Adding src/tools (created during build) and gp_image_01.png (created by the share...
[maxima.git] / src / bessel.lisp
blob1e29c240337b35ea9e40f8b2b19d7f873bbbcd16
1 ;;; -*- Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- ;;;;
2 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3 ;;; The data in this file contains enhancments. ;;;;;
4 ;;; ;;;;;
5 ;;; Copyright (c) 1984,1987 by William Schelter,University of Texas ;;;;;
6 ;;; All rights reserved ;;;;;
7 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
9 (in-package :maxima)
11 (declare-top (special $hypergeometric_representation))
13 ;; When non-NIL, the Bessel functions of half-integral order are
14 ;; expanded in terms of elementary functions.
16 (defmvar $besselexpand nil)
18 ;; When T Bessel functions with an integer order are reduced to order 0 and 1
19 (defmvar $bessel_reduce nil)
21 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
23 ;;; Helper functions for this file
25 ;; If E is a maxima ratio with a denominator of DEN, return the ratio
26 ;; as a Lisp rational. Otherwise NIL.
27 (defun max-numeric-ratio-p (e den)
28 (if (and (listp e)
29 (eq 'rat (caar e))
30 (= den (third e))
31 (integerp (second e)))
32 (/ (second e) (third e))
33 nil))
35 (defun bessel-numerical-eval-p (order arg)
36 ;; Return non-NIL if we should numerically evaluate a bessel
37 ;; function. Basically, both args have to be numbers. If both args
38 ;; are integers, we don't evaluate unless $numer is true.
39 (or (and (numberp order) (complex-number-p arg)
40 (or (floatp order)
41 (floatp ($realpart arg))
42 (floatp ($imagpart arg))))
43 (and $numer (numberp order)
44 (complex-number-p arg))))
46 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
47 ;;;
48 ;;; Implementation of the Bessel J function
49 ;;;
50 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
52 (defmfun $bessel_j (v z)
53 (simplify (list '(%bessel_j) v z)))
55 (defprop $bessel_j %bessel_j alias)
56 (defprop $bessel_j %bessel_j verb)
57 (defprop %bessel_j $bessel_j reversealias)
58 (defprop %bessel_j $bessel_j noun)
60 ;; Bessel J is a simplifying function.
62 (defprop %bessel_j simp-bessel-j operators)
64 ;; Bessel J distributes over lists, matrices, and equations
66 (defprop %bessel_j (mlist $matrix mequal) distribute_over)
68 ;; Derivatives of the Bessel function.
69 (defprop %bessel_j
70 ((n x)
71 ;; Derivative wrt to order n. A&S 9.1.64. Do we really want to
72 ;; do this? It's quite messy.
74 ;; J[n](x)*log(x/2)
75 ;; - (x/2)^n*sum((-1)^k*psi(n+k+1)/gamma(n+k+1)*(x^2/4)^k/k!,k,0,inf)
76 ((mplus)
77 ((mtimes)
78 ((%bessel_j) n x)
79 ((%log) ((mtimes) ((rat) 1 2) x)))
80 ((mtimes) -1
81 ((mexpt) ((mtimes) x ((rat) 1 2)) n)
82 ((%sum)
83 ((mtimes) ((mexpt) -1 $%k)
84 ((mexpt) ((mfactorial) $%k) -1)
85 ((mqapply) (($psi array) 0) ((mplus) 1 $%k n))
86 ((mexpt) ((%gamma) ((mplus) 1 $%k n)) -1)
87 ((mexpt) ((mtimes) x x ((rat) 1 4)) $%k))
88 $%k 0 $inf)))
90 ;; Derivative wrt to arg x.
91 ;; A&S 9.1.27; changed from 9.1.30 so that taylor works on Bessel functions
92 ((mtimes)
93 ((mplus)
94 ((%bessel_j) ((mplus) -1 n) x)
95 ((mtimes) -1 ((%bessel_j) ((mplus) 1 n) x)))
96 ((rat) 1 2)))
97 grad)
99 ;; Integral of the Bessel function wrt z
100 (defun bessel-j-integral-2 (v z)
101 (case v
103 ;; integrate(bessel_j(0,z),z)
104 ;; = (1/2)*z*(%pi*bessel_j(1,z)*struve_h(0,z)
105 ;; +bessel_j(0,z)*(2-%pi*struve_h(1,z)))
106 `((mtimes) ((rat) 1 2) ,z
107 ((mplus)
108 ((mtimes) $%pi
109 ((%bessel_j) 1 ,z)
110 ((%struve_h) 0 ,z))
111 ((mtimes)
112 ((%bessel_j) 0 ,z)
113 ((mplus) 2 ((mtimes) -1 $%pi ((%struve_h) 1 ,z)))))))
115 ;; integrate(bessel_j(1,z),z) = -bessel_j(0,z)
116 `((mtimes) -1 ((%bessel_j) 0 ,z)))
117 (otherwise
118 ;; http://functions.wolfram.com/03.01.21.0002.01
119 ;; integrate(bessel_j(v,z),z)
120 ;; = 2^(-v-1)*z^(v+1)*gamma(v/2+1/2)
121 ;; * hypergeometric_regularized([v/2+1/2],[v+1,v/2+3/2],-z^2/4)
122 ;; = 2^(-v)*z^(v+1)*hypergeometric([v/2+1/2],[v+1,v/2+3/2],-z^2/4)
123 ;; / gamma(v+2)
124 `((mtimes)
125 (($hypergeometric)
126 ((mlist)
127 ((mplus) ((rat) 1 2) ((mtimes) ((rat) 1 2) ,v)))
128 ((mlist)
129 ((mplus) ((rat) 3 2) ((mtimes) ((rat) 1 2) ,v))
130 ((mplus) 1 ,v))
131 ((mtimes) ((rat) -1 4) ((mexpt) ,z 2)))
132 ((mexpt) 2 ((mtimes) -1 ,v))
133 ((mexpt) ((%gamma) ((mplus) 2 ,v)) -1)
134 ((mexpt) z ((mplus) 1 ,v))))))
136 (putprop '%bessel_j `((v z) nil ,#'bessel-j-integral-2) 'integral)
138 ;; Support a simplim%bessel_j function to handle specific limits
140 (defprop %bessel_j simplim%bessel_j simplim%function)
142 (defun simplim%bessel_j (expr var val)
143 ;; Look for the limit of the arguments.
144 (let ((v (limit (cadr expr) var val 'think))
145 (z (limit (caddr expr) var val 'think)))
146 (cond
147 ;; Handle an argument 0 at this place.
148 ((or (zerop1 z)
149 (eq z '$zeroa)
150 (eq z '$zerob))
151 (let ((sgn ($sign ($realpart v))))
152 (cond ((and (eq sgn '$neg)
153 (not (maxima-integerp v)))
154 ;; bessel_j(v,0), Re(v)<0 and v not an integer
155 '$infinity)
156 ((and (eq sgn '$zero)
157 (not (zerop1 v)))
158 ;; bessel_j(v,0), Re(v)=0 and v #0
159 '$und)
160 ;; Call the simplifier of the function.
