3 Copyright (C) 2005-2012 Mario Rodriguez Riotorto
5 This program is free software; you can redistribute
6 it and/or modify it under the terms of the
7 GNU General Public License as published by
8 the Free Software Foundation; either version 2
9 of the License, or (at your option) any later version.
11 This program is distributed in the hope that it
12 will be useful, but WITHOUT ANY WARRANTY;
13 without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details at
16 http://www.gnu.org/copyleft/gpl.html
22 This package defines some interpolation techniques.
24 For questions, suggestions, bugs and the like, feel free
27 mario @@@ edu DOT xunta DOT es
33 /* Returns de input in the form of a list of pairs, ordered wrt the first */
34 /* coordinate. The argument must be either: */
35 /* a) a two column matrix, p:matrix([2,4],[5,6],[9,3]) */
36 /* b) a list of pairs, p: [[2,4],[5,6],[9,3]] */
37 /* c) a list of numbers, p: [4,6,3], in which case the abscissas will be */
38 /* assigned automatically to 1, 2, 3, etc. */
39 /* This is an uxiliary function for the 'interpol' package. */
40 interpol_check_input(data,funame):=
42 if not listp(data) and not matrixp(data)
43 then error("Argument to '",funame,"' must be a list or matrix"),
46 then error("Argument to '",funame,"' has too few sample points")
47 elseif listp(data) and every('identity,map(lambda([x], listp(x) and length(x)=2),data))
49 elseif matrixp(data) and length(data[1]) = 2
50 then out: sort(args(data))
51 elseif listp(data) and every('identity,map(lambda([x], not listp(x)),data))
52 then out: makelist([i,data[i]],i,1,n)
53 else error("Error in arguments to '",funame,"' function"),
54 /* controlling duplicated x's */
56 if out[i-1][1] = out[i][1]
57 then error("Duplicated abscissas are not allowed"),
62 /* Lagrangian interpolation. The argument must be either: */
63 /* a) a two column matrix, p:matrix([2,4],[5,6],[9,3]) */
64 /* b) a list of pairs, p: [[2,4],[5,6],[9,3]] */
65 /* c) a list of numbers, p: [4,6,3], in which case the abscissas will be */
66 /* assigned automatically to 1, 2, 3, etc. */
67 /* In cases a) and b) the pairs are ordered wrt the 1st. coordinate before any */
68 /* computation is made. Option: */
69 /* 'varname='x: the name of the independent variable */
72 /* p:[[7,2],[8,2],[1,5],[3,2],[6,7]]$ */
75 /* map(f,[2.3,5/7,%pi]); */
78 /* explicit(f(x),x,0,9), */
81 lagrange(datatab,[select]) := block([n,sum:0,prod,options,defaults,ratprint:false,tab2],
82 tab2: interpol_check_input(datatab,"lagrange"),
86 aux: ?position(lhs(i),options),
87 if numberp(aux) and aux <= length(options) and aux >= 1
88 then defaults[aux]: rhs(i)),
89 if not symbolp(defaults[1])
90 then error("Option 'varname' is not correct"),
92 /* constructing the interpolating polynomial */
97 if k#i then prod: prod * (defaults[1]-tab2[k][1]) / (tab2[i][1]-tab2[k][1]),
98 sum: sum + prod * tab2[i][2] ),
103 /* Characteristic function for intervals. Returns true iif */
104 /* z belongs to [l1, l2). This is an auxiliary function to */
105 /* be called from linearinterpol and cspline */
106 charfun2(z,l1,l2):= charfun(l1 <= z and z < l2)$
110 /* Linear interpolation. The argument must be either: */
111 /* a) a two column matrix, p:matrix([2,4],[5,6],[9,3]) */
112 /* b) a list of pairs, p: [[2,4],[5,6],[9,3]] */
113 /* c) a list of numbers, p: [4,6,3], in which case the abscissas will be */
114 /* assigned automatically to 1, 2, 3, etc. */
115 /* In cases a) and b) the pairs are ordered wrt the 1st. coordinate before any */
116 /* computation is made. Option: */
117 /* 'varname='x: the name of the independent variable */
118 /* Sample session: */
119 /* load(interpol); */
