; Handle an argument 0 at this place.
134 ((or (zerop1 z)
135 (eq z '$zeroa)
136 (eq z '$zerob))
137 (let ((sgn ($sign ($realpart v))))
138 (cond ((and (eq sgn '$neg)
139 (not (maxima-integerp v)))
140 ;; bessel_j(v,0), Re(v)<0 and v not an integer
141 '$infinity)
142 ((and (eq sgn '$zero)
143 (not (zerop1 v)))
144 ;; bessel_j(v,0), Re(v)=0 and v #0
145 '$und)
146 ;; Call the simplifier of the function.
147 (t (simplify (list '(%bessel_j) v z))))))
148 ((or (eq z '$inf)
149 (eq z '$minf))
150 ;; bessel_j(v,inf) or bessel_j(v,minf)
153 ;; All other cases are handled by the simplifier of the function.
154 (simplify (list '(%bessel_j) v z))))))
156 (def-simplifier bessel_j (order arg)
157 (let ((rat-order nil))
158 (cond
159 ((zerop1 arg)
160 ;; We handle the different case for zero arg carefully.
161 (let ((sgn ($sign ($realpart order))))
162 (cond ((and (eq sgn '$zero)
163 (zerop1 ($imagpart order)))
164 ;; bessel_j(0,0) = 1
165 (cond ((or ($bfloatp order) ($bfloatp arg)) ($bfloat 1))
166 ((or (floatp order) (floatp arg)) 1.0)
167 (t 1)))
168 ((or (eq sgn '$pos)
169 (maxima-integerp order))
170 ;; bessel_j(v,0) and Re(v)>0 or v an integer
171 (cond ((or ($bfloatp order) ($bfloatp arg)) ($bfloat 0))
172 ((or (floatp order) (floatp arg)) 0.0)
173 (t 0)))
174 ((and (eq sgn '$neg)
175 (not (maxima-integerp order)))
176 ;; bessel_j(v,0) and Re(v)<0 and v not an integer
177 (simp-domain-error
178 (intl:gettext "bessel_j: bessel_j(~:M,~:M) is undefined.")
179 order arg))
180 ((and (eq sgn '$zero)
181 (not (zerop1 ($imagpart order))))
182 ;; bessel_j(v,0) and Re(v)=0 and v # 0
183 (simp-domain-error
184 (intl:gettext "bessel_j: bessel_j(~:M,~:M) is undefined.")
185 order arg))
187 ;; No information about the sign of the order
188 (give-up)))))
190 ((complex-float-numerical-eval-p order arg)
191 ;; We have numeric order and arg and $numer is true, or we have either
192 ;; the order or arg being floating-point, so let's evaluate it
193 ;; numerically.
194 ;; The numerical routine bessel-j returns a CL number, so we have
195 ;; to add the conversion to a Maxima-complex-number.
196 (cond ((= 0 ($imagpart order))
197 ;; order is real, arg is real or complex
198 (complexify (bessel-j ($float order)
199 (complex ($float ($realpart arg))
200 ($float ($imagpart arg))))))
202 ;; order is complex, arg is real or complex
203 (let (($numer t)
204 ($float t)
205 (order ($float order))
206 (arg ($float arg)))
207 ($float
208 ($rectform
209 (bessel-j-hypergeometric order arg)))))))
211 ((or (bigfloat-numerical-eval-p order arg)
212 (complex-bigfloat-numerical-eval-p order arg))
213 ;; We have the order or arg being a bigfloat, so evaluate it
214 ;; numerically using the hypergeometric representation
215 ;; bessel_j.
216 (destructuring-bind (re . im)
217 (risplit order)
218 (cond ((and (zerop1 im)
219 (zerop1 (sub re (take '($floor) re)))
220 (mminusp re))
221 ;; bessel_j(-n,z) = (-1)^n*bessel_j(n,z)
222 ($rectform
223 (mul (power -1 re)
224 ($bfloat (bessel-j-hypergeometric (mul -1 re) arg)))))
226 ($rectform
227 ($bfloat (bessel-j-hypergeometric order arg)))))))
229 ((and (integerp order) (minusp order))
230 ;; Some special cases when the order is an integer.
231 ;; A&S 9.1.5: J[-n](x) = (-1)^n*J[n](x)
232 (if (evenp order)
233 (take '(%bessel_j) (- order) arg)
234 (mul -1 (take '(%bessel_j) (- order) arg))))
236 ((and $besselexpand
237 (setq rat-order (max-numeric-ratio-p order 2)))
238 ;; When order is a fraction with a denominator of 2, we
239 ;; can express the result in terms of elementary functions.
240 (bessel-j-half-order rat-order arg))
242 ((and $bessel_reduce
243 (and (integerp order)
244 (plusp order)
245 (> order 1)))
246 ;; Reduce a bessel function of order > 2 to order 1 and 0.
247 ;; A&S 9.1.27: bessel_j(v,z) = 2*(v-1)/z*bessel_j(v-1,z)-bessel_j(v-2,z)
248 (sub (mul 2
249 (- order 1)
250 (inv arg)
251 (take '(%bessel_j) (- order 1) arg))
252 (take '(%bessel_j) (- order 2) arg)))
254 ((and $%iargs (multiplep arg '$%i))
255 ;; bessel_j(v, %i*x) = (%i*x)^v/(x^v) * bessel_i(v, x)
256 ;; (From http://functions.wolfram.com/03.01.27.0002.01)
257 (let ((x (coeff arg '$%i 1)))
258 (mul (power (mul '$%i x) order)
259 (inv (power x order))
260 (take '(%bessel_i) order x))))
262 ($hypergeometric_representation
263 (bessel-j-hypergeometric order arg))
266 (give-up)))))
268 ;; Returns the hypergeometric representation of bessel_j
269 (defun bessel-j-hypergeometric (order arg)
270 ;; A&S 9.1.69 / http://functions.wolfram.com/03.01.26.0002.01
271 ;; hypergeometric([],[v+1],-z^2/4)*(z/2)^v/gamma(v+1)
272 (mul (inv (take '(%gamma) (add order 1)))
273 (power (div arg 2) order)
274 (take '(%hypergeometric)
275 (list '(mlist))
276 (list '(mlist) (add order 1))
277 (neg (div (mul arg arg) 4)))))
279 ;; Compute value of Bessel function of the first kind of order ORDER.
280 (defun bessel-j (order arg)
281 (cond
282 ((zerop (imagpart arg))
283 ;; We have numeric args and the arg is purely real.
284 ;; Call the real-valued Bessel function when possible.
285 (let ((arg (realpart arg)))
286 (cond
287 ((= order 0)
288 (slatec:dbesj0 (float arg)))
289 ((= order 1)
290 (slatec:dbesj1 (float arg)))
291 ((minusp order)
292 (cond ((zerop (nth-value 1 (truncate order)))
293 ;; The order is a negative integer. We use A&S 9.1.5:
294 ;; J[-n](z) = (-1)^n*J[n](z)
295 ;; and not the Hankel functions.
296 (if (evenp (floor order))
297 (bessel-j (- order) arg)
298 (- (bessel-j (- order) arg))))
300 ;; Bessel function of negative order. We use the Hankel
301 ;; functions to compute this:
302 ;; J[v](z) = (H1[v](z) + H2[v](z)) / 2.
303 ;; This works for negative and positive arg and handles
304 ;; special cases correctly.
305 (let ((result (* 0.5 (+ (hankel-1 order arg) (hankel-2 order arg)))))
306 (cond ((= (nth-value 1 (floor order)) 1/2)
307 ;; ORDER is a half-integral-value or a float
308 ;; representation, thereof.
309 (if (minusp arg)
310 ;; arg is negative, the result is purely imaginary
311 (complex 0 (imagpart result))
312 ;; arg is positive, the result is purely real
313 (realpart result)))
314 ;; in all other cases general complex result
315 (t result))))))
317 ;; We have a real arg and order > 0 and order not 0 or 1
318 ;; for this case we can call the function dbesj
319 (multiple-value-bind (n alpha) (floor (float order))
320 (let ((jvals (make-array (1+ n) :element-type 'flonum)))
321 (slatec:dbesj (abs (float arg)) alpha (1+ n) jvals 0)
322 (cond ((>= arg 0)
323 (aref jvals n))
325 ;; Use analytic continuation formula A&S 9.1.35:
326 ;; J[v](z*exp(m*%pi*%i)) = exp(m*%pi*%i*v)*J[v](z)
327 ;; for an integer m. In particular, for m = 1:
328 ;; J[v](-x) = exp(v*%pi*%i)*J[v](x)
329 ;; and handle special cases
330 (cond ((zerop (nth-value 1 (truncate order)))
331 ;; order is an integer
332 (if (evenp (floor order))
333 (aref jvals n)
334 (- (aref jvals n))))
335 ((= (nth-value 1 (floor order)) 1/2)
336 ;; Order is a half-integral-value and we know that
337 ;; arg < 0, so the result is purely imginary.
338 (if (evenp (floor order))
339 (complex 0 (aref jvals n))
340 (complex 0 (- (aref jvals n)))))
341 ;; In all other cases a general complex result
343 (* (cis (* order pi))
344 (aref jvals n))))))))))))
346 ;; The arg is complex. Use the complex-valued Bessel function.
347 (cond ((mminusp order)
348 ;; Bessel function of negative order. We use the Hankel function to
349 ;; compute this, because A&S 9.1.3 and 9.1.4 say
350 ;; H1[v](z) = J[v](z) + %i * Y[v](z)
351 ;; and
352 ;; H2[v](z) = J[v](z) - %i * Y[v](z).
353 ;; Thus
354 ;; J[v](z) = (H1[v](z) + H2[v](z)) / 2.
355 ;; Not the most efficient way, but perhaps good enough for maxima.
356 (* 0.5 (+ (hankel-1 order arg) (hankel-2 order arg))))
358 (multiple-value-bind (n alpha) (floor (float order))
359 (let ((cyr (make-array (1+ n) :element-type 'flonum))
360 (cyi (make-array (1+ n) :element-type 'flonum)))
361 (multiple-value-bind (v-zr v-zi v-fnu v-kode v-n
362 v-cyr v-cyi v-nz v-ierr)
363 (slatec:zbesj (float (realpart arg))
364 (float (imagpart arg))
365 alpha 1 (1+ n) cyr cyi 0 0)
366 (declare (ignore v-zr v-zi v-fnu v-kode v-n v-cyr v-cyi v-nz))
368 ;; Should check the return status in v-ierr of this routine.
369 (when (plusp v-ierr)
370 (format t "zbesj ierr = ~A~%" v-ierr))
371 (complex (aref cyr n) (aref cyi n))))))))))
373 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
375 ;;; Implementation of the Bessel Y function
377 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
379 ;; Bessel Y distributes over lists, matrices, and equations
381 (defprop %bessel_y (mlist $matrix mequal) distribute_over)
383 (defprop %bessel_y
384 ((n x)
385 ;; Derivative wrt order n. A&S 9.1.65.
387 ;; cot(n*%pi)*[diff(bessel_j(n,x),n)-%pi*bessel_y(n,x)]
388 ;; - csc(n*%pi)*diff(bessel_j(-n,x),n)-%pi*bessel_j(n,x)
389 ((mplus)
390 ((mtimes) -1 $%pi ((%bessel_j) n x))
391 ((mtimes)
393 ((%csc) ((mtimes) $%pi n))
394 ((%derivative) ((%bessel_j) ((mtimes) -1 n) x) n 1))
395 ((mtimes)
396 ((%cot) ((mtimes) $%pi n))
397 ((mplus)
398 ((mtimes) -1 $%pi ((%bessel_y) n x))
399 ((%derivative) ((%bessel_j) n x) n 1))))
401 ;; Derivative wrt to arg x. A&S 9.1.27; changed from A&S 9.1.30
402 ;; to be consistent with bessel_j.