161 (t (simplify (list '(%bessel_j) v z))))))
162 ((or (eq z '$inf)
163 (eq z '$minf))
164 ;; bessel_j(v,inf) or bessel_j(v,minf)
167 ;; All other cases are handled by the simplifier of the function.
168 (simplify (list '(%bessel_j) v z))))))
170 (defun simp-bessel-j (expr ignored z)
171 (declare (ignore ignored))
172 (twoargcheck expr)
173 (let ((order (simpcheck (cadr expr) z))
174 (arg (simpcheck (caddr expr) z))
175 (rat-order nil))
176 (cond
177 ((zerop1 arg)
178 ;; We handle the different case for zero arg carefully.
179 (let ((sgn ($sign ($realpart order))))
180 (cond ((and (eq sgn '$zero)
181 (zerop1 ($imagpart order)))
182 ;; bessel_j(0,0) = 1
183 (cond ((or ($bfloatp order) ($bfloatp arg)) ($bfloat 1))
184 ((or (floatp order) (floatp arg)) 1.0)
185 (t 1)))
186 ((or (eq sgn '$pos)
187 (maxima-integerp order))
188 ;; bessel_j(v,0) and Re(v)>0 or v an integer
189 (cond ((or ($bfloatp order) ($bfloatp arg)) ($bfloat 0))
190 ((or (floatp order) (floatp arg)) 0.0)
191 (t 0)))
192 ((and (eq sgn '$neg)
193 (not (maxima-integerp order)))
194 ;; bessel_j(v,0) and Re(v)<0 and v not an integer
195 (simp-domain-error
196 (intl:gettext "bessel_j: bessel_j(~:M,~:M) is undefined.")
197 order arg))
198 ((and (eq sgn '$zero)
199 (not (zerop1 ($imagpart order))))
200 ;; bessel_j(v,0) and Re(v)=0 and v # 0
201 (simp-domain-error
202 (intl:gettext "bessel_j: bessel_j(~:M,~:M) is undefined.")
203 order arg))
205 ;; No information about the sign of the order
206 (eqtest (list '(%bessel_j) order arg) expr)))))
208 ((complex-float-numerical-eval-p order arg)
209 ;; We have numeric order and arg and $numer is true, or we have either
210 ;; the order or arg being floating-point, so let's evaluate it
211 ;; numerically.
212 ;; The numerical routine bessel-j returns a CL number, so we have
213 ;; to add the conversion to a Maxima-complex-number.
214 (cond ((= 0 ($imagpart order))
215 ;; order is real, arg is real or complex
216 (complexify (bessel-j ($float order)
217 (complex ($float ($realpart arg))
218 ($float ($imagpart arg))))))
220 ;; order is complex, arg is real or complex
221 (let (($numer t)
222 ($float t)
223 (order ($float order))
224 (arg ($float arg)))
225 ($float
226 ($rectform
227 (bessel-j-hypergeometric order arg)))))))
229 ((and (integerp order) (minusp order))
230 ;; Some special cases when the order is an integer.
231 ;; A&S 9.1.5: J[-n](x) = (-1)^n*J[n](x)
232 (if (evenp order)
233 (take '(%bessel_j) (- order) arg)
234 (mul -1 (take '(%bessel_j) (- order) arg))))
236 ((and $besselexpand
237 (setq rat-order (max-numeric-ratio-p order 2)))
238 ;; When order is a fraction with a denominator of 2, we
239 ;; can express the result in terms of elementary functions.
240 (bessel-j-half-order rat-order arg))
242 ((and $bessel_reduce
243 (and (integerp order)
244 (plusp order)
245 (> order 1)))
246 ;; Reduce a bessel function of order > 2 to order 1 and 0.
247 ;; A&S 9.1.27: bessel_j(v,z) = 2*(v-1)/z*bessel_j(v-1,z)-bessel_j(v-2,z)
248 (sub (mul 2
249 (- order 1)
250 (inv arg)
251 (take '(%bessel_j) (- order 1) arg))
252 (take '(%bessel_j) (- order 2) arg)))
254 ((and $%iargs (multiplep arg '$%i))
255 ;; bessel_j(v, %i*x) = (%i*x)^v/(x^v) * bessel_i(v, x)
256 ;; (From http://functions.wolfram.com/03.01.27.0002.01)
257 (let ((x (coeff arg '$%i 1)))
258 (mul (power (mul '$%i x) order)
259 (inv (power x order))
260 (take '(%bessel_i) order x))))
262 ($hypergeometric_representation
263 (bessel-j-hypergeometric order arg))
266 (eqtest (list '(%bessel_j) order arg) expr)))))
268 ;; Returns the hypergeometric representation of bessel_j
269 (defun bessel-j-hypergeometric (order arg)
270 ;; A&S 9.1.69 / http://functions.wolfram.com/03.01.26.0002.01
271 ;; hypergeometric([],[v+1],-z^2/4)*(z/2)^v/gamma(v+1)
272 (mul (inv (take '(%gamma) (add order 1)))
273 (power (div arg 2) order)
274 (take '($hypergeometric)
275 (list '(mlist))
276 (list '(mlist) (add order 1))
277 (neg (div (mul arg arg) 4)))))
279 ;; Compute value of Bessel function of the first kind of order ORDER.
280 (defun bessel-j (order arg)
281 (cond
282 ((zerop (imagpart arg))
283 ;; We have numeric args and the arg is purely real.
284 ;; Call the real-valued Bessel function when possible.
285 (let ((arg (realpart arg)))
286 (cond
287 ((= order 0)
288 (slatec:dbesj0 (float arg)))
289 ((= order 1)
290 (slatec:dbesj1 (float arg)))
291 ((minusp order)
292 (cond ((zerop (nth-value 1 (truncate order)))
293 ;; The order is a negative integer. We use A&S 9.1.5:
294 ;; J[-n](z) = (-1)^n*J[n](z)
295 ;; and not the Hankel functions.
296 (if (evenp (floor order))
297 (bessel-j (- order) arg)
298 (- (bessel-j (- order) arg))))
300 ;; Bessel function of negative order. We use the Hankel
301 ;; functions to compute this:
302 ;; J[v](z) = (H1[v](z) + H2[v](z)) / 2.
303 ;; This works for negative and positive arg and handles
304 ;; special cases correctly.
305 (let ((result (* 0.5 (+ (hankel-1 order arg) (hankel-2 order arg)))))
306 (cond ((= (nth-value 1 (floor order)) 1/2)
307 ;; ORDER is a half-integral-value or a float
308 ;; representation, thereof.