120 /* p:[[7,2],[8,2],[1,5],[3,2],[6,7]]$ */
121 /* linearinterpol(p); */
123 /* map(f,[2.3,5/7,%pi]); */
126 /* explicit(f(x),x,0,9), */
127 /* point_size = 3, */
129 linearinterpol(datatab,[select]) := block([n,s:0,a,b,options, defaults,ratprint:false,tab2],
130 tab2: interpol_check_input(datatab,"linearinterpol"),
134 aux: ?position(lhs(i),options),
135 if numberp(aux) and aux <= length(options) and aux >= 1
136 then defaults[aux]: rhs(i)),
137 if not symbolp(defaults[1])
138 then error("Option 'varname' is not correct"),
140 /* constructing the interpolating polynomial */
142 if n=2 /* case of two points */
143 then s: tab2[2][2] + (tab2[2][2]-tab2[1][2]) *
144 (defaults[1]-tab2[2][1]) /
145 (tab2[2][1]-tab2[1][1])
146 else for i:2 thru n do(
148 then (a: 'minf, b: tab2[i][1])
150 then (a: tab2[i-1][1], b: 'inf)
151 else (a: tab2[i-1][1], b: tab2[i][1]),
152 s: s + apply('charfun2,[defaults[1], a, b]) *
153 expand( tab2[i][2] + (tab2[i][2]-tab2[i-1][2]) *
154 (defaults[1]-tab2[i][1]) /
155 (tab2[i][1]-tab2[i-1][1]) ) ),
160 /* Cubic splines interpolation. The argument must be either: */
161 /* a) a two column matrix, p:matrix([2,4],[5,6],[9,3]) */
162 /* b) a list of pairs, p: [[2,4],[5,6],[9,3]] */
163 /* c) a list of numbers, p: [4,6,3], in which case the abscissas will be */
164 /* assigned automatically to 1, 2, 3, etc. */
165 /* In cases a) and b) the pairs are ordered wrt the 1st. coordinate before any */
166 /* computation is made. Options: */
167 /* 'd1='unknown: 1st derivative at x_1; if it is 'unknown, the second derivative */
168 /* at x_1 is made equal to 0 (natural cubic spline); if it is equal to a */
169 /* number, the second derivative is estimated based on this number */
170 /* 'd2='unknown: 1st derivative at x_n; if it is 'unknown, the second derivative */
171 /* at x_n is made equal to 0 (natural cubic spline); if it is equal to a */
172 /* number, the second derivative is estimated based on this number */
173 /* 'varname='x: the name of the independent variable */
174 /* Reference: this algorithm is based on 'Numerical Recipes in C', section 3.3 */
175 /* Sample session: */
176 /* load(interpol); */
177 /* p:[[7,2],[8,2],[1,5],[3,2],[6,7]]$ */
178 /* cspline(p); ==> natural cubic spline (second derivatives are zero in both extremes) */
180 /* map(f,[2.3,5/7,%pi]); */
183 /* explicit(f(x),x,0,9), */
184 /* point_size = 3, */
186 /* cspline(p,d1=0,dn=0); */
189 /* explicit(g(x),x,0,9), */
190 /* point_size = 3, */
192 cspline(datatab,[select]):= block([options, defaults, n, aux, y2, u, sig, p,
193 qn, un, a, b, s:0, aj, bj, cj, dj, ratprint:false,tab2],
194 tab2: interpol_check_input(datatab,"cspline"),
195 options: ['d1, 'dn, 'varname],
196 defaults: ['unknown, 'unknown, 'x],
198 aux: ?position(lhs(i),options),
199 if numberp(aux) and aux <= length(options) and aux >= 1
200 then defaults[aux]: rhs(i)),
201 if not numberp(defaults[1]) and defaults[1] # 'unknown
202 then error("Option 'd1' is not correct"),
203 if not numberp(defaults[2]) and defaults[2] # 'unknown
204 then error("Option 'dn' is not correct"),
205 if not symbolp(defaults[3])
206 then error("Option 'varname' is not correct"),
208 /* if tab2 contains only two points, linear interpolation */
210 if n=2 /* case of two points */
211 then return(ratsimp( tab2[2][2] + (tab2[2][2]-tab2[1][2]) *
212 (defaults[3]-tab2[2][1]) /
213 (tab2[2][1]-tab2[1][1]))),
216 /* constructing the interpolating polynomial */
217 y2: makelist(0,i,1,n),
218 u: makelist(0,i,1,n-1),
220 /* controlling the lower boundary condition */
221 if /*d1*/ defaults[1] = 'unknown
225 u[1]: 3 / (tab2[2][1]-tab2[1][1]) *