403 ((mtimes)
404 ((mplus)
405 ((%bessel_y)((mplus) -1 n) x)
406 ((mtimes) -1 ((%bessel_y) ((mplus) 1 n) x)))
407 ((rat) 1 2)))
408 grad)
410 ;; Integral of the Bessel Y function wrt z
411 ;; http://functions.wolfram.com/Bessel-TypeFunctions/BesselY/21/01/01/
412 (defun bessel-y-integral-2 (n z)
413 (cond
414 ((and ($integerp n) (<= 0 n))
415 (cond
416 (($oddp n)
417 ;; integrate(bessel_y(2*N+1,z),z) , N > 0
418 ;; = -bessel_y(0,z) - 2 * sum(bessel_y(2*k,z),k,1,N)
419 (let* ((k (gensym))
420 (answer `((mplus) ((mtimes) -1 ((%bessel_y) 0 ,z))
421 ((mtimes) -2
422 ((%sum) ((%bessel_y) ((mtimes) 2 ,k) ,z) ,k 1
423 ((mtimes) ((rat) 1 2) ((mplus) -1 ,n)))))))
424 ;; Expand out the sum if n < 10. Otherwise fix up the indices
425 (if (< n 10)
426 (meval `(($ev) ,answer $sum)) ; Is there a better way?
427 (simplify ($niceindices answer)))))
428 (($evenp n)
429 ;; integrate(bessel_y(2*N,z),z) , N > 0
430 ;; = (1/2)*%pi*z*(bessel_y(0,z)*struve_h(-1,z)
431 ;; +bessel_y(1,z)*struve_h(0,z))
432 ;; - 2 * sum(bessel_y(2*k+1,z),k,0,N-1)
433 (let*
434 ((k (gensym))
435 (answer `((mplus)
436 ((mtimes) -2
437 ((%sum)
438 ((%bessel_y) ((mplus) 1 ((mtimes) 2 ,k)) ,z)
439 ,k 0
440 ((mplus)
442 ((mtimes) ((rat) 1 2) ,n))))
443 ((mtimes) ((rat) 1 2) $%pi ,z
444 ((mplus)
445 ((mtimes)
446 ((%bessel_y) 0 ,z)
447 ((%struve_h) -1 ,z))
448 ((mtimes)
449 ((%bessel_y) 1 ,z)
450 ((%struve_h) 0 ,z)))))))
451 ;; Expand out the sum if n < 10. Otherwise fix up the indices
452 (if (< n 10)
453 (meval `(($ev) ,answer $sum)) ; Is there a better way?
454 (simplify ($niceindices answer)))))))
455 (t nil)))
457 (putprop '%bessel_y `((n z) nil ,'bessel-y-integral-2) 'integral)
459 ;; Support a simplim%bessel_y function to handle specific limits
461 (defprop %bessel_y simplim%bessel_y simplim%function)
463 (defun simplim%bessel_y (expr var val)
464 ;; Look for the limit of the arguments.
465 (let ((v (limit (cadr expr) var val 'think))
466 (z (limit (caddr expr) var val 'think)))
467 (cond
468 ;; Handle an argument 0 at this place.
469 ((or (zerop1 z)
470 (eq z '$zeroa)
471 (eq z '$zerob))
472 (cond ((zerop1 v)
473 ;; bessel_y(0,0)
474 '$minf)
475 ((integerp v)
476 ;; bessel_y(n,0), n an integer
477 (cond ((evenp v) '$minf)
478 (t (cond ((eq z '$zeroa) '$minf)
479 ((eq z '$zerob) '$inf)
480 (t '$infinity)))))
481 ((not (zerop1 ($realpart v)))
482 ;; bessel_y(v,0), Re(v)#0
483 '$infinity)
484 ((and (zerop1 ($realpart v))
485 (not (zerop1 v)))
486 ;; bessel_y(v,0), Re(v)=0 and v#0
487 '$und)
488 ;; Call the simplifier of the function.
489 (t (simplify (list '(%bessel_y) v z)))))
490 ((or (eq z '$inf)
491 (eq z '$minf))
492 ;; bessel_y(v,inf) or bessel_y(v,minf)
495 ;; All other cases are handled by the simplifier of the function.
496 (simplify (list '(%bessel_y) v z))))))
498 (def-simplifier bessel_y (order arg)
499 (let ((rat-order nil))
500 (cond
501 ((zerop1 arg)
502 ;; Domain error for a zero argument.
503 (simp-domain-error
504 (intl:gettext "bessel_y: bessel_y(~:M,~:M) is undefined.") order arg))
506 ((complex-float-numerical-eval-p order arg)
507 ;; We have numeric order and arg and $numer is true, or
508 ;; we have either the order or arg being floating-point,
509 ;; so let's evaluate it numerically.
510 (cond ((= 0 ($imagpart order))
511 ;; order is real, arg is real or complex
512 (complexify (bessel-y ($float order)
513 (complex ($float ($realpart arg))
514 ($float ($imagpart arg))))))
516 ;; order is complex, arg is real or complex
517 (let (($numer t)
518 ($float t)
519 (order ($float order))
520 (arg ($float arg)))
521 ($float
522 ($rectform
523 (bessel-y-hypergeometric order arg)))))))
525 ((or (bigfloat-numerical-eval-p order arg)
526 (complex-bigfloat-numerical-eval-p order arg))
527 ;; When the order is not an integer, we can use the
528 ;; hypergeometric representation to evaluate it.
529 (destructuring-bind (re . im)
530 (risplit order)
531 (cond ((and (zerop1 im)
532 (not (zerop1 (sub re (take '($floor) re)))))
533 ($rectform
534 ($bfloat (bessel-y-hypergeometric re arg))))
536 (give-up)))))
538 ((and (integerp order) (minusp order))
539 ;; Special case when the order is an integer.
540 ;; A&S 9.1.5: Y[-n](x) = (-1)^n*Y[n](x)
541 (if (evenp order)
542 (take '(%bessel_y) (- order) arg)
543 (mul -1 (take '(%bessel_y) (- order) arg))))
545 ((and $besselexpand
546 (setq rat-order (max-numeric-ratio-p order 2)))
547 ;; When order is a fraction with a denominator of 2, we
548 ;; can express the result in terms of elementary functions.
549 ;; From A&S 10.1.1, 10.1.11-12 and 10.1.15:
551 ;; Y[1/2](z) = -J[-1/2](z) is a function of cos(z).
552 ;; Y[-1/2](z) = J[1/2](z) is a function of sin(z).
553 (bessel-y-half-order rat-order arg))
555 ((and $bessel_reduce
556 (and (integerp order)
557 (plusp order)
558 (> order 1)))
559 ;; Reduce a bessel function of order > 2 to order 1 and 0.
560 ;; A&S 9.1.27: bessel_y(v,z) = 2*(v-1)/z*bessel_y(v-1,z)-bessel_y(v-2,z)
561 (sub (mul 2
562 (- order 1)
563 (inv arg)
564 (take '(%bessel_y) (- order 1) arg))
565 (take '(%bessel_y) (- order 2) arg)))
567 ($hypergeometric_representation
568 (bessel-y-hypergeometric order arg))
571 (give-up)))))
573 ;; Returns the hypergeometric representation of bessel_y
574 (defun bessel-y-hypergeometric (order arg)
575 ;; http://functions.wolfram.com/03.03.26.0002.01
576 ;; -hypergeometric([],[1-v],-z^2/4)*(2/z)^v*gamma(v)/%pi
577 ;; - hypergeometric([],[v+1],-z^2/4)*gamma(-v)*cos(%pi*v)*(z/2)^v/%pi
578 (add (mul -1
579 (power 2 order)
580 (inv (power arg order))
581 (take '(%gamma) order)
582 (inv '$%pi)
583 (take '(%hypergeometric)
584 (list '(mlist))
585 (list '(mlist) (sub 1 order))
586 (neg (div (mul arg arg) 4))))
587 (mul -1
588 (inv (power 2 order))
589 (power arg order)
590 (take '(%cos) (mul order '$%pi))
591 (take '(%gamma) (neg order))
592 (inv '$%pi)
593 (take '(%hypergeometric)
594 (list '(mlist))
595 (list '(mlist) (add 1 order))
596 (neg (div (mul arg arg) 4))))))
598 ;; Bessel function of the second kind, Y[n](z), for real or complex z
599 (defun bessel-y (order arg)
600 (cond
601 ((zerop (imagpart arg))
602 ;; We have numeric args and the first arg is purely
603 ;; real. Call the real-valued Bessel function.
605 ;; For negative values, use the analytic continuation formula
606 ;; A&S 9.1.36:
608 ;; Y[v](z*exp(m*%pi*%i)) = exp(-v*m*%pi*%i) * Y[v](z)
609 ;; + 2*%i*sin(m*v*%pi)*cot(v*%pi)*J[v](z)
611 ;; In particular for m = 1:
612 ;; Y[v](-z) = exp(-v*%pi*%i) * Y[v](z) + 2*%i*cos(v*%pi)*J[v](z)
613 (let ((arg (realpart arg)))
614 (cond
615 ((zerop order)
616 (cond ((>= arg 0)
617 (slatec:dbesy0 (float arg)))
619 ;; For v = 0, this simplifies to
620 ;; Y[0](-z) = Y[0](z) + 2*%i*J[0](z)
621 ;; the return value has to be a CL number
622 (+ (slatec:dbesy0 (float (- arg)))
623 (complex 0 (* 2 (slatec:dbesj0 (float (- arg)))))))))
624 ((= order 1)
625 (cond ((>= arg 0)
626 (slatec:dbesy1 (float arg)))
628 ;; For v = 1, this simplifies to
629 ;; Y[1](-z) = -Y[1](z) - 2*%i*J[1](v)
630 ;; the return value has to be a CL number
631 (+ (- (slatec:dbesy1 (float (- arg))))
632 (complex 0 (* -2 (slatec:dbesj1 (float (- arg)))))))))
633 ((minusp order)
634 (cond ((zerop (nth-value 1 (truncate order)))
635 ;; Order is a negative integer or float representation.
636 ;; Use A&S 9.1.5: Y[-n](z) = (-1)^n*Y[n](z).
637 (if (evenp (floor order))
638 (bessel-y (- order) arg)
639 (- (bessel-y (- order) arg))))
641 ;; Bessel function of negative order. We use the Hankel
642 ;; functions to compute this:
643 ;; Y[v](z) = (H1[v](z) - H2[v](z)) / 2 / %i
644 (let ((result (/ (- (hankel-1 order arg)
645 (hankel-2 order arg))
646 (complex 0 2))))
647 (cond ((= (nth-value 1 (floor order)) 1/2)
648 ;; ORDER is half-integral-value or a float
649 ;; representation thereof.
650 (if (minusp arg)
651 ;; arg is negative, the result is purely imaginary
652 (complex 0 (imagpart result))
653 ;; arg is positive, the result is purely real
654 (realpart result)))
655 ;; in all other cases general complex result
656 (t result))))))
658 (multiple-value-bind (n alpha) (floor (float order))
659 (let ((jvals (make-array (1+ n) :element-type 'flonum)))
660 ;; First we do the calculation for an positive argument.