309 (if (minusp arg)
310 ;; arg is negative, the result is purely imaginary
311 (complex 0 (imagpart result))
312 ;; arg is positive, the result is purely real
313 (realpart result)))
314 ;; in all other cases general complex result
315 (t result))))))
317 ;; We have a real arg and order > 0 and order not 0 or 1
318 ;; for this case we can call the function dbesj
319 (multiple-value-bind (n alpha) (floor (float order))
320 (let ((jvals (make-array (1+ n) :element-type 'flonum)))
321 (slatec:dbesj (abs (float arg)) alpha (1+ n) jvals 0)
322 (cond ((>= arg 0)
323 (aref jvals n))
325 ;; Use analytic continuation formula A&S 9.1.35:
326 ;; J[v](z*exp(m*%pi*%i)) = exp(m*%pi*%i*v)*J[v](z)
327 ;; for an integer m. In particular, for m = 1:
328 ;; J[v](-x) = exp(v*%pi*%i)*J[v](x)
329 ;; and handle special cases
330 (cond ((zerop (nth-value 1 (truncate order)))
331 ;; order is an integer
332 (if (evenp (floor order))
333 (aref jvals n)
334 (- (aref jvals n))))
335 ((= (nth-value 1 (floor order)) 1/2)
336 ;; Order is a half-integral-value and we know that
337 ;; arg < 0, so the result is purely imginary.
338 (if (evenp (floor order))
339 (complex 0 (aref jvals n))
340 (complex 0 (- (aref jvals n)))))
341 ;; In all other cases a general complex result
343 (* (cis (* order pi))
344 (aref jvals n))))))))))))
346 ;; The arg is complex. Use the complex-valued Bessel function.
347 (cond ((mminusp order)
348 ;; Bessel function of negative order. We use the Hankel function to
349 ;; compute this, because A&S 9.1.3 and 9.1.4 say
350 ;; H1[v](z) = J[v](z) + %i * Y[v](z)
351 ;; and
352 ;; H2[v](z) = J[v](z) - %i * Y[v](z).
353 ;; Thus
354 ;; J[v](z) = (H1[v](z) + H2[v](z)) / 2.
355 ;; Not the most efficient way, but perhaps good enough for maxima.
356 (* 0.5 (+ (hankel-1 order arg) (hankel-2 order arg))))
358 (multiple-value-bind (n alpha) (floor (float order))
359 (let ((cyr (make-array (1+ n) :element-type 'flonum))
360 (cyi (make-array (1+ n) :element-type 'flonum)))
361 (multiple-value-bind (v-zr v-zi v-fnu v-kode v-n
362 v-cyr v-cyi v-nz v-ierr)
363 (slatec:zbesj (float (realpart arg))
364 (float (imagpart arg))
365 alpha 1 (1+ n) cyr cyi 0 0)
366 (declare (ignore v-zr v-zi v-fnu v-kode v-n v-cyr v-cyi v-nz))
368 ;; Should check the return status in v-ierr of this routine.
369 (when (plusp v-ierr)
370 (format t "zbesj ierr = ~A~%" v-ierr))
371 (complex (aref cyr n) (aref cyi n))))))))))
373 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
375 ;;; Implementation of the Bessel Y function
377 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
379 (defmfun $bessel_y (v z)
380 (simplify (list '(%bessel_y) v z)))
382 (defprop $bessel_y %bessel_y alias)
383 (defprop $bessel_y %bessel_y verb)
384 (defprop %bessel_y $bessel_y reversealias)
385 (defprop %bessel_y $bessel_y noun)
387 (defprop %bessel_y simp-bessel-y operators)
389 ;; Bessel Y distributes over lists, matrices, and equations
391 (defprop %bessel_y (mlist $matrix mequal) distribute_over)
393 (defprop %bessel_y
394 ((n x)
395 ;; Derivative wrt order n. A&S 9.1.65.
397 ;; cot(n*%pi)*[diff(bessel_j(n,x),n)-%pi*bessel_y(n,x)]
398 ;; - csc(n*%pi)*diff(bessel_j(-n,x),n)-%pi*bessel_j(n,x)
399 ((mplus)
400 ((mtimes) -1 $%pi ((%bessel_j) n x))
401 ((mtimes)
403 ((%csc) ((mtimes) $%pi n))
404 ((%derivative) ((%bessel_j) ((mtimes) -1 n) x) n 1))
405 ((mtimes)
406 ((%cot) ((mtimes) $%pi n))
407 ((mplus)
408 ((mtimes) -1 $%pi ((%bessel_y) n x))
409 ((%derivative) ((%bessel_j) n x) n 1))))
411 ;; Derivative wrt to arg x. A&S 9.1.27; changed from A&S 9.1.30
412 ;; to be consistent with bessel_j.
413 ((mtimes)
414 ((mplus)
415 ((%bessel_y)((mplus) -1 n) x)
416 ((mtimes) -1 ((%bessel_y) ((mplus) 1 n) x)))
417 ((rat) 1 2)))
418 grad)
420 ;; Integral of the Bessel Y function wrt z
421 ;; http://functions.wolfram.com/Bessel-TypeFunctions/BesselY/21/01/01/
422 (defun bessel-y-integral-2 (n z)
423 (cond
424 ((and ($integerp n) (<= 0 n))
425 (cond
426 (($oddp n)
427 ;; integrate(bessel_y(2*N+1,z),z) , N > 0
428 ;; = -bessel_y(0,z) - 2 * sum(bessel_y(2*k,z),k,1,N)
429 (let* ((k (gensym))
430 (answer `((mplus) ((mtimes) -1 ((%bessel_y) 0 ,z))
431 ((mtimes) -2
432 ((%sum) ((%bessel_y) ((mtimes) 2 ,k) ,z) ,k 1
433 ((mtimes) ((rat) 1 2) ((mplus) -1 ,n)))))))
434 ;; Expand out the sum if n < 10. Otherwise fix up the indices
435 (if (< n 10)
436 (meval `(($ev) ,answer $sum)) ; Is there a better way?
437 (simplify ($niceindices answer)))))
438 (($evenp n)
439 ;; integrate(bessel_y(2*N,z),z) , N > 0
440 ;; = (1/2)*%pi*z*(bessel_y(0,z)*struve_h(-1,z)
441 ;; +bessel_y(1,z)*struve_h(0,z))
442 ;; - 2 * sum(bessel_y(2*k+1,z),k,0,N-1)
443 (let*
444 ((k (gensym))
445 (answer `((mplus)
446 ((mtimes) -2
447 ((%sum)
448 ((%bessel_y) ((mplus) 1 ((mtimes) 2 ,k)) ,z)
449 ,k 0
450 ((mplus)
452 ((mtimes) ((rat) 1 2) ,n))))
453 ((mtimes) ((rat) 1 2) $%pi ,z
454 ((mplus)
455 ((mtimes)
456 ((%bessel_y) 0 ,z)
457 ((%struve_h) -1 ,z))
458 ((mtimes)
459 ((%bessel_y) 1 ,z)
460 ((%struve_h) 0 ,z)))))))
461 ;; Expand out the sum if n < 10. Otherwise fix up the indices
462 (if (< n 10)
463 (meval `(($ev) ,answer $sum)) ; Is there a better way?