226 ((tab2[2][2] - tab2[1][2])/(tab2[2][1] - tab2[1][1]) - defaults[1]) ),
228 /* decomposition loop of the triangular algorithm */
229 for i:2 thru n-1 do (
230 sig: (tab2[i][1] - tab2[i-1][1]) / (tab2[i+1][1] - tab2[i-1][1]),
231 p: sig * y2[i-1] + 2,
232 y2[i]: (sig - 1) / p,
233 u[i]: (tab2[i+1][2] - tab2[i][2]) /(tab2[i+1][1] - tab2[i][1]) -
234 (tab2[i][2] - tab2[i-1][2]) /(tab2[i][1] - tab2[i-1][1]),
235 u[i]: (6 * u[i] / (tab2[i+1][1] - tab2[i-1][1]) - sig * u[i-1]) / p ) ,
237 /* controlling the upper boundary condition */
238 if /*dn*/ defaults[2] = 'unknown
242 un: 3 / (tab2[n][1] - tab2[n-1][1]) *
243 (defaults[2] - (tab2[n][2] - tab2[n-1][2]) / (tab2[n][1] - tab2[n-1][1]))),
244 y2[n]: (un - qn * u[n-1]) / (qn * y2[n-1] + 1),
246 /* backsubstitution loop of the tridiagonal algorithm */
247 for k: n-1 thru 1 step -1 do
248 y2[k]: y2[k] * y2[k+1] + u[k],
250 /* constructing the cubic splines */
253 then (a: 'minf, b: tab2[j][1] )
255 then (a: tab2[j-1][1], b: 'inf)
256 else (a: tab2[j-1][1], b: tab2[j][1]),
257 /* in the following sentences, defaults[3] is variable's name */
258 aux: (tab2[j][1] - tab2[j-1][1]),
259 aj: (tab2[j][1] - defaults[3]) / aux,
260 bj: (defaults[3] - tab2[j-1][1]) / aux,
262 cj: (aj^3 - aj) * aux,
263 dj: (bj^3 - bj) * aux,
265 s: s + charfun2(defaults[3], a, b) *
266 expand(aj * tab2[j-1][2] + bj * tab2[j][2] + cj * y2[j-1] + dj * y2[j]) ),
271 /* Rational interpolation, with interpolating function of the form */
273 /* p x + ... + p x + p */
275 /* R(x) = ------------------------ */
277 /* q x + ... + q x + q */
279 /* The 2nd. argument r is the degree of the numerator (r < sample size). The */
280 /* degree of the denominator is calculated as m: sample_size - r - 1. */
281 /* The 1st. argument must be either: */
282 /* a) a two column matrix, p:matrix([2,4],[5,6],[9,3]) */
283 /* b) a list of pairs, p: [[2,4],[5,6],[9,3]] */
284 /* c) a list of numbers, p: [4,6,3], in which case the abscissas will be */
285 /* assigned automatically to 1, 2, 3, etc. */
286 /* In cases a) and b) the pairs are ordered wrt the 1st. coordinate before any */
287 /* computation is made. Option: */
288 /* 'varname='x: the name of the independent variable */
289 /* Sample session: */
290 /* load(interpol)$ */
292 /* p: [[7.2, 2.5], [8.5, 2.1], [1.6, 5.1], [3.4, 2.4], [6.7, 7.9]]$ */
293 /* for k:0 thru length(p)-1 do */
294 /* draw2d(explicit(ratinterpol(p,k),x,0,9), */
295 /* point_size = 3, */
297 /* title = concat("Degree of numerator = ",k), */
298 /* yrange=[0,10])$ */
299 ratinterpol(datatab,r,[select]) :=
300 block([n,m,coef,unk,sol,lovtab,lov,options,defaults,ratprint:false,tab2],
301 tab2: interpol_check_input(datatab,"ratinterpol"),
305 aux: ?position(lhs(i),options),
306 if numberp(aux) and aux <= length(options) and aux >= 1
307 then defaults[aux]: rhs(i)),
308 if not symbolp(defaults[1])
309 then error("Option 'varname' is not correct"),
311 /* constructing the interpolating rational function */
313 if not integerp(r) or r > n-1 or r < 0
314 then error("Degree of numerator must be a positive integer less than sample size"),
315 m: n - r - 1, /* degree of denominator */
317 /* coef is the matrix of an homogeneous linear system */
319 makelist(block([x,y],
324 makelist(-y*x^k,k,1,m))),
326 unk: makelist(gensym(), k, r+m+2),
327 sol: map(last, linsolve(flatten(args(coef.unk)),unk)),
328 lovtab : listofvars(tab2),
329 lov: listofvars(sol),
330 lov: listify(setdifference(setify(lov),setify(lovtab))),
331 sol: subst(map(lambda([z1,z2], z1=z2), lov, makelist(1, k, length(lov))), sol),
332 makelist(sol[k],k,1,r+1) . makelist(defaults[1]^k,k,0,r) /
333 makelist(sol[k],k,r+2,r+2+m) . makelist(defaults[1]^k,k,0,m) )$