661 (slatec:dbesy (abs (float arg)) alpha (1+ n) jvals)
663 ;; Now we look at the sign of the argument
664 (cond ((>= arg 0)
665 (aref jvals n))
667 (let* ((dpi (coerce pi 'flonum))
668 (s1 (cis (- (* order dpi))))
669 (s2 (* #c(0 2) (cos (* order dpi)))))
670 (let ((result (+ (* s1 (aref jvals n))
671 (* s2 (bessel-j order (- arg))))))
672 (cond ((zerop (nth-value 1 (truncate order)))
673 ;; ORDER is an integer or a float representation
674 ;; of an integer, and the arg is positive the
675 ;; result is general complex.
676 result)
677 ((= (nth-value 1 (floor order)) 1/2)
678 ;; ORDER is a half-integral-value or an float
679 ;; representation and we have arg < 0. The
680 ;; result is purely imaginary.
681 (complex 0 (imagpart result)))
682 ;; in all other cases general complex result
683 (t result))))))))))))
685 (cond ((minusp order)
686 ;; Bessel function of negative order. We use the Hankel function to
687 ;; compute this, because A&S 9.1.3 and 9.1.4 say
688 ;; H1[v](z) = J[v](z) + %i * Y[v](z)
689 ;; and
690 ;; H2[v](z) = J[v](z) - %i * Y[v](z).
691 ;; Thus
692 ;; Y[v](z) = (H1[v](z) - H2[v](z)) / 2 / %i
693 (/ (- (hankel-1 order arg) (hankel-2 order arg))
694 (complex 0 2)))
696 (multiple-value-bind (n alpha) (floor (float order))
697 (let ((cyr (make-array (1+ n) :element-type 'flonum))
698 (cyi (make-array (1+ n) :element-type 'flonum))
699 (cwrkr (make-array (1+ n) :element-type 'flonum))
700 (cwrki (make-array (1+ n) :element-type 'flonum)))
701 (multiple-value-bind (v-zr v-zi v-fnu v-kode v-n v-cyr v-cyi
702 v-nz v-cwrkr v-cwrki v-ierr)
703 (slatec::zbesy (float (realpart arg))
704 (float (imagpart arg))
705 alpha 1 (1+ n) cyr cyi 0 cwrkr cwrki 0)
706 (declare (ignore v-zr v-zi v-fnu v-kode v-n
707 v-cyr v-cyi v-cwrkr v-cwrki v-nz))
709 ;; We should check for errors based on the value of v-ierr.
710 (when (plusp v-ierr)
711 (format t "zbesy ierr = ~A~%" v-ierr))
713 (complex (aref cyr n) (aref cyi n))))))))))
715 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
717 ;;; Implementation of the Bessel I function
719 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
721 ;; Bessel I distributes over lists, matrices, and equations
723 (defprop %bessel_i (mlist $matrix mequal) distribute_over)
725 (defprop %bessel_i
726 ((n x)
727 ;; Derivative wrt order n. A&S 9.6.42.
729 ;; I[n](x)*log(x/2)
730 ;; - (x/2)^n*sum(psi(n+k+1)/gamma(n+k+1)*(x^2/4)^k/k!,k,0,inf)
731 ((mplus)
732 ((mtimes)
733 ((%bessel_i) n x)
734 ((%log) ((mtimes) ((rat) 1 2) x)))
735 ((mtimes) -1
736 ((mexpt) ((mtimes) x ((rat) 1 2)) n)
737 ((%sum)
738 ((mtimes)
739 ((mexpt) ((mfactorial) $%k) -1)
740 ((mqapply) (($psi array) 0) ((mplus) 1 $%k n))
741 ((mexpt) ((%gamma) ((mplus) 1 $%k n)) -1)
742 ((mexpt) ((mtimes) x x ((rat) 1 4)) $%k))
743 $%k 0 $inf)))
744 ;; Derivative wrt to x. A&S 9.6.29.
745 ((mtimes)
746 ((mplus) ((%bessel_i) ((mplus) -1 n) x)
747 ((%bessel_i) ((mplus) 1 n) x))
748 ((rat) 1 2)))
749 grad)
751 ;; Integral of the Bessel I function wrt z
752 ;; http://functions.wolfram.com/Bessel-TypeFunctions/BesselI/21/01/01/
753 (defun bessel-i-integral-2 (v z)
754 (case v
756 ;; integrate(bessel_i(0,z),z)
757 ;; = (1/2)*z*(bessel_i(0,z)*(%pi*struve_l(1,z)+2)
758 ;; -%pi*bessel_i(1,z)*struve_l(0,z))
759 `((mtimes) ((rat) 1 2) ,z
760 ((mplus)
761 ((mtimes) -1 $%pi
762 ((%bessel_i) 1 ,z)
763 ((%struve_l) 0 ,z))
764 ((mtimes)
765 ((%bessel_i) 0 ,z)
766 ((mplus) 2
767 ((mtimes) $%pi ((%struve_l) 1 ,z)))))))
769 ;; integrate(bessel_i(1,z),z) = bessel_i(0,z)
770 `((%bessel_i) 0 ,z))
771 (otherwise
772 ;; http://functions.wolfram.com/03.02.21.0002.01
773 ;; integrate(bessel_i(v,z),z)
774 ;; = 2^(-v-1)*z^(v+1)*gamma(v/2+1/2)
775 ;; * hypergeometric_regularized([v/2+1/2],[v+1,v/2+3/2],z^2/4)
776 ;; = 2^(-v)*z^(v+1)*hypergeometric([v/2+1/2],[v+1,v/2+3/2],z^2/4)
777 ;; / gamma(v+2)
778 `((mtimes)
779 ((%hypergeometric)
780 ((mlist)
781 ((mplus) ((rat) 1 2) ((mtimes) ((rat) 1 2) ,v)))
782 ((mlist)
783 ((mplus) ((rat) 3 2) ((mtimes) ((rat) 1 2) ,v))
784 ((mplus) 1 ,v))
785 ((mtimes) ((rat) 1 4) ((mexpt) ,z 2)))
786 ((mexpt) 2 ((mtimes) -1 ,v))
787 ((mexpt) ((%gamma) ((mplus) 2 ,v)) -1)
788 ((mexpt) z ((mplus) 1 ,v))))))
790 (putprop '%bessel_i `((v z) nil ,'bessel-i-integral-2) 'integral)
792 ;; Support a simplim%bessel_i function to handle specific limits
794 (defprop %bessel_i simplim%bessel_i simplim%function)
796 (defun simplim%bessel_i (expr var val)
797 ;; Look for the limit of the arguments.
798 (let ((v (limit (cadr expr) var val 'think))
799 (z (limit (caddr expr) var val 'think)))
800 (cond
801 ;; Handle an argument 0 at this place.
802 ((or (zerop1 z)
803 (eq z '$zeroa)
804 (eq z '$zerob))
805 (let ((sgn ($sign ($realpart v))))
806 (cond ((and (eq sgn '$neg)
807 (not (maxima-integerp v)))
808 ;; bessel_i(v,0), Re(v)<0 and v not an integer
809 '$infinity)
810 ((and (eq sgn '$zero)
811 (not (zerop1 v)))
812 ;; bessel_i(v,0), Re(v)=0 and v #0
813 '$und)
814 ;; Call the simplifier of the function.
815 (t (simplify (list '(%bessel_i) v z))))))
816 ((eq z '$inf)
817 ;; bessel_i(v,inf)
818 '$inf)
819 ((eq z '$minf)
820 ;; bessel_i(v,minf)
821 '$infinity)
823 ;; All other cases are handled by the simplifier of the function.
824 (simplify (list '(%bessel_i) v z))))))
826 (def-simplifier bessel_i (order arg)
827 (let ((rat-order nil))
828 (cond
829 ((zerop1 arg)
830 ;; We handle the different case for zero arg carefully.
831 (let ((sgn ($sign ($realpart order))))
832 (cond ((and (eq sgn '$zero)
833 (zerop1 ($imagpart order)))
834 ;; bessel_i(0,0) = 1
835 (cond ((or ($bfloatp order) ($bfloatp arg)) ($bfloat 1))
836 ((or (floatp order) (floatp arg)) 1.0)
837 (t 1)))
838 ((or (eq sgn '$pos)
839 (maxima-integerp order))
840 ;; bessel_i(v,0) and Re(v)>0 or v an integer
841 (cond ((or ($bfloatp order) ($bfloatp arg)) ($bfloat 0))
842 ((or (floatp order) (floatp arg)) 0.0)
843 (t 0)))
844 ((and (eq sgn '$neg)
845 (not (maxima-integerp order)))
846 ;; bessel_i(v,0) and Re(v)<0 and v not an integer
847 (simp-domain-error
848 (intl:gettext "bessel_i: bessel_i(~:M,~:M) is undefined.")
849 order arg))
850 ((and (eq sgn '$zero)
851 (not (zerop1 ($imagpart order))))
852 ;; bessel_i(v,0) and Re(v)=0 and v # 0
853 (simp-domain-error
854 (intl:gettext "bessel_i: bessel_i(~:M,~:M) is undefined.")
855 order arg))
857 ;; No information about the sign of the order
858 (give-up)))))
860 ((complex-float-numerical-eval-p order arg)
861 (cond ((= 0 ($imagpart order))
862 ;; order is real, arg is real or complex
863 (complexify (bessel-i ($float order)
864 (complex ($float ($realpart arg))
865 ($float ($imagpart arg))))))
867 ;; order is complex, arg is real or complex
868 (let (($numer t)
869 ($float t)
870 (order ($float order))
871 (arg ($float arg)))
872 ($float
873 ($rectform
874 (bessel-i-hypergeometric order arg)))))))
876 ((or (bigfloat-numerical-eval-p order arg)
877 (complex-bigfloat-numerical-eval-p order arg))
878 ;; We have the order or arg being a bigfloat, so evaluate it
879 ;; numerically using the hypergeometric representation
880 ;; bessel_j.
882 ;; When the order is a negative integer, the hypergeometric
883 ;; representation is invalid. However,
884 ;; https://dlmf.nist.gov/10.27.E1 says bessel_i(-n,z) =
885 ;; bessel_i(n,z).
886 (destructuring-bind (re . im)
887 (risplit order)
888 (cond ((and (zerop im)
889 (zerop1 (sub re (take '($floor) re)))
890 (mminusp re))
891 ($rectform
892 ($bfloat (bessel-i-hypergeometric (mul -1 order) arg))))
894 ($rectform
895 ($bfloat (bessel-i-hypergeometric order arg)))))))
897 ((and (integerp order) (minusp order))
898 ;; Some special cases when the order is an integer
899 ;; A&S 9.6.6: I[-n](x) = I[n](x)
900 (take '(%bessel_i) (- order) arg))
902 ((and $besselexpand (setq rat-order (max-numeric-ratio-p order 2)))
903 ;; When order is a fraction with a denominator of 2, we
904 ;; can express the result in terms of elementary functions.
905 ;; From A&S 10.2.13 and 10.2.14:
907 ;; I[1/2](z) = sqrt(2/%pi/z)*sinh(z)
908 ;; I[-1/2](z) = sqrt(2/%pi/z)*cosh(z)
909 (bessel-i-half-order rat-order arg))
911 ((and $bessel_reduce
912 (and (integerp order)
913 (plusp order)
914 (> order 1)))
915 ;; Reduce a bessel function of order > 2 to order 1 and 0.