464 (simplify ($niceindices answer)))))))
465 (t nil)))
467 (putprop '%bessel_y `((n z) nil ,#'bessel-y-integral-2) 'integral)
469 ;; Support a simplim%bessel_y function to handle specific limits
471 (defprop %bessel_y simplim%bessel_y simplim%function)
473 (defun simplim%bessel_y (expr var val)
474 ;; Look for the limit of the arguments.
475 (let ((v (limit (cadr expr) var val 'think))
476 (z (limit (caddr expr) var val 'think)))
477 (cond
478 ;; Handle an argument 0 at this place.
479 ((or (zerop1 z)
480 (eq z '$zeroa)
481 (eq z '$zerob))
482 (cond ((zerop1 v)
483 ;; bessel_y(0,0)
484 '$minf)
485 ((integerp v)
486 ;; bessel_y(n,0), n an integer
487 (cond ((evenp v) '$minf)
488 (t (cond ((eq z '$zeroa) '$minf)
489 ((eq z '$zerob) '$inf)
490 (t '$infinity)))))
491 ((not (zerop1 ($realpart v)))
492 ;; bessel_y(v,0), Re(v)#0
493 '$infinity)
494 ((and (zerop1 ($realpart v))
495 (not (zerop1 v)))
496 ;; bessel_y(v,0), Re(v)=0 and v#0
497 '$und)
498 ;; Call the simplifier of the function.
499 (t (simplify (list '(%bessel_y) v z)))))
500 ((or (eq z '$inf)
501 (eq z '$minf))
502 ;; bessel_y(v,inf) or bessel_y(v,minf)
505 ;; All other cases are handled by the simplifier of the function.
506 (simplify (list '(%bessel_y) v z))))))
508 (defun simp-bessel-y (expr ignored z)
509 (declare (ignore ignored))
510 (twoargcheck expr)
511 (let ((order (simpcheck (cadr expr) z))
512 (arg (simpcheck (caddr expr) z))
513 (rat-order nil))
514 (cond
515 ((zerop1 arg)
516 ;; Domain error for a zero argument.
517 (simp-domain-error
518 (intl:gettext "bessel_y: bessel_y(~:M,~:M) is undefined.") order arg))
520 ((complex-float-numerical-eval-p order arg)
521 ;; We have numeric order and arg and $numer is true, or
522 ;; we have either the order or arg being floating-point,
523 ;; so let's evaluate it numerically.
524 (cond ((= 0 ($imagpart order))
525 ;; order is real, arg is real or complex
526 (complexify (bessel-y ($float order)
527 (complex ($float ($realpart arg))
528 ($float ($imagpart arg))))))
530 ;; order is complex, arg is real or complex
531 (let (($numer t)
532 ($float t)
533 (order ($float order))
534 (arg ($float arg)))
535 ($float
536 ($rectform
537 (bessel-y-hypergeometric order arg)))))))
539 ((and (integerp order) (minusp order))
540 ;; Special case when the order is an integer.
541 ;; A&S 9.1.5: Y[-n](x) = (-1)^n*Y[n](x)
542 (if (evenp order)
543 (take '(%bessel_y) (- order) arg)
544 (mul -1 (take '(%bessel_y) (- order) arg))))
546 ((and $besselexpand
547 (setq rat-order (max-numeric-ratio-p order 2)))
548 ;; When order is a fraction with a denominator of 2, we
549 ;; can express the result in terms of elementary functions.
550 ;; From A&S 10.1.1, 10.1.11-12 and 10.1.15:
552 ;; Y[1/2](z) = -J[-1/2](z) is a function of cos(z).
553 ;; Y[-1/2](z) = J[1/2](z) is a function of sin(z).
554 (bessel-y-half-order rat-order arg))
556 ((and $bessel_reduce
557 (and (integerp order)
558 (plusp order)
559 (> order 1)))
560 ;; Reduce a bessel function of order > 2 to order 1 and 0.
561 ;; A&S 9.1.27: bessel_y(v,z) = 2*(v-1)/z*bessel_y(v-1,z)-bessel_y(v-2,z)
562 (sub (mul 2
563 (- order 1)
564 (inv arg)
565 (take '(%bessel_y) (- order 1) arg))
566 (take '(%bessel_y) (- order 2) arg)))
568 ($hypergeometric_representation
569 (bessel-y-hypergeometric order arg))
572 (eqtest (list '(%bessel_y) order arg) expr)))))
574 ;; Returns the hypergeometric representation of bessel_y
575 (defun bessel-y-hypergeometric (order arg)
576 ;; http://functions.wolfram.com/03.03.26.0002.01
577 ;; -hypergeometric([],[1-v],-z^2/4)*(2/z)^v*gamma(v)/%pi
578 ;; - hypergeometric([],[v+1],-z^2/4)*gamma(-v)*cos(%pi*v)*(z/2)^v/%pi
579 (add (mul -1
580 (power 2 order)
581 (inv (power arg order))
582 (take '(%gamma) order)
583 (inv '$%pi)
584 (take '($hypergeometric)
585 (list '(mlist))
586 (list '(mlist) (sub 1 order))
587 (neg (div (mul arg arg) 4))))
588 (mul -1
589 (inv (power 2 order))
590 (power arg order)
591 (take '(%cos) (mul order '$%pi))
592 (take '(%gamma) (neg order))
593 (inv '$%pi)
594 (take '($hypergeometric)
595 (list '(mlist))
596 (list '(mlist) (add 1 order))
597 (neg (div (mul arg arg) 4))))))
599 ;; Bessel function of the second kind, Y[n](z), for real or complex z
600 (defun bessel-y (order arg)
601 (cond
602 ((zerop (imagpart arg))
603 ;; We have numeric args and the first arg is purely
604 ;; real. Call the real-valued Bessel function.
606 ;; For negative values, use the analytic continuation formula
607 ;; A&S 9.1.36:
609 ;; Y[v](z*exp(m*%pi*%i)) = exp(-v*m*%pi*%i) * Y[v](z)
610 ;; + 2*%i*sin(m*v*%pi)*cot(v*%pi)*J[v](z)
612 ;; In particular for m = 1:
613 ;; Y[v](-z) = exp(-v*%pi*%i) * Y[v](z) + 2*%i*cos(v*%pi)*J[v](z)
614 (let ((arg (realpart arg)))
615 (cond
616 ((zerop order)
617 (cond ((>= arg 0)
618 (slatec:dbesy0 (float arg)))
620 ;; For v = 0, this simplifies to
621 ;; Y[0](-z) = Y[0](z) + 2*%i*J[0](z)
622 ;; the return value has to be a CL number
623 (+ (slatec:dbesy0 (float (- arg)))
624 (complex 0 (* 2 (slatec:dbesj0 (float (- arg)))))))))
625 ((= order 1)
626 (cond ((>= arg 0)
627 (slatec:dbesy1 (float arg)))
629 ;; For v = 1, this simplifies to
630 ;; Y[1](-z) = -Y[1](z) - 2*%i*J[1](v)
631 ;; the return value has to be a CL number
632 (+ (- (slatec:dbesy1 (float (- arg))))
633 (complex 0 (* -2 (slatec:dbesj1 (float (- arg)))))))))
634 ((minusp order)
635 (cond ((zerop (nth-value 1 (truncate order)))
636 ;; Order is a negative integer or float representation.
637 ;; Use A&S 9.1.5: Y[-n](z) = (-1)^n*Y[n](z).
638 (if (evenp (floor order))
639 (bessel-y (- order) arg)
640 (- (bessel-y (- order) arg))))
642 ;; Bessel function of negative order. We use the Hankel
643 ;; functions to compute this:
644 ;; Y[v](z) = (H1[v](z) - H2[v](z)) / 2 / %i
645 (let ((result (/ (- (hankel-1 order arg)
646 (hankel-2 order arg))
647 (complex 0 2))))
648 (cond ((= (nth-value 1 (floor order)) 1/2)
649 ;; ORDER is half-integral-value or a float
650 ;; representation thereof.
651 (if (minusp arg)
652 ;; arg is negative, the result is purely imaginary
653 (complex 0 (imagpart result))
654 ;; arg is positive, the result is purely real
655 (realpart result)))
656 ;; in all other cases general complex result
657 (t result))))))
659 (multiple-value-bind (n alpha) (floor (float order))
660 (let ((jvals (make-array (1+ n) :element-type 'flonum)))
661 ;; First we do the calculation for an positive argument.
662 (slatec:dbesy (abs (float arg)) alpha (1+ n) jvals)
664 ;; Now we look at the sign of the argument
665 (cond ((>= arg 0)
666 (aref jvals n))
668 (let* ((dpi (coerce pi 'flonum))
669 (s1 (cis (- (* order dpi))))
670 (s2 (* #c(0 2) (cos (* order dpi)))))
671 (let ((result (+ (* s1 (aref jvals n))
672 (* s2 (bessel-j order (- arg))))))
673 (cond ((zerop (nth-value 1 (truncate order)))
674 ;; ORDER is an integer or a float representation
675 ;; of an integer, and the arg is positive the
676 ;; result is general complex.
677 result)
678 ((= (nth-value 1 (floor order)) 1/2)
679 ;; ORDER is a half-integral-value or an float
680 ;; representation and we have arg < 0. The
681 ;; result is purely imaginary.
682 (complex 0 (imagpart result)))
683 ;; in all other cases general complex result
684 (t result))))))))))))
686 (cond ((minusp order)
687 ;; Bessel function of negative order. We use the Hankel function to
688 ;; compute this, because A&S 9.1.3 and 9.1.4 say
689 ;; H1[v](z) = J[v](z) + %i * Y[v](z)
690 ;; and
691 ;; H2[v](z) = J[v](z) - %i * Y[v](z).
692 ;; Thus
693 ;; Y[v](z) = (H1[v](z) - H2[v](z)) / 2 / %i
694 (/ (- (hankel-1 order arg) (hankel-2 order arg))
695 (complex 0 2)))
697 (multiple-value-bind (n alpha) (floor (float order))
698 (let ((cyr (make-array (1+ n) :element-type 'flonum))
699 (cyi (make-array (1+ n) :element-type 'flonum))
700 (cwrkr (make-array (1+ n) :element-type 'flonum))
701 (cwrki (make-array (1+ n) :element-type 'flonum)))
702 (multiple-value-bind (v-zr v-zi v-fnu v-kode v-n v-cyr v-cyi
703 v-nz v-cwrkr v-cwrki v-ierr)
704 (slatec::zbesy (float (realpart arg))
705 (float (imagpart arg))
706 alpha 1 (1+ n) cyr cyi 0 cwrkr cwrki 0)
707 (declare (ignore v-zr v-zi v-fnu v-kode v-n
708 v-cyr v-cyi v-cwrkr v-cwrki v-nz))
710 ;; We should check for errors based on the value of v-ierr.
711 (when (plusp v-ierr)
712 (format t "zbesy ierr = ~A~%" v-ierr))
714 (complex (aref cyr n) (aref cyi n))))))))))
716 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
718 ;;; Implementation of the Bessel I function
720 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
722 (defmfun $bessel_i (v z)
723 (simplify (list '(%bessel_i) v z)))
725 (defprop $bessel_i %bessel_i alias)
726 (defprop $bessel_i %bessel_i verb)
727 (defprop %bessel_i $bessel_i reversealias)
728 (defprop %bessel_i $bessel_i noun)
730 (defprop %bessel_i simp-bessel-i operators)
732 ;; Bessel I distributes over lists, matrices, and equations
734 (defprop %bessel_i (mlist $matrix mequal) distribute_over)
736 (defprop %bessel_i
737 ((n x)
738 ;; Derivative wrt order n. A&S 9.6.42.
740 ;; I[n](x)*log(x/2)
741 ;; - (x/2)^n*sum(psi(n+k+1)/gamma(n+k+1)*(x^2/4)^k/k!,k,0,inf)
742 ((mplus)
743 ((mtimes)
744 ((%bessel_i) n x)
745 ((%log) ((mtimes) ((rat) 1 2) x)))
746 ((mtimes) -1
747 ((mexpt) ((mtimes) x ((rat) 1 2)) n)
748 ((%sum)
749 ((mtimes)
750 ((mexpt) ((mfactorial) $%k) -1)
751 ((mqapply) (($psi array) 0) ((mplus) 1 $%k n))
752 ((mexpt) ((%gamma) ((mplus) 1 $%k n)) -1)
753 ((mexpt) ((mtimes) x x ((rat) 1 4)) $%k))
754 $%k 0 $inf)))
755 ;; Derivative wrt to x. A&S 9.6.29.
756 ((mtimes)
757 ((mplus) ((%bessel_i) ((mplus) -1 n) x)
758 ((%bessel_i) ((mplus) 1 n) x))
759 ((rat) 1 2)))
760 grad)
762 ;; Integral of the Bessel I function wrt z
763 ;; http://functions.wolfram.com/Bessel-TypeFunctions/BesselI/21/01/01/
764 (defun bessel-i-integral-2 (v z)
765 (case v
767 ;; integrate(bessel_i(0,z),z)
768 ;; = (1/2)*z*(bessel_i(0,z)*(%pi*struve_l(1,z)+2)
769 ;; -%pi*bessel_i(1,z)*struve_l(0,z))
770 `((mtimes) ((rat) 1 2) ,z
771 ((mplus)
772 ((mtimes) -1 $%pi
773 ((%bessel_i) 1 ,z)
774 ((%struve_l) 0 ,z))
775 ((mtimes)
776 ((%bessel_i) 0 ,z)
777 ((mplus) 2
778 ((mtimes) $%pi ((%struve_l) 1 ,z)))))))
780 ;; integrate(bessel_i(1,z),z) = bessel_i(0,z)
781 `((%bessel_i) 0 ,z))
782 (otherwise
783 ;; http://functions.wolfram.com/03.02.21.0002.01
784 ;; integrate(bessel_i(v,z),z)
785 ;; = 2^(-v-1)*z^(v+1)*gamma(v/2+1/2)
786 ;; * hypergeometric_regularized([v/2+1/2],[v+1,v/2+3/2],z^2/4)
787 ;; = 2^(-v)*z^(v+1)*hypergeometric([v/2+1/2],[v+1,v/2+3/2],z^2/4)
788 ;; / gamma(v+2)
789 `((mtimes)
790 (($hypergeometric)
791 ((mlist)
792 ((mplus) ((rat) 1 2) ((mtimes) ((rat) 1 2) ,v)))
793 ((mlist)
794 ((mplus) ((rat) 3 2) ((mtimes) ((rat) 1 2) ,v))
795 ((mplus) 1 ,v))
796 ((mtimes) ((rat) 1 4) ((mexpt) ,z 2)))
797 ((mexpt) 2 ((mtimes) -1 ,v))
798 ((mexpt) ((%gamma) ((mplus) 2 ,v)) -1)
799 ((mexpt) z ((mplus) 1 ,v))))))
801 (putprop '%bessel_i `((v z) nil ,#'bessel-i-integral-2) 'integral)
803 ;; Support a simplim%bessel_i function to handle specific limits
805 (defprop %bessel_i simplim%bessel_i simplim%function)
807 (defun simplim%bessel_i (expr var val)
808 ;; Look for the limit of the arguments.