916 ;; A&S 9.6.26: bessel_i(v,z) = -2*(v-1)/z*bessel_i(v-1,z)+bessel_i(v-2,z)
917 (add (mul -2
918 (- order 1)
919 (inv arg)
920 (take '(%bessel_i) (- order 1) arg))
921 (take '(%bessel_i) (- order 2) arg)))
923 ((and $%iargs (multiplep arg '$%i))
924 ;; bessel_i(v, %i*x) = (%i*x)^v/(x^v) * bessel_j(v, x)
925 ;; (From http://functions.wolfram.com/03.02.27.0002.01)
926 (let ((x (coeff arg '$%i 1)))
927 (mul (power (mul '$%i x) order)
928 (inv (power x order))
929 (take '(%bessel_j) order x))))
931 ($hypergeometric_representation
932 (bessel-i-hypergeometric order arg))
935 (give-up)))))
937 ;; Returns the hypergeometric representation of bessel_i
938 (defun bessel-i-hypergeometric (order arg)
939 ;; A&S 9.6.47 / http://functions.wolfram.com/03.02.26.0002.01
940 ;; hypergeometric([],[v+1],z^2/4)*(z/2)^v/gamma(v+1)
941 (mul (inv (take '(%gamma) (add order 1)))
942 (power (div arg 2) order)
943 (take '(%hypergeometric)
944 (list '(mlist))
945 (list '(mlist) (add order 1))
946 (div (mul arg arg) 4))))
948 ;; Compute value of Modified Bessel function of the first kind of order ORDER
949 (defun bessel-i (order arg)
950 (cond
951 ((zerop (imagpart arg))
952 ;; We have numeric args and the first arg is purely
953 ;; real. Call the real-valued Bessel function. Use special
954 ;; routines for order 0 and 1, when possible
955 (let ((arg (realpart arg)))
956 (cond
957 ((zerop order)
958 (slatec:dbesi0 (float arg)))
959 ((= order 1)
960 (slatec:dbesi1 (float arg)))
961 ((or (minusp order) (< arg 0))
962 (multiple-value-bind (order-int order-frac) (floor order)
963 (cond ((zerop order-frac)
964 ;; Order is an integer. From A&S 9.6.6 and 9.6.30 we have
965 ;; I[-n](z) = I[n](z)
966 ;; and
967 ;; I[n](-z) = (-1)^n*I[n](z)
968 (if (< arg 0)
969 (if (evenp order-int)
970 (bessel-i (abs order) (abs arg))
971 (- (bessel-i (abs order) (abs arg))))
972 (bessel-i (abs order) arg)))
974 ;; Order or arg is negative and order is not an integer, use
975 ;; the bessel-j function for calculation. We know from
976 ;; the definition I[v](x) = x^v/(%i*x)^v * J[v](%i*x).
977 (let* ((arg (float arg))
978 (result (* (expt arg order)
979 (expt (complex 0 arg) (- order))
980 (bessel-j order (complex 0 arg)))))
981 ;; Try to clean up result if we know the result is
982 ;; purely real or purely imaginary.
983 (cond ((>= arg 0)
984 ;; Result is purely real for arg >= 0
985 (realpart result))
986 ((zerop order-frac)
987 ;; Order is an integer or a float representation of
988 ;; an integer, the result is purely real.
989 (realpart result))
990 ((= order-frac 1/2)
991 ;; Order is half-integral-value or a float
992 ;; representation and arg < 0, the result
993 ;; is purely imaginary.
994 (complex 0 (imagpart result)))
995 (t result)))))))
997 ;; Now the case order > 0 and arg >= 0
998 (multiple-value-bind (n alpha) (floor (float order))
999 (let ((jvals (make-array (1+ n) :element-type 'flonum)))
1000 (slatec:dbesi (float (realpart arg)) alpha 1 (1+ n) jvals 0)
1001 (aref jvals n)))))))
1003 ((and (zerop (realpart arg))
1004 (zerop (rem order 1)))
1005 ;; Handle the case for a pure imaginary arg and integer order.
1006 ;; In this case, the result is purely real or purely imaginary,
1007 ;; so we want to make sure that happens.
1009 ;; bessel_i(n, %i*x) = (%i*x)^n/x^n * bessel_j(n,x)
1010 ;; = %i^n * bessel_j(n,x)
1011 (let* ((n (floor order))
1012 (result (bessel-j (float n) (imagpart arg))))
1013 (cond ((evenp n)
1014 ;; %i^(2*m) = (-1)^m, where n=2*m
1015 (if (evenp (/ n 2))
1016 result
1017 (- result)))
1018 ((oddp n)
1019 ;; %i^(2*m+1) = %i*(-1)^m, where n = 2*m+1
1020 (if (evenp (floor n 2))
1021 (complex 0 result)
1022 (complex 0 (- result)))))))
1025 ;; The arg is complex. Use the complex-valued Bessel function.
1026 (multiple-value-bind (n alpha) (floor (abs (float order)))
1027 ;; Evaluate the function for positive order and fixup the result later.
1028 (let ((cyr (make-array (1+ n) :element-type 'flonum))
1029 (cyi (make-array (1+ n) :element-type 'flonum)))
1030 (multiple-value-bind (v-zr v-zi v-fnu v-kode v-n
1031 v-cyr v-cyi v-nz v-ierr)
1032 (slatec::zbesi (float (realpart arg))
1033 (float (imagpart arg))
1034 alpha 1 (1+ n) cyr cyi 0 0)
1035 (declare (ignore v-zr v-zi v-fnu v-kode v-n v-cyr v-cyi v-nz))
1036 ;; We should check for errors here based on the value of v-ierr.
1037 (when (plusp v-ierr)
1038 (format t "zbesi ierr = ~A~%" v-ierr))
1040 ;; We have evaluated I[|order|](arg), now we look at
1041 ;; the the sign of the order.
1042 (cond ((minusp order)
1043 ;; From A&S 9.6.2:
1044 ;; I[-a](z) = I[a](z) + (2/%pi)*sin(%pi*a)*K[a](z)
1045 (+ (complex (aref cyr n) (aref cyi n))
1046 (let ((dpi (coerce pi 'flonum)))
1047 (* (/ 2.0 dpi)
1048 (sin (* dpi (- order)))
1049 (bessel-k (- order) arg)))))
1051 (complex (aref cyr n) (aref cyi n))))))))))
1053 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
1055 ;;; Implementation of the Bessel K function
1057 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
1059 ;; Bessel K distributes over lists, matrices, and equations
1061 (defprop %bessel_k (mlist $matrix mequal) distribute_over)
1063 (defprop %bessel_k
1064 ((n x)
1065 ;; Derivativer wrt order n. A&S 9.6.43.
1067 ;; %pi/2*csc(n*%pi)*['diff(bessel_i(-n,x),n)-'diff(bessel_i(n,x),n)]
1068 ;; - %pi*cot(n*%pi)*bessel_k(n,x)
1069 ((mplus)
1070 ((mtimes) -1 $%pi
1071 ((%bessel_k) n x)
1072 ((%cot) ((mtimes) $%pi n)))
1073 ((mtimes)
1074 ((rat) 1 2)
1075 $%pi
1076 ((%csc) ((mtimes) $%pi n))
1077 ((mplus)
1078 ((%derivative) ((%bessel_i) ((mtimes) -1 n) x) n 1)
1079 ((mtimes) -1
1080 ((%derivative) ((%bessel_i) n x) n 1)))))
1081 ;; Derivative wrt to x. A&S 9.6.29.
1082 ((mtimes)
1084 ((mplus) ((%bessel_k) ((mplus) -1 n) x)
1085 ((%bessel_k) ((mplus) 1 n) x))
1086 ((rat) 1 2)))
1087 grad)
1089 ;; Integral of the Bessel K function wrt z
1090 ;; http://functions.wolfram.com/Bessel-TypeFunctions/BesselK/21/01/01/
1091 (defun bessel-k-integral-2 (n z)
1092 (cond
1093 ((and ($integerp n) (<= 0 n))
1094 (cond
1095 (($oddp n)
1096 ;; integrate(bessel_k(2*N+1,z),z) , N > 0
1097 ;; = -(-1)^((n-1)/2)*bessel_k(0,z)
1098 ;; + 2*sum((-1)^(k+(n-1)/2-1)*bessel_k(2*k,z),k,1,(n-1)/2)
1099 (let* ((k (gensym))
1100 (answer `((mplus)
1101 ((mtimes) -1 ((%bessel_k) 0 ,z)
1102 ((mexpt) -1
1103 ((mtimes) ((rat) 1 2) ((mplus) -1 ,n))))
1104 ((mtimes) 2
1105 ((%sum)
1106 ((mtimes) ((%bessel_k) ((mtimes) 2 ,k) ,z)
1107 ((mexpt) -1
1108 ((mplus) -1 ,k
1109 ((mtimes) ((rat) 1 2) ((mplus) -1 ,n)))))
1110 ,k 1 ((mtimes) ((rat) 1 2) ((mplus) -1 ,n)))))))
1111 ;; Expand out the sum if n < 10. Otherwise fix up the indices
1112 (if (< n 10)
1113 (meval `(($ev) ,answer $sum)) ; Is there a better way?
1114 (simplify ($niceindices answer)))))
1115 (($evenp n)
1116 ;; integrate(bessel_k(2*N,z),z) , N > 0
1117 ;; = (1/2)*(-1)^(n/2)*%pi*z*(bessel_k(0,z)*struve_l(-1,z)
1118 ;; +bessel_k(1,z)*struve_l(0,z))
1119 ;; + 2 * sum((-1)^(k+n/2)*bessel_k(2*k+1,z),k,0,n/2-1)
1120 (let*
1121 ((k (gensym))
1122 (answer `((mplus)
1123 ((mtimes) 2
1124 ((%sum)
1125 ((mtimes)
1126 ((%bessel_k) ((mplus) 1 ((mtimes) 2 ,k)) ,z)
1127 ((mexpt) -1
1128 ((mplus) ,k ((mtimes) ((rat) 1 2) ,n))))
1129 ,k 0 ((mplus) -1 ((mtimes) ((rat) 1 2) ,n))))
1130 ((mtimes)
1131 ((rat) 1 2)
1132 $%pi
1133 ((mexpt) -1 ((mtimes) ((rat) 1 2) ,n))
1135 ((mplus)
1136 ((mtimes)
1137 ((%bessel_k) 0 ,z)
1138 ((%struve_l) -1 ,z))
1139 ((mtimes)
1140 ((%bessel_k) 1 ,z)
1141 ((%struve_l) 0 ,z)))))))
1142 ;; expand out the sum if n < 10. Otherwise fix up the indices
1143 (if (< n 10)
1144 (meval `(($ev) ,answer $sum)) ; Is there a better way?
1145 (simplify ($niceindices answer)))))))
1146 (t nil)))
1148 (putprop '%bessel_k `((n z) nil ,'bessel-k-integral-2) 'integral)
1150 ;; Support a simplim%bessel_k function to handle specific limits
1152 (defprop %bessel_k simplim%bessel_k simplim%function)
1154 (defun simplim%bessel_k (expr var val)
1155 ;; Look for the limit of the arguments.
1156 (let ((v (limit (cadr expr) var val 'think))
1157 (z (limit (caddr expr) var val 'think)))
1158 (cond
1159 ;; Handle an argument 0 at this place.
1160 ((or (zerop1 z)
1161 (eq z '$zeroa)
1162 (eq z '$zerob))
1163 (cond ((zerop1 v)
1164 ;; bessel_k(0,0)
1165 '$inf)
1166 ((integerp v)
1167 ;; bessel_k(n,0), n an integer
1168 (cond ((evenp v) '$inf)
1169 (t (cond ((eq z '$zeroa) '$inf)
1170 ((eq z '$zerob) '$minf)
1171 (t '$infinity)))))
1172 ((not (zerop1 ($realpart v)))
1173 ;; bessel_k(v,0), Re(v)#0
1174 '$infinity)
1175 ((and (zerop1 ($realpart v))
1176 (not (zerop1 v)))
1177 ;; bessel_k(v,0), Re(v)=0 and v#0
1178 '$und)
1179 ;; Call the simplifier of the function.