809 (let ((v (limit (cadr expr) var val 'think))
810 (z (limit (caddr expr) var val 'think)))
811 (cond
812 ;; Handle an argument 0 at this place.
813 ((or (zerop1 z)
814 (eq z '$zeroa)
815 (eq z '$zerob))
816 (let ((sgn ($sign ($realpart v))))
817 (cond ((and (eq sgn '$neg)
818 (not (maxima-integerp v)))
819 ;; bessel_i(v,0), Re(v)<0 and v not an integer
820 '$infinity)
821 ((and (eq sgn '$zero)
822 (not (zerop1 v)))
823 ;; bessel_i(v,0), Re(v)=0 and v #0
824 '$und)
825 ;; Call the simplifier of the function.
826 (t (simplify (list '(%bessel_i) v z))))))
827 ((eq z '$inf)
828 ;; bessel_i(v,inf)
829 '$inf)
830 ((eq z '$minf)
831 ;; bessel_i(v,minf)
832 '$infinity)
834 ;; All other cases are handled by the simplifier of the function.
835 (simplify (list '(%bessel_i) v z))))))
837 (defun simp-bessel-i (expr ignored z)
838 (declare (ignore ignored))
839 (twoargcheck expr)
840 (let ((order (simpcheck (cadr expr) z))
841 (arg (simpcheck (caddr expr) z))
842 (rat-order nil))
843 (cond
844 ((zerop1 arg)
845 ;; We handle the different case for zero arg carefully.
846 (let ((sgn ($sign ($realpart order))))
847 (cond ((and (eq sgn '$zero)
848 (zerop1 ($imagpart order)))
849 ;; bessel_i(0,0) = 1
850 (cond ((or ($bfloatp order) ($bfloatp arg)) ($bfloat 1))
851 ((or (floatp order) (floatp arg)) 1.0)
852 (t 1)))
853 ((or (eq sgn '$pos)
854 (maxima-integerp order))
855 ;; bessel_i(v,0) and Re(v)>0 or v an integer
856 (cond ((or ($bfloatp order) ($bfloatp arg)) ($bfloat 0))
857 ((or (floatp order) (floatp arg)) 0.0)
858 (t 0)))
859 ((and (eq sgn '$neg)
860 (not (maxima-integerp order)))
861 ;; bessel_i(v,0) and Re(v)<0 and v not an integer
862 (simp-domain-error
863 (intl:gettext "bessel_i: bessel_i(~:M,~:M) is undefined.")
864 order arg))
865 ((and (eq sgn '$zero)
866 (not (zerop1 ($imagpart order))))
867 ;; bessel_i(v,0) and Re(v)=0 and v # 0
868 (simp-domain-error
869 (intl:gettext "bessel_i: bessel_i(~:M,~:M) is undefined.")
870 order arg))
872 ;; No information about the sign of the order
873 (eqtest (list '(%bessel_i) order arg) expr)))))
875 ((complex-float-numerical-eval-p order arg)
876 (cond ((= 0 ($imagpart order))
877 ;; order is real, arg is real or complex
878 (complexify (bessel-i ($float order)
879 (complex ($float ($realpart arg))
880 ($float ($imagpart arg))))))
882 ;; order is complex, arg is real or complex
883 (let (($numer t)
884 ($float t)
885 (order ($float order))
886 (arg ($float arg)))
887 ($float
888 ($rectform
889 (bessel-i-hypergeometric order arg)))))))
891 ((and (integerp order) (minusp order))
892 ;; Some special cases when the order is an integer
893 ;; A&S 9.6.6: I[-n](x) = I[n](x)
894 (take '(%bessel_i) (- order) arg))
896 ((and $besselexpand (setq rat-order (max-numeric-ratio-p order 2)))
897 ;; When order is a fraction with a denominator of 2, we
898 ;; can express the result in terms of elementary functions.
899 ;; From A&S 10.2.13 and 10.2.14:
901 ;; I[1/2](z) = sqrt(2/%pi/z)*sinh(z)
902 ;; I[-1/2](z) = sqrt(2/%pi/z)*cosh(z)
903 (bessel-i-half-order rat-order arg))
905 ((and $bessel_reduce
906 (and (integerp order)
907 (plusp order)
908 (> order 1)))
909 ;; Reduce a bessel function of order > 2 to order 1 and 0.
910 ;; A&S 9.6.26: bessel_i(v,z) = -2*(v-1)/z*bessel_i(v-1,z)+bessel_i(v-2,z)
911 (add (mul -2
912 (- order 1)
913 (inv arg)
914 (take '(%bessel_i) (- order 1) arg))
915 (take '(%bessel_i) (- order 2) arg)))
917 ((and $%iargs (multiplep arg '$%i))
918 ;; bessel_i(v, %i*x) = (%i*x)^v/(x^v) * bessel_j(v, x)
919 ;; (From http://functions.wolfram.com/03.02.27.0002.01)
920 (let ((x (coeff arg '$%i 1)))
921 (mul (power (mul '$%i x) order)
922 (inv (power x order))
923 (take '(%bessel_j) order x))))
925 ($hypergeometric_representation
926 (bessel-i-hypergeometric order arg))
929 (eqtest (list '(%bessel_i) order arg) expr)))))
931 ;; Returns the hypergeometric representation of bessel_i
932 (defun bessel-i-hypergeometric (order arg)
933 ;; A&S 9.6.47 / http://functions.wolfram.com/03.02.26.0002.01
934 ;; hypergeometric([],[v+1],z^2/4)*(z/2)^v/gamma(v+1)
935 (mul (inv (take '(%gamma) (add order 1)))
936 (power (div arg 2) order)
937 (take '($hypergeometric)
938 (list '(mlist))
939 (list '(mlist) (add order 1))
940 (div (mul arg arg) 4))))
942 ;; Compute value of Modified Bessel function of the first kind of order ORDER
943 (defun bessel-i (order arg)
944 (cond
945 ((zerop (imagpart arg))
946 ;; We have numeric args and the first arg is purely
947 ;; real. Call the real-valued Bessel function. Use special
948 ;; routines for order 0 and 1, when possible
949 (let ((arg (realpart arg)))
950 (cond
951 ((zerop order)
952 (slatec:dbesi0 (float arg)))
953 ((= order 1)
954 (slatec:dbesi1 (float arg)))
955 ((or (minusp order) (< arg 0))
956 (multiple-value-bind (order-int order-frac) (floor order)
957 (cond ((zerop order-frac)
958 ;; Order is an integer. From A&S 9.6.6 and 9.6.30 we have
959 ;; I[-n](z) = I[n](z)
960 ;; and
961 ;; I[n](-z) = (-1)^n*I[n](z)
962 (if (< arg 0)
963 (if (evenp order-int)
964 (bessel-i (abs order) (abs arg))
965 (- (bessel-i (abs order) (abs arg))))
966 (bessel-i (abs order) arg)))
968 ;; Order or arg is negative and order is not an integer, use
969 ;; the bessel-j function for calculation. We know from
970 ;; the definition I[v](x) = x^v/(%i*x)^v * J[v](%i*x).
971 (let* ((arg (float arg))
972 (result (* (expt arg order)
973 (expt (complex 0 arg) (- order))
974 (bessel-j order (complex 0 arg)))))
975 ;; Try to clean up result if we know the result is
976 ;; purely real or purely imaginary.
977 (cond ((>= arg 0)
978 ;; Result is purely real for arg >= 0
979 (realpart result))
980 ((zerop order-frac)
981 ;; Order is an integer or a float representation of
982 ;; an integer, the result is purely real.
983 (realpart result))
984 ((= order-frac 1/2)
985 ;; Order is half-integral-value or a float
986 ;; representation and arg < 0, the result
987 ;; is purely imaginary.
988 (complex 0 (imagpart result)))
989 (t result)))))))
991 ;; Now the case order > 0 and arg >= 0
992 (multiple-value-bind (n alpha) (floor (float order))
993 (let ((jvals (make-array (1+ n) :element-type 'flonum)))
994 (slatec:dbesi (float (realpart arg)) alpha 1 (1+ n) jvals 0)
995 (aref jvals n)))))))
997 ((and (zerop (realpart arg))
998 (zerop (rem order 1)))
999 ;; Handle the case for a pure imaginary arg and integer order.
1000 ;; In this case, the result is purely real or purely imaginary,
1001 ;; so we want to make sure that happens.
1003 ;; bessel_i(n, %i*x) = (%i*x)^n/x^n * bessel_j(n,x)
1004 ;; = %i^n * bessel_j(n,x)
1005 (let* ((n (floor order))
1006 (result (bessel-j (float n) (imagpart arg))))
1007 (cond ((evenp n)
1008 ;; %i^(2*m) = (-1)^m, where n=2*m
1009 (if (evenp (/ n 2))
1010 result
1011 (- result)))
1012 ((oddp n)
1013 ;; %i^(2*m+1) = %i*(-1)^m, where n = 2*m+1
1014 (if (evenp (floor n 2))
1015 (complex 0 result)
1016 (complex 0 (- result)))))))
1019 ;; The arg is complex. Use the complex-valued Bessel function.
1020 (multiple-value-bind (n alpha) (floor (abs (float order)))
1021 ;; Evaluate the function for positive order and fixup the result later.
1022 (let ((cyr (make-array (1+ n) :element-type 'flonum))
1023 (cyi (make-array (1+ n) :element-type 'flonum)))
1024 (multiple-value-bind (v-zr v-zi v-fnu v-kode v-n
1025 v-cyr v-cyi v-nz v-ierr)
1026 (slatec::zbesi (float (realpart arg))
1027 (float (imagpart arg))
1028 alpha 1 (1+ n) cyr cyi 0 0)
1029 (declare (ignore v-zr v-zi v-fnu v-kode v-n v-cyr v-cyi v-nz))
1030 ;; We should check for errors here based on the value of v-ierr.
1031 (when (plusp v-ierr)
1032 (format t "zbesi ierr = ~A~%" v-ierr))
1034 ;; We have evaluated I[|order|](arg), now we look at
1035 ;; the the sign of the order.
1036 (cond ((minusp order)
1037 ;; From A&S 9.6.2:
1038 ;; I[-a](z) = I[a](z) + (2/%pi)*sin(%pi*a)*K[a](z)
1039 (+ (complex (aref cyr n) (aref cyi n))
1040 (let ((dpi (coerce pi 'flonum)))
1041 (* (/ 2.0 dpi)
1042 (sin (* dpi (- order)))
1043 (bessel-k (- order) arg)))))
1045 (complex (aref cyr n) (aref cyi n))))))))))
1047 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
1049 ;;; Implementation of the Bessel K function
1051 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
1053 (defmfun $bessel_k (v z)
1054 (simplify (list '(%bessel_k) v z)))
1056 (defprop $bessel_k %bessel_k alias)
1057 (defprop $bessel_k %bessel_k verb)
1058 (defprop %bessel_k $bessel_k reversealias)
1059 (defprop %bessel_k $bessel_k noun)
1061 (defprop %bessel_k simp-bessel-k operators)
1063 ;; Bessel K distributes over lists, matrices, and equations
1065 (defprop %bessel_k (mlist $matrix mequal) distribute_over)
1067 (defprop %bessel_k
1068 ((n x)
1069 ;; Derivativer wrt order n. A&S 9.6.43.
1071 ;; %pi/2*csc(n*%pi)*['diff(bessel_i(-n,x),n)-'diff(bessel_i(n,x),n)]
1072 ;; - %pi*cot(n*%pi)*bessel_k(n,x)
1073 ((mplus)
1074 ((mtimes) -1 $%pi
1075 ((%bessel_k) n x)
1076 ((%cot) ((mtimes) $%pi n)))
1077 ((mtimes)
1078 ((rat) 1 2)
1079 $%pi
1080 ((%csc) ((mtimes) $%pi n))
1081 ((mplus)
1082 ((%derivative) ((%bessel_i) ((mtimes) -1 n) x) n 1)
1083 ((mtimes) -1
1084 ((%derivative) ((%bessel_i) n x) n 1)))))
1085 ;; Derivative wrt to x. A&S 9.6.29.