1180 (t (simplify (list '(%bessel_k) v z)))))
1181 ((eq z '$inf)
1182 ;; bessel_k(v,inf)
1184 ((eq z '$minf)
1185 ;; bessel_k(v,minf)
1186 '$infinity)
1188 ;; All other cases are handled by the simplifier of the function.
1189 (simplify (list '(%bessel_k) v z))))))
1191 (def-simplifier bessel_k (order arg)
1192 (let ((rat-order nil))
1193 (cond
1194 ((zerop1 arg)
1195 ;; Domain error for a zero argument.
1196 (simp-domain-error
1197 (intl:gettext "bessel_k: bessel_k(~:M,~:M) is undefined.") order arg))
1199 ((complex-float-numerical-eval-p order arg)
1200 (cond ((= 0 ($imagpart order))
1201 ;; order is real, arg is real or complex
1202 (complexify (bessel-k ($float order)
1203 (complex ($float ($realpart arg))
1204 ($float ($imagpart arg))))))
1206 ;; order is complex, arg is real or complex
1207 (let (($numer t)
1208 ($float t)
1209 (order ($float order))
1210 (arg ($float arg)))
1211 ($float
1212 ($rectform
1213 (bessel-k-hypergeometric order arg)))))))
1215 ((or (bigfloat-numerical-eval-p order arg)
1216 (complex-bigfloat-numerical-eval-p order arg))
1217 ;; When the order is not an integer, we can use the
1218 ;; hypergeometric representation to evaluate it.
1219 (destructuring-bind (re . im)
1220 (risplit order)
1221 (cond ((and (zerop1 im)
1222 (not (zerop1 (sub re (take '($floor) re)))))
1223 ($rectform
1224 ($bfloat (bessel-k-hypergeometric re arg))))
1226 (give-up)))))
1228 ((mminusp order)
1229 ;; A&S 9.6.6: K[-v](x) = K[v](x)
1230 (take '(%bessel_k) (mul -1 order) arg))
1232 ((and $besselexpand
1233 (setq rat-order (max-numeric-ratio-p order 2)))
1234 ;; When order is a fraction with a denominator of 2, we
1235 ;; can express the result in terms of elementary
1236 ;; functions. From A&S 10.2.16 and 10.2.17:
1238 ;; K[1/2](z) = sqrt(%pi/2/z)*exp(-z)
1239 ;; = K[-1/2](z)
1240 (bessel-k-half-order rat-order arg))
1242 ((and $bessel_reduce
1243 (and (integerp order)
1244 (plusp order)
1245 (> order 1)))
1246 ;; Reduce a bessel function of order > 2 to order 1 and 0.
1247 ;; A&S 9.6.26: bessel_k(v,z) = 2*(v-1)/z*bessel_k(v-1,z)+bessel_k(v-2,z)
1248 (add (mul 2
1249 (- order 1)
1250 (inv arg)
1251 (take '(%bessel_k) (- order 1) arg))
1252 (take '(%bessel_k) (- order 2) arg)))
1254 ($hypergeometric_representation
1255 (bessel-k-hypergeometric order arg))
1258 (give-up)))))
1260 ;; Returns the hypergeometric representation of bessel_k
1261 (defun bessel-k-hypergeometric (order arg)
1262 ;; http://functions.wolfram.com/03.04.26.0002.01
1263 ;; hypergeometric([],[1-v],z^2/4)*2^(v-1)*gamma(v)/z^v
1264 ;; + hypergeometric([],[v+1],z^2/4)*2^(-v-1)*gamma(-v)*z^v
1265 (add (mul (power 2 (sub order 1))
1266 (take '(%gamma) order)
1267 (inv (power arg order))
1268 (take '(%hypergeometric)
1269 (list '(mlist))
1270 (list '(mlist) (sub 1 order))
1271 (div (mul arg arg) 4)))
1272 (mul (inv (power 2 (add order 1)))
1273 (power arg order)
1274 (take '(%gamma) (neg order))
1275 (take '(%hypergeometric)
1276 (list '(mlist))
1277 (list '(mlist) (add order 1))
1278 (div (mul arg arg) 4)))))
1280 ;; Compute value of Modified Bessel function of the second kind of order ORDER
1281 (defun bessel-k (order arg)
1282 (cond
1283 ((zerop (imagpart arg))
1284 ;; We have numeric args and the first arg is purely real. Call the
1285 ;; real-valued Bessel function. Handle orders 0 and 1 specially, when
1286 ;; possible.
1287 (let ((arg (realpart arg)))
1288 (cond
1289 ((< arg 0)
1290 ;; This is the extension for negative arg.
1291 ;; We use A&S 9.6.6 and 9.6.31 for evaluation:
1292 ;; K[v](-z) = K[|v|](-z)
1293 ;; = exp(-%i*%pi*|v|)*K[|v|](z) - %i*%pi*I[|v|](z)
1294 (let* ((dpi (coerce pi 'flonum))
1295 (s1 (cis (* dpi (- (abs order)))))
1296 (s2 (* (complex 0 -1) dpi))
1297 (result (+ (* s1 (bessel-k (abs order) (- arg)))
1298 (* s2 (bessel-i (abs order) (- arg)))))
1299 (rem (nth-value 1 (floor order))))
1300 (cond ((zerop rem)
1301 ;; order is an integer or a float representation of an
1302 ;; integer, the result is a general complex
1303 result)
1304 ((= rem 1/2)
1305 ;; order is half-integral-value or an float representation
1306 ;; and arg < 0, the result is pure imaginary
1307 (complex 0 (imagpart result)))
1308 ;; in all other cases general complex result
1309 (t result))))
1310 ((= order 0)
1311 (slatec:dbesk0 (float arg)))
1312 ((= order 1)
1313 (slatec:dbesk1 (float arg)))
1315 ;; From A&S 9.6.6, K[-v](z) = K[v](z), so take the
1316 ;; absolute value of the order.
1317 (multiple-value-bind (n alpha) (floor (abs (float order)))
1318 (let ((jvals (make-array (1+ n) :element-type 'flonum)))
1319 (slatec:dbesk (float arg) alpha 1 (1+ n) jvals 0)
1320 (aref jvals n)))))))
1322 ;; The arg is complex. Use the complex-valued Bessel function. From
1323 ;; A&S 9.6.6, K[-v](z) = K[v](z), so take the absolute value of the order.
1324 (multiple-value-bind (n alpha) (floor (abs (float order)))
1325 (let ((cyr (make-array (1+ n) :element-type 'flonum))
1326 (cyi (make-array (1+ n) :element-type 'flonum)))
1327 (multiple-value-bind (v-zr v-zi v-fnu v-kode v-n
1328 v-cyr v-cyi v-nz v-ierr)
1329 (slatec::zbesk (float (realpart arg))
1330 (float (imagpart arg))
1331 alpha 1 (1+ n) cyr cyi 0 0)
1332 (declare (ignore v-zr v-zi v-fnu v-kode v-n v-cyr v-cyi v-nz))
1334 ;; We should check for errors here based on the value of v-ierr.
1335 (when (plusp v-ierr)
1336 (format t "zbesk ierr = ~A~%" v-ierr))
1337 (complex (aref cyr n) (aref cyi n))))))))
1339 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
1341 ;;; Expansion of Bessel J and Y functions of half-integral order.
1343 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
1345 ;; From A&S 10.1.1, we have
1347 ;; J[n+1/2](z) = sqrt(2*z/%pi)*j[n](z)
1348 ;; Y[n+1/2](z) = sqrt(2*z/%pi)*y[n](z)
1350 ;; where j[n](z) is the spherical bessel function of the first kind
1351 ;; and y[n](z) is the spherical bessel function of the second kind.
1353 ;; A&S 10.1.8 and 10.1.9 give
1355 ;; j[n](z) = 1/z*[P(n+1/2,z)*sin(z-n*%pi/2) + Q(n+1/2,z)*cos(z-n*%pi/2)]
1357 ;; y[n](z) = (-1)^(n+1)*1/z*[P(n+1/2,z)*cos(z+n*%pi/2) - Q(n+1/2,z)*sin(z+n*%pi/2)]
1360 ;; A&S 10.1.10
1362 ;; j[n](z) = f[n](z)*sin(z) + (-1)^(n+1)*f[-n-1](z)*cos(z)
1364 ;; f[0](z) = 1/z, f[1](z) = 1/z^2
1366 ;; f[n-1](z) + f[n+1](z) = (2*n+1)/z*f[n](z)
1368 (defun f-fun (n z)
1369 (cond ((= n 0)
1370 (div 1 z))
1371 ((= n 1)
1372 (div 1 (mul z z)))
1373 ((= n -1)
1375 ((>= n 2)
1376 ;; f[n+1](z) = (2*n+1)/z*f[n](z) - f[n-1](z) or
1377 ;; f[n](z) = (2*n-1)/z*f[n-1](z) - f[n-2](z)
1378 (sub (mul (div (+ n n -1) z)
1379 (f-fun (1- n) z))
1380 (f-fun (- n 2) z)))
1382 ;; Negative n
1384 ;; f[n-1](z) = (2*n+1)/z*f[n](z) - f[n+1](z) or
1385 ;; f[n](z) = (2*n+3)/z*f[n+1](z) - f[n+2](z)
1386 (sub (mul (div (+ n n 3) z)
1387 (f-fun (1+ n) z))
1388 (f-fun (+ n 2) z)))))
1390 ;; Compute sqrt(2*z/%pi)
1391 (defun root-2z/pi (z)
1392 (power (mul 2 z (inv '$%pi)) '((rat simp) 1 2)))
1394 (defun bessel-j-half-order (order arg)
1395 "Compute J[n+1/2](z)"
1396 (let* ((n (floor order))
1397 (sign (if (oddp n) -1 1))
1398 (jn (sub (mul ($expand (f-fun n arg))
1399 (take '(%sin) arg))
1400 (mul sign
1401 ($expand (f-fun (- (- n) 1) arg))
1402 (take '(%cos) arg)))))
1403 (mul (root-2z/pi arg)
1404 jn)))
1406 (defun bessel-y-half-order (order arg)
1407 "Compute Y[n+1/2](z)"
1408 ;; A&S 10.1.1:
1409 ;; Y[n+1/2](z) = sqrt(2*z/%pi)*y[n](z)
1411 ;; A&S 10.1.15:
1412 ;; y[n](z) = (-1)^(n+1)*j[-n-1](z)
1414 ;; So
1415 ;; Y[n+1/2](z) = sqrt(2*z/%pi)*(-1)^(n+1)*j[-n-1](z)
1416 ;; = (-1)^(n+1)*sqrt(2*z/%pi)*j[-n-1](z)
1417 ;; = (-1)^(n+1)*J[-n-1/2](z)
1418 (let* ((n (floor order))
1419 (jn (bessel-j-half-order (- (- order) 1/2) arg)))
1420 (if (evenp n)
1421 (mul -1 jn)
1422 jn)))
1424 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
1426 ;;; Expansion of Bessel I and K functions of half-integral order.
1428 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
1430 ;; See A&S 10.2.12
1432 ;; I[n+1/2](z) = sqrt(2*z/%pi)*[g[n](z)*sinh(z) + g[-n-1](z)*cosh(z)]
1434 ;; g[0](z) = 1/z, g[1](z) = -1/z^2
1436 ;; g[n-1](z) - g[n+1](z) = (2*n+1)/z*g[n](z)
1439 (defun g-fun (n z)
1440 (declare (type integer n))
1441 (cond ((= n 0)
1442 (div 1 z))
1443 ((= n 1)
1444 (div -1 (mul z z)))
1445 ((>= n 2)
1446 ;; g[n](z) = g[n-2](z) - (2*n-1)/z*g[n-1](z)
1447 (sub (g-fun (- n 2) z)
1448 (mul (div (+ n n -1) z)
1449 (g-fun (- n 1) z))))
1451 ;; n is negative
1453 ;; g[n](z) = (2*n+3)/z*g[n+1](z) + g[n+2](z)
1454 (add (mul (div (+ n n 3) z)
1455 (g-fun (+ n 1) z))
1456 (g-fun (+ n 2) z)))))
1458 ;; See A&S 10.2.12
1460 ;; I[n+1/2](z) = sqrt(2*z/%pi)*[g[n](z)*sinh(z) + g[-n-1](z)*cosh(z)]
1462 (defun bessel-i-half-order (order arg)
1463 (let ((order (floor order)))
1464 (mul (root-2z/pi arg)
1465 (add (mul ($expand (g-fun order arg))
1466 (take '(%sinh) arg))
1467 (mul ($expand (g-fun (- (+ order 1)) arg))
1468 (take '(%cosh) arg))))))
1470 ;; See A&S 10.2.15
1472 ;; sqrt(%pi/2/z)*K[n+1/2](z) = (%pi/2/z)*exp(-z)*sum((n+1/2,k)/(2*z)^k,k,0,n)
1474 ;; or
1476 ;; K[n+1/2](z) = sqrt(%pi/2)/sqrt(z)*exp(-z)*sum((n+1/2,k)/(2*z)^k,k,0,n)
1478 ;; where (A&S 10.1.9)
1480 ;; (n+1/2,k) = (n+k)!/k!/(n-k)!
1482 (defun k-fun (n z)
1483 (declare (type unsigned-byte n))
1484 ;; Computes the sum above
1485 (let ((sum 1)
1486 (term 1))
1487 (loop for k from 0 upto n do
1488 (setf term (mul term
1489 (div (div (* (- n k) (+ n k 1))
1490 (+ k 1))
1491 (mul 2 z))))
1492 (setf sum (add sum term)))
1493 sum))
1495 (defun bessel-k-half-order (order arg)
1496 (let ((order (truncate (abs order))))
1497 (mul (mul (power (div '$%pi 2) '((rat simp) 1 2))
1498 (power arg '((rat simp) -1 2))
1499 (power '$%e (neg arg)))
1500 (k-fun (abs order) arg))))
1502 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
1504 ;;; Realpart und imagpart of Bessel functions
1506 ;;; We handle the special cases when we know that the Bessel function
1507 ;;; is pure real or pure imaginary. In all other cases Maxima generates
1508 ;;; a general noun form as result.
1510 ;;; To get the complex sign of the order an argument of the Bessel function
1511 ;;; the function $csign is used which calls $sign in a complex mode.
1513 ;;; This is an extension of of the algorithm of the function risplit in
1514 ;;; the file rpart.lisp. risplit looks for a risplit-function on the
1515 ;;; property list and call it if available.
1517 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
1519 (defvar *debug-bessel* nil)
1521 ;;; Put the risplit-function for Bessel J and Bessel I on the property list
1523 (defprop %bessel_j risplit-bessel-j-or-i risplit-function)
1524 (defprop %bessel_i risplit-bessel-j-or-i risplit-function)
1526 ;;; realpart und imagpart for Bessel J and Bessel I function
1528 (defun risplit-bessel-j-or-i (expr)
1529 (when *debug-bessel*
1530 (format t "~&RISPLIT-BESSEL-J with ~A~%" expr))
1531 (let ((order (cadr expr))
1532 (arg (caddr expr))
1533 (sign-order ($csign (cadr expr)))
1534 (sign-arg ($csign (caddr expr))))
1536 (when *debug-bessel*
1537 (format t "~& : order = ~A~%" order)
1538 (format t "~& : arg = ~A~%" arg)
1539 (format t "~& : sign-order = ~A~%" sign-order)
1540 (format t "~& : sign-arg = ~A~%" sign-arg))
1542 (cond
1543 ((or (member sign-order '($complex $imaginary))
1544 (eq sign-arg '$complex))
1545 ;; order or arg are complex, return general noun-form
1546 (risplit-noun expr))
1547 ((eq sign-arg '$imaginary)
1548 ;; arg is pure imaginary
1549 (cond
1550 ((or ($oddp order)
1551 ($featurep order '$odd))
1552 ;; order is an odd integer, pure imaginary noun-form
1553 (cons 0 (mul -1 '$%i expr)))
1554 ((or ($evenp order)
1555 ($featurep order '$even))
1556 ;; order is an even integer, real noun-form
1557 (cons expr 0))
1559 ;; order is not an odd or even integer, or Maxima can not
1560 ;; determine it, return general noun-form
1561 (risplit-noun expr))))
1562 ;; At this point order and arg are real.
1563 ;; We have to look for some special cases involing a negative arg
1564 ((or (maxima-integerp order)
1565 (member sign-arg '($pos $pz)))
1566 ;; arg is positive or order an integer, real noun-form
1567 (cons expr 0))
1568 ;; At this point we know that arg is negative or the sign is not known
1569 ((zerop1 (sub ($truncate ($multthru 2 order)) ($multthru 2 order)))
1570 ;; order is half integral
1571 (cond
1572 ((eq sign-arg '$neg)
1573 ;; order is half integral and arg negative, imaginary noun-form
1574 (cons 0 (mul -1 '$%i expr)))
1576 ;; the sign of arg or order is not known
1577 (risplit-noun expr))))
1579 ;; the sign of arg or order is not known
1580 (risplit-noun expr)))))
1582 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
1584 ;;; Put the risplit-function for Bessel K and Bessel Y on the property list
1586 (defprop %bessel_k risplit-bessel-k-or-y risplit-function)
1587 (defprop %bessel_y risplit-bessel-k-or-y risplit-function)
1589 ;;; realpart und imagpart for Bessel K and Bessel Y function
1591 (defun risplit-bessel-k-or-y (expr)
1592 (when *debug-bessel*
1593 (format t "~&RISPLIT-BESSEL-K with ~A~%" expr))
1594 (let ((order (cadr expr))
1595 (arg (caddr expr))
1596 (sign-order ($csign (cadr expr)))
1597 (sign-arg ($csign (caddr expr))))
1599 (when *debug-bessel*
1600 (format t "~& : order = ~A~%" order)
1601 (format t "~& : arg = ~A~%" arg)
1602 (format t "~& : sign-order = ~A~%" sign-order)
1603 (format t "~& : sign-arg = ~A~%" sign-arg))
1605 (cond
1606 ((or (member sign-order '($complex $imaginary))
1607 (member sign-arg '($complex '$imaginary)))
1608 (risplit-noun expr))
1609 ;; At this point order and arg are real valued.
1610 ;; We have to look for some special cases involing a negative arg
1611 ((member sign-arg '($pos $pz))
1612 ;; arg is positive
1613 (cons expr 0))
1614 ;; At this point we know that arg is negative or the sign is not known
1615 ((and (not (maxima-integerp order))
1616 (zerop1 (sub ($truncate ($multthru 2 order)) ($multthru 2 order))))
1617 ;; order is half integral
1618 (cond
1619 ((eq sign-arg '$neg)
1620 (cons 0 (mul -1 '$%i expr)))
1622 ;; the sign of arg is not known
1623 (risplit-noun expr))))
1625 ;; the sign of arg is not known
1626 (risplit-noun expr)))))
1628 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
1630 ;;; Implementation of scaled Bessel I functions
1632 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
1634 ;; FIXME: The following scaled functions need work. They should be
1635 ;; extended to match bessel_i, but still carefully compute the scaled
1636 ;; value.
1638 ;; I think g0(x) = exp(-x)*I[0](x), g1(x) = exp(-x)*I[1](x), and
1639 ;; gn(x,n) = exp(-x)*I[n](x), based on some simple numerical
1640 ;; evaluations.
1642 (defmfun $scaled_bessel_i0 ($x)
1643 (cond ((mnump $x)
1644 ;; XXX Should we return noun forms if $x is rational?
1645 (slatec:dbsi0e ($float $x)))
1647 (mul (power '$%e (neg (simplifya `((mabs) ,$x) nil)))
1648 `((%bessel_i) 0 ,$x)))))
1650 (defmfun $scaled_bessel_i1 ($x)
1651 (cond ((mnump $x)
1652 ;; XXX Should we return noun forms if $x is rational?
1653 (slatec:dbsi1e ($float $x)))
1655 (mul (power '$%e (neg (simplifya `((mabs) ,$x) nil)))
1656 `((%bessel_i) 1 ,$x)))))
1658 (defmfun $scaled_bessel_i ($n $x)
1659 (cond ((and (mnump $x) (mnump $n))
1660 ;; XXX Should we return noun forms if $n and $x are rational?
1661 (multiple-value-bind (n alpha) (floor ($float $n))
1662 (let ((iarray (make-array (1+ n) :element-type 'flonum)))
1663 (slatec:dbesi ($float $x) alpha 2 (1+ n) iarray 0)
1664 (aref iarray n))))
1666 (mul (power '$%e (neg (simplifya `((mabs) ,$x) nil)))
1667 ($bessel_i $n $x)))))
1669 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
1671 ;;; Implementation of the Hankel 1 function
1673 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
1675 ;; hankel_1 distributes over lists, matrices, and equations
1677 (defprop %hankel_1 (mlist $matrix mequal) distribute_over)
1679 #+nil
1680 (defprop %hankel_1 simp-hankel-1 operators)
1682 ; Derivatives of the Hankel 1 function
1683 (defprop %hankel_1
1684 ((n x)
1687 ;; Derivative wrt arg x. A&S 9.1.27.
1688 ((mtimes)
1689 ((mplus)
1690 ((%hankel_1) ((mplus) -1 n) x)
1691 ((mtimes) -1 ((%hankel_1) ((mplus) 1 n) x)))
1692 ((rat) 1 2)))
1693 grad)
1695 (def-simplifier hankel_1 (order arg)
1696 (let (rat-order)
1697 (cond
1698 ((zerop1 arg)
1699 (simp-domain-error
1700 (intl:gettext "hankel_1: hankel_1(~:M,~:M) is undefined.")
1701 order arg))
1702 ((complex-float-numerical-eval-p order arg)
1703 (cond ((= 0 ($imagpart order))
1704 ;; order is real, arg is real or complex
1705 (complexify (hankel-1 ($float order)
1706 (complex ($float ($realpart arg))
1707 ($float ($imagpart arg))))))
1709 ;; The order is complex. Use
1710 ;; hankel_1(v,z) = bessel_j(v,z) + %i*bessel_y(v,z)
1711 ;; and evaluate using the hypergeometric function
1712 (let (($numer t)
1713 ($float t)
1714 (order ($float order))
1715 (arg ($float arg)))
1716 ($float
1717 ($rectform
1718 (add (bessel-j-hypergeometric order arg)
1719 (mul '$%i
1720 (bessel-y-hypergeometric order arg)))))))))
1721 ((and $besselexpand
1722 (setq rat-order (max-numeric-ratio-p order 2)))
1723 ;; When order is a fraction with a denominator of 2, we can express
1724 ;; the result in terms of elementary functions.
1725 ;; Use the definition hankel_1(v,z) = bessel_j(v,z)+%i*bessel_y(v,z)
1726 (sratsimp
1727 (add (bessel-j-half-order rat-order arg)
1728 (mul '$%i
1729 (bessel-y-half-order rat-order arg)))))
1730 (t (give-up)))))
1732 ;; Numerically compute H1[v](z).
1734 ;; A&S 9.1.3 says H1[v](z) = J[v](z) + %i * Y[v](z)
1736 (defun hankel-1 (v z)
1737 (let ((v (float v))
1738 (z (coerce z '(complex flonum))))
1739 (cond ((minusp v)
1740 ;; A&S 9.1.6:
1742 ;; H1[-v](z) = exp(v*%pi*%i)*H1[v](z)
1744 ;; or
1746 ;; H1[v](z) = exp(-v*%pi*%i)*H1[-v](z)
1748 (* (cis (* (float pi) (- v))) (hankel-1 (- v) z)))
1750 (multiple-value-bind (n fnu) (floor v)
1751 (let ((zr (realpart z))
1752 (zi (imagpart z))
1753 (cyr (make-array (1+ n) :element-type 'flonum))
1754 (cyi (make-array (1+ n) :element-type 'flonum)))
1755 (multiple-value-bind (dzr dzi df dk dm dn dcyr dcyi nz ierr)
1756 (slatec::zbesh zr zi fnu 1 1 (1+ n) cyr cyi 0 0)
1757 (declare (ignore dzr dzi df dk dm dn dcyr dcyi nz ierr))
1758 (complex (aref cyr n) (aref cyi n)))))))))
1760 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
1762 ;;; Implementation of the Hankel 2 function
1764 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
1766 ;; hankel_2 distributes over lists, matrices, and equations
1768 (defprop %hankel_2 (mlist $matrix mequal) distribute_over)
1770 #+nil
1771 (defprop %hankel_2 simp-hankel-2 operators)
1773 ; Derivatives of the Hankel 2 function
1774 (defprop %hankel_2
1775 ((n x)
1778 ;; Derivative wrt arg x. A&S 9.1.27.
1779 ((mtimes)
1780 ((mplus)
1781 ((%hankel_2) ((mplus) -1 n) x)
1782 ((mtimes) -1 ((%hankel_2) ((mplus) 1 n) x)))
1783 ((rat) 1 2)))
1784 grad)
1786 (def-simplifier hankel_2 (order arg)
1787 (let (rat-order)
1788 (cond
1789 ((zerop1 arg)
1790 (simp-domain-error
1791 (intl:gettext "hankel_2: hankel_2(~:M,~:M) is undefined.")
1792 order arg))
1793 ((complex-float-numerical-eval-p order arg)
1794 (cond ((= 0 ($imagpart order))
1795 ;; order is real, arg is real or complex
1796 (complexify (hankel-2 ($float order)
1797 (complex ($float ($realpart arg))
1798 ($float ($imagpart arg))))))
1800 ;; The order is complex. Use
1801 ;; hankel_2(v,z) = bessel_j(v,z) - %i*bessel_y(v,z)
1802 ;; and evaluate using the hypergeometric function
1803 (let (($numer t)
1804 ($float t)
1805 (order ($float order))
1806 (arg ($float arg)))
1807 ($float
1808 ($rectform
1809 (sub (bessel-j-hypergeometric order arg)
1810 (mul '$%i
1811 (bessel-y-hypergeometric order arg)))))))))
1812 ((and $besselexpand
1813 (setq rat-order (max-numeric-ratio-p order 2)))
1814 ;; When order is a fraction with a denominator of 2, we can express
1815 ;; the result in terms of elementary functions.
1816 ;; Use the definition hankel_2(v,z) = bessel_j(v,z)-%i*bessel_y(v,z)
1817 (sratsimp
1818 (sub (bessel-j-half-order rat-order arg)
1819 (mul '$%i
1820 (bessel-y-half-order rat-order arg)))))
1821 (t (give-up)))))
1823 ;; Numerically compute H2[v](z).
1825 ;; A&S 9.1.4 says H2[v](z) = J[v](z) - %i * Y[v](z)
1827 (defun hankel-2 (v z)
1828 (let ((v (float v))
1829 (z (coerce z '(complex flonum))))
1830 (cond ((minusp v)
1831 ;; A&S 9.1.6:
1833 ;; H2[-v](z) = exp(-v*%pi*%i)*H2[v](z)
1835 ;; or
1837 ;; H2[v](z) = exp(v*%pi*%i)*H2[-v](z)
1839 (* (cis (* (float pi) v)) (hankel-2 (- v) z)))
1841 (multiple-value-bind (n fnu) (floor v)
1842 (let ((zr (realpart z))
1843 (zi (imagpart z))
1844 (cyr (make-array (1+ n) :element-type 'flonum))
1845 (cyi (make-array (1+ n) :element-type 'flonum)))
1846 (multiple-value-bind (dzr dzi df dk dm dn dcyr dcyi nz ierr)
1847 (slatec::zbesh zr zi fnu 1 2 (1+ n) cyr cyi 0 0)
1848 (declare (ignore dzr dzi df dk dm dn dcyr dcyi nz ierr))
1849 (complex (aref cyr n) (aref cyi n)))))))))
1851 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
1853 ;;; Implementation of Struve H function
1855 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
1857 ;; struve_h distributes over lists, matrices, and equations
1859 (defprop %struve_h (mlist $matrix mequal) distribute_over)
1861 #+nil
1862 (defprop %struve_h simp-struve-h operators)
1864 ; Derivatives of the Struve H function
1865 (defprop %struve_h
1866 ((v z)
1869 ;; Derivative wrt arg z. A&S 12.1.10.
1870 ((mtimes)
1871 ((rat) 1 2)
1872 ((mplus)
1873 ((%struve_h) ((mplus) -1 v) z)
1874 ((mtimes) -1 ((%struve_h) ((mplus) 1 v) z))
1875 ((mtimes)
1876 ((mexpt) $%pi ((rat) -1 2))
1877 ((mexpt) 2 ((mtimes) -1 v))
1878 ((mexpt) ((%gamma) ((mplus) ((rat) 3 2) v)) -1)
1879 ((mexpt) z v)))))
1880 grad)
1882 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
1884 (def-simplifier struve_h (order arg)
1885 (cond
1887 ;; Check for special values
1889 ((zerop1 arg)
1890 (cond ((eq ($csign (add order 1)) '$zero)
1891 ; http://functions.wolfram.com/03.09.03.0018.01
1892 (cond ((or ($bfloatp order)
1893 ($bfloatp arg))
1894 ($bfloat (div 2 '$%pi)))
1895 ((or (floatp order)
1896 (floatp arg))
1897 ($float (div 2 '$%pi)))
1899 (div 2 '$%pi))))
1900 ((eq ($sign (add ($realpart order) 1)) '$pos)
1901 ; http://functions.wolfram.com/03.09.03.0001.01
1902 arg)
1903 ((member ($sign (add ($realpart order) 1)) '($zero $neg $nz))
1904 (simp-domain-error
1905 (intl:gettext "struve_h: struve_h(~:M,~:M) is undefined.")
1906 order arg))
1908 (give-up))))
1910 ;; Check for numerical evaluation
1912 ((complex-float-numerical-eval-p order arg)
1913 ; A&S 12.1.21
1914 (let (($numer t) ($float t))
1915 ($rectform
1916 ($float
1917 (mul
1918 ($rectform (power arg (add order 1.0)))
1919 ($rectform (inv (power 2.0 order)))
1920 (inv (power ($float '$%pi) 0.5))
1921 (inv (simplify (list '(%gamma) (add order 1.5))))
1922 (simplify (list '(%hypergeometric)
1923 (list '(mlist) 1)
1924 (list '(mlist) '((rat simp) 3 2)
1925 (add order '((rat simp) 3 2)))
1926 (div (mul arg arg) -4.0))))))))
1928 ((complex-bigfloat-numerical-eval-p order arg)
1929 ; A&S 12.1.21
1930 (let (($ratprint nil)
1931 (arg ($bfloat arg))
1932 (order ($bfloat order)))
1933 ($rectform
1934 ($bfloat
1935 (mul
1936 ($rectform (power arg (add order 1)))
1937 ($rectform (inv (power 2 order)))
1938 (inv (power ($bfloat '$%pi) ($bfloat '((rat simp) 1 2))))
1939 (inv (simplify (list '(%gamma)
1940 (add order ($bfloat '((rat simp) 3 2))))))
1941 (simplify (list '(%hypergeometric)
1942 (list '(mlist) 1)
1943 (list '(mlist) '((rat simp) 3 2)
1944 (add order '((rat simp) 3 2)))
1945 (div (mul arg arg) ($bfloat -4)))))))))
1947 ;; Transformations and argument simplifications
1949 ((and $besselexpand
1950 (ratnump order)
1951 (integerp (mul 2 order)))
1952 (cond
1953 ((eq ($sign order) '$pos)
1954 ;; Expansion of Struve H for a positive half integral order.
1955 (sratsimp
1956 (add
1957 (mul
1958 (inv (simplify (list '(mfactorial) (sub order
1959 '((rat simp) 1 2)))))
1960 (inv (power '$%pi '((rat simp) 1 2 )))
1961 (power (div arg 2) (add order -1))
1962 (let ((index (gensumindex)))
1963 (dosum
1964 (mul
1965 (simplify (list '($pochhammer) '((rat simp) 1 2) index))
1966 (simplify (list '($pochhammer)
1967 (sub '((rat simp) 1 2) order)
1968 index))
1969 (power (mul -1 arg arg (inv 4)) (mul -1 index)))
1970 index 0 (sub order '((rat simp) 1 2)) t)))
1971 (mul
1972 (power (div 2 '$%pi) '((rat simp) 1 2))
1973 (power -1 (add order '((rat simp) 1 2)))
1974 (inv (power arg '((rat simp) 1 2)))
1975 (add
1976 (mul
1977 (simplify
1978 (list '(%sin)
1979 (add (mul '((rat simp) 1 2)
1980 '$%pi
1981 (add order '((rat simp) 1 2)))
1982 arg)))
1983 (let ((index (gensumindex)))
1984 (dosum
1985 (mul
1986 (power -1 index)
1987 (simplify (list '(mfactorial)
1988 (add (mul 2 index)
1989 order
1990 '((rat simp) -1 2))))
1991 (inv (simplify (list '(mfactorial) (mul 2 index))))
1992 (inv (simplify (list '(mfactorial)
1993 (add (mul -2 index)
1994 order
1995 '((rat simp) -1 2)))))
1996 (inv (power (mul 2 arg) (mul 2 index))))
1997 index 0
1998 (simplify (list '($floor)
1999 (div (sub (mul 2 order) 1) 4)))
2000 t)))
2001 (mul
2002 (simplify (list '(%cos)
2003 (add (mul '((rat simp) 1 2)
2004 '$%pi
2005 (add order '((rat simp) 1 2)))
2006 arg)))
2007 (let ((index (gensumindex)))
2008 (dosum
2009 (mul
2010 (power -1 index)
2011 (simplify (list '(mfactorial)
2012 (add (mul 2 index)
2013 order
2014 '((rat simp) 1 2))))
2015 (power (mul 2 arg) (mul -1 (add (mul 2 index) 1)))
2016 (inv (simplify (list '(mfactorial)
2017 (add (mul 2 index) 1))))
2018 (inv (simplify (list '(mfactorial)
2019 (add (mul -2 index)
2020 order
2021 '((rat simp) -3 2))))))
2022 index 0
2023 (simplify (list '($floor)
2024 (div (sub (mul 2 order) 3) 4)))
2025 t))))))))
2027 ((eq ($sign order) '$neg)
2028 ;; Expansion of Struve H for a negative half integral order.
2029 (sratsimp
2030 (add
2031 (mul
2032 (power (div 2 '$%pi) '((rat simp) 1 2))
2033 (power -1 (add order '((rat simp) 1 2)))
2034 (inv (power arg '((rat simp) 1 2)))
2035 (add
2036 (mul
2037 (simplify (list '(%sin)
2038 (add
2039 (mul
2040 '((rat simp) 1 2)
2041 '$%pi
2042 (add order '((rat simp) 1 2)))
2043 arg)))
2044 (let ((index (gensumindex)))
2045 (dosum
2046 (mul
2047 (power -1 index)
2048 (simplify (list '(mfactorial)
2049 (add (mul 2 index)
2050 (neg order)
2051 '((rat simp) -1 2))))
2052 (inv (simplify (list '(mfactorial) (mul 2 index))))
2053 (inv (simplify (list '(mfactorial)
2054 (add (mul -2 index)
2055 (neg order)
2056 '((rat simp) -1 2)))))
2057 (inv (power (mul 2 arg) (mul 2 index))))
2058 index 0
2059 (simplify (list '($floor)
2060 (div (add (mul 2 order) 1) -4)))
2061 t)))
2062 (mul
2063 (simplify (list '(%cos)
2064 (add
2065 (mul
2066 '((rat simp) 1 2)
2067 '$%pi
2068 (add order '((rat simp) 1 2)))
2069 arg)))
2070 (let ((index (gensumindex)))
2071 (dosum
2072 (mul
2073 (power -1 index)
2074 (simplify (list '(mfactorial)
2075 (add (mul 2 index)
2076 (neg order)
2077 '((rat simp) 1 2))))
2078 (power (mul 2 arg) (mul -1 (add (mul 2 index) 1)))
2079 (inv (simplify (list '(mfactorial)
2080 (add (mul 2 index) 1))))
2081 (inv (simplify (list '(mfactorial)
2082 (add (mul -2 index)
2083 (neg order)
2084 '((rat simp) -3 2))))))
2085 index 0
2086 (simplify (list '($floor)
2087 (div (add (mul 2 order) 3) -4)))
2088 t))))))))))
2090 (give-up))))
2092 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
2094 ;;; Implementation of Struve L function
2096 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
2098 ;; struve_l distributes over lists, matrices, and equations
2100 (defprop %struve_l (mlist $matrix mequal) distribute_over)
2102 ; Derivatives of the Struve L function
2103 (defprop %struve_l
2104 ((v z)
2107 ;; Derivative wrt arg z. A&S 12.2.5.
2108 ((mtimes)
2109 ((rat) 1 2)
2110 ((mplus)
2111 ((%struve_l) ((mplus) -1 v) z)
2112 ((%struve_l) ((mplus) 1 v) z)
2113 ((mtimes)
2114 ((mexpt) $%pi ((rat) -1 2))
2115 ((mexpt) 2 ((mtimes) -1 v))
2116 ((mexpt) ((%gamma) ((mplus) ((rat) 3 2) v)) -1)
2117 ((mexpt) z v)))))
2118 grad)
2120 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
2122 (def-simplifier struve_l (order arg)
2123 (cond
2125 ;; Check for special values
2127 ((zerop1 arg)
2128 (cond ((eq ($csign (add order 1)) '$zero)
2129 ; http://functions.wolfram.com/03.10.03.0018.01
2130 (cond ((or ($bfloatp order)
2131 ($bfloatp arg))
2132 ($bfloat (div 2 '$%pi)))
2133 ((or (floatp order)
2134 (floatp arg))
2135 ($float (div 2 '$%pi)))
2137 (div 2 '$%pi))))
2138 ((eq ($sign (add ($realpart order) 1)) '$pos)
2139 ; http://functions.wolfram.com/03.10.03.0001.01
2140 arg)
2141 ((member ($sign (add ($realpart order) 1)) '($zero $neg $nz))
2142 (simp-domain-error
2143 (intl:gettext "struve_l: struve_l(~:M,~:M) is undefined.")
2144 order arg))
2146 (give-up))))
2148 ;; Check for numerical evaluation
2150 ((complex-float-numerical-eval-p order arg)
2151 ; http://functions.wolfram.com/03.10.26.0002.01
2152 (let (($numer t) ($float t))
2153 ($rectform
2154 ($float
2155 (mul
2156 ($rectform (power arg (add order 1.0)))
2157 ($rectform (inv (power 2.0 order)))
2158 (inv (power ($float '$%pi) 0.5))
2159 (inv (simplify (list '(%gamma) (add order 1.5))))
2160 (simplify (list '(%hypergeometric)
2161 (list '(mlist) 1)
2162 (list '(mlist) '((rat simp) 3 2)
2163 (add order '((rat simp) 3 2)))
2164 (div (mul arg arg) 4.0))))))))
2166 ((complex-bigfloat-numerical-eval-p order arg)
2167 ; http://functions.wolfram.com/03.10.26.0002.01
2168 (let (($ratprint nil))
2169 ($rectform
2170 ($bfloat
2171 (mul
2172 ($rectform (power arg (add order 1)))
2173 ($rectform (inv (power 2 order)))
2174 (inv (power ($bfloat '$%pi) ($bfloat '((rat simp) 1 2))))
2175 (inv (simplify (list '(%gamma) (add order '((rat simp) 3 2)))))
2176 (simplify (list '(%hypergeometric)
2177 (list '(mlist) 1)
2178 (list '(mlist) '((rat simp) 3 2)
2179 (add order '((rat simp) 3 2)))
2180 (div (mul arg arg) 4))))))))
2182 ;; Transformations and argument simplifications
2184 ((and $besselexpand
2185 (ratnump order)
2186 (integerp (mul 2 order)))
2187 (cond
2188 ((eq ($sign order) '$pos)
2189 ;; Expansion of Struve L for a positive half integral order.
2190 (sratsimp
2191 (add
2192 (mul -1
2193 (power 2 (sub 1 order))
2194 (power arg (sub order 1))
2195 (inv (power '$%pi '((rat simp) 1 2)))
2196 (inv (simplify (list '(mfactorial) (sub order
2197 '((rat simp) 1 2)))))
2198 (let ((index (gensumindex)))
2199 (dosum
2200 (mul
2201 (simplify (list '($pochhammer) '((rat simp) 1 2) index))
2202 (simplify (list '($pochhammer)
2203 (sub '((rat simp) 1 2) order)
2204 index))
2205 (power (mul arg arg (inv 4)) (mul -1 index)))
2206 index 0 (sub order '((rat simp) 1 2)) t)))
2207 (mul -1
2208 (power (div 2 '$%pi) '((rat simp) 1 2))
2209 (inv (power arg '((rat simp) 1 2)))
2210 ($exp (div (mul '$%pi '$%i (add order '((rat simp) 1 2))) 2))
2211 (add
2212 (mul
2213 (let (($trigexpand t))
2214 (simplify (list '(%sinh)
2215 (sub (mul '((rat simp) 1 2)
2216 '$%pi
2217 '$%i
2218 (add order '((rat simp) 1 2)))
2219 arg))))
2220 (let ((index (gensumindex)))
2221 (dosum
2222 (mul
2223 (simplify (list '(mfactorial)
2224 (add (mul 2 index)
2225 (simplify (list '(mabs) order))
2226 '((rat simp) -1 2))))
2227 (inv (simplify (list '(mfactorial) (mul 2 index))))
2228 (inv (simplify (list '(mfactorial)
2229 (add (simplify (list '(mabs)
2230 order))
2231 (mul -2 index)
2232 '((rat simp) -1 2)))))
2233 (inv (power (mul 2 arg) (mul 2 index))))
2234 index 0
2235 (simplify (list '($floor)
2236 (div (sub (mul 2
2237 (simplify (list '(mabs)
2238 order)))
2240 4)))
2241 t)))
2242 (mul
2243 (let (($trigexpand t))
2244 (simplify (list '(%cosh)
2245 (sub (mul '((rat simp) 1 2)
2246 '$%pi
2247 '$%i
2248 (add order '((rat simp) 1 2)))
2249 arg))))
2250 (let ((index (gensumindex)))
2251 (dosum
2252 (mul
2253 (simplify (list '(mfactorial)
2254 (add (mul 2 index)
2255 (simplify (list '(mabs) order))
2256 '((rat simp) 1 2))))
2257 (power (mul 2 arg) (neg (add (mul 2 index) 1)))
2258 (inv (simplify (list '(mfactorial)
2259 (add (mul 2 index) 1))))
2260 (inv (simplify (list '(mfactorial)
2261 (add (simplify (list '(mabs)
2262 order))
2263 (mul -2 index)
2264 '((rat simp) -3 2))))))
2265 index 0
2266 (simplify (list '($floor)
2267 (div (sub (mul 2
2268 (simplify (list '(mabs)
2269 order)))
2271 4)))
2272 t))))))))
2273 ((eq ($sign order) '$neg)
2274 ;; Expansion of Struve L for a negative half integral order.
2275 (sratsimp
2276 (add
2277 (mul -1
2278 (power (div 2 '$%pi) '((rat simp) 1 2))
2279 (inv (power arg '((rat simp) 1 2)))
2280 ($exp (div (mul '$%pi '$%i (add order '((rat simp) 1 2))) 2))
2281 (add
2282 (mul
2283 (let (($trigexpand t))
2284 (simplify (list '(%sinh)
2285 (sub (mul '((rat simp) 1 2)
2286 '$%pi
2287 '$%i
2288 (add order '((rat simp) 1 2)))
2289 arg))))
2290 (let ((index (gensumindex)))
2291 (dosum
2292 (mul
2293 (simplify (list '(mfactorial)
2294 (add (mul 2 index)
2295 (neg order)
2296 '((rat simp) -1 2))))
2297 (inv (simplify (list '(mfactorial) (mul 2 index))))
2298 (inv (simplify (list '(mfactorial)
2299 (add (neg order)
2300 (mul -2 index)
2301 '((rat simp) -1 2)))))
2302 (inv (power (mul 2 arg) (mul 2 index))))
2303 index 0
2304 (simplify (list '($floor)
2305 (div (add (mul 2 order) 1) -4)))
2306 t)))
2307 (mul
2308 (let (($trigexpand t))
2309 (simplify (list '(%cosh)
2310 (sub (mul '((rat simp) 1 2)
2311 '$%pi
2312 '$%i
2313 (add order '((rat simp) 1 2)))
2314 arg))))
2315 (let ((index (gensumindex)))
2316 (dosum
2317 (mul
2318 (simplify (list '(mfactorial)
2319 (add (mul 2 index)
2320 (neg order)
2321 '((rat simp) 1 2))))
2322 (power (mul 2 arg) (neg (add (mul 2 index) 1)))
2323 (inv (simplify (list '(mfactorial)
2324 (add (mul 2 index) 1))))
2325 (inv (simplify (list '(mfactorial)
2326 (add (neg order)
2327 (mul -2 index)
2328 '((rat simp) -3 2))))))
2329 index 0
2330 (simplify (list '($floor)
2331 (div (add (mul 2 order) 3) -4)))
2332 t))))))))))
2334 (give-up))))
2336 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
2338 (defmspec $gauss (form)
2339 (format t
2340 "NOTE: The gauss function is superseded by random_normal in the `distrib' package.
2341 Perhaps you meant to enter `~a'.~%"
2342 (print-invert-case (implode (mstring `(($random_normal) ,@ (cdr form))))))
2343 '$done)