1086 ((mtimes)
1088 ((mplus) ((%bessel_k) ((mplus) -1 n) x)
1089 ((%bessel_k) ((mplus) 1 n) x))
1090 ((rat) 1 2)))
1091 grad)
1093 ;; Integral of the Bessel K function wrt z
1094 ;; http://functions.wolfram.com/Bessel-TypeFunctions/BesselK/21/01/01/
1095 (defun bessel-k-integral-2 (n z)
1096 (cond
1097 ((and ($integerp n) (<= 0 n))
1098 (cond
1099 (($oddp n)
1100 ;; integrate(bessel_k(2*N+1,z),z) , N > 0
1101 ;; = -(-1)^((n-1)/2)*bessel_k(0,z)
1102 ;; + 2*sum((-1)^(k+(n-1)/2-1)*bessel_k(2*k,z),k,1,(n-1)/2)
1103 (let* ((k (gensym))
1104 (answer `((mplus)
1105 ((mtimes) -1 ((%bessel_k) 0 ,z)
1106 ((mexpt) -1
1107 ((mtimes) ((rat) 1 2) ((mplus) -1 ,n))))
1108 ((mtimes) 2
1109 ((%sum)
1110 ((mtimes) ((%bessel_k) ((mtimes) 2 ,k) ,z)
1111 ((mexpt) -1
1112 ((mplus) -1 ,k
1113 ((mtimes) ((rat) 1 2) ((mplus) -1 ,n)))))
1114 ,k 1 ((mtimes) ((rat) 1 2) ((mplus) -1 ,n)))))))
1115 ;; Expand out the sum if n < 10. Otherwise fix up the indices
1116 (if (< n 10)
1117 (meval `(($ev) ,answer $sum)) ; Is there a better way?
1118 (simplify ($niceindices answer)))))
1119 (($evenp n)
1120 ;; integrate(bessel_k(2*N,z),z) , N > 0
1121 ;; = (1/2)*(-1)^(n/2)*%pi*z*(bessel_k(0,z)*struve_l(-1,z)
1122 ;; +bessel_k(1,z)*struve_l(0,z))
1123 ;; + 2 * sum((-1)^(k+n/2)*bessel_k(2*k+1,z),k,0,n/2-1)
1124 (let*
1125 ((k (gensym))
1126 (answer `((mplus)
1127 ((mtimes) 2
1128 ((%sum)
1129 ((mtimes)
1130 ((%bessel_k) ((mplus) 1 ((mtimes) 2 ,k)) ,z)
1131 ((mexpt) -1
1132 ((mplus) ,k ((mtimes) ((rat) 1 2) ,n))))
1133 ,k 0 ((mplus) -1 ((mtimes) ((rat) 1 2) ,n))))
1134 ((mtimes)
1135 ((rat) 1 2)
1136 $%pi
1137 ((mexpt) -1 ((mtimes) ((rat) 1 2) ,n))
1139 ((mplus)
1140 ((mtimes)
1141 ((%bessel_k) 0 ,z)
1142 ((%struve_l) -1 ,z))
1143 ((mtimes)
1144 ((%bessel_k) 1 ,z)
1145 ((%struve_l) 0 ,z)))))))
1146 ;; expand out the sum if n < 10. Otherwise fix up the indices
1147 (if (< n 10)
1148 (meval `(($ev) ,answer $sum)) ; Is there a better way?
1149 (simplify ($niceindices answer)))))))
1150 (t nil)))
1152 (putprop '%bessel_k `((n z) nil ,#'bessel-k-integral-2) 'integral)
1154 ;; Support a simplim%bessel_k function to handle specific limits
1156 (defprop %bessel_k simplim%bessel_k simplim%function)
1158 (defun simplim%bessel_k (expr var val)
1159 ;; Look for the limit of the arguments.
1160 (let ((v (limit (cadr expr) var val 'think))
1161 (z (limit (caddr expr) var val 'think)))
1162 (cond
1163 ;; Handle an argument 0 at this place.
1164 ((or (zerop1 z)
1165 (eq z '$zeroa)
1166 (eq z '$zerob))
1167 (cond ((zerop1 v)
1168 ;; bessel_k(0,0)
1169 '$inf)
1170 ((integerp v)
1171 ;; bessel_k(n,0), n an integer
1172 (cond ((evenp v) '$inf)
1173 (t (cond ((eq z '$zeroa) '$inf)
1174 ((eq z '$zerob) '$minf)
1175 (t '$infinity)))))
1176 ((not (zerop1 ($realpart v)))
1177 ;; bessel_k(v,0), Re(v)#0
1178 '$infinity)
1179 ((and (zerop1 ($realpart v))
1180 (not (zerop1 v)))
1181 ;; bessel_k(v,0), Re(v)=0 and v#0
1182 '$und)
1183 ;; Call the simplifier of the function.
1184 (t (simplify (list '(%bessel_k) v z)))))
1185 ((eq z '$inf)
1186 ;; bessel_k(v,inf)
1188 ((eq z '$minf)
1189 ;; bessel_k(v,minf)
1190 '$infinity)
1192 ;; All other cases are handled by the simplifier of the function.
1193 (simplify (list '(%bessel_k) v z))))))
1195 (defun simp-bessel-k (expr ignored z)
1196 (declare (ignore ignored))
1197 (twoargcheck expr)
1198 (let ((order (simpcheck (cadr expr) z))
1199 (arg (simpcheck (caddr expr) z))
1200 (rat-order nil))
1201 (cond
1202 ((zerop1 arg)
1203 ;; Domain error for a zero argument.
1204 (simp-domain-error
1205 (intl:gettext "bessel_k: bessel_k(~:M,~:M) is undefined.") order arg))
1207 ((complex-float-numerical-eval-p order arg)
1208 (cond ((= 0 ($imagpart order))
1209 ;; order is real, arg is real or complex
1210 (complexify (bessel-k ($float order)
1211 (complex ($float ($realpart arg))
1212 ($float ($imagpart arg))))))
1214 ;; order is complex, arg is real or complex
1215 (let (($numer t)
1216 ($float t)
1217 (order ($float order))
1218 (arg ($float arg)))
1219 ($float
1220 ($rectform
1221 (bessel-k-hypergeometric order arg)))))))
1223 ((mminusp order)
1224 ;; A&S 9.6.6: K[-v](x) = K[v](x)
1225 (take '(%bessel_k) (mul -1 order) arg))
1227 ((and $besselexpand
1228 (setq rat-order (max-numeric-ratio-p order 2)))
1229 ;; When order is a fraction with a denominator of 2, we
1230 ;; can express the result in terms of elementary
1231 ;; functions. From A&S 10.2.16 and 10.2.17:
1233 ;; K[1/2](z) = sqrt(%pi/2/z)*exp(-z)
1234 ;; = K[-1/2](z)
1235 (bessel-k-half-order rat-order arg))
1237 ((and $bessel_reduce
1238 (and (integerp order)
1239 (plusp order)
1240 (> order 1)))
1241 ;; Reduce a bessel function of order > 2 to order 1 and 0.
1242 ;; A&S 9.6.26: bessel_k(v,z) = 2*(v-1)/z*bessel_k(v-1,z)+bessel_k(v-2,z)
1243 (add (mul 2
1244 (- order 1)
1245 (inv arg)
1246 (take '(%bessel_k) (- order 1) arg))
1247 (take '(%bessel_k) (- order 2) arg)))
1249 ($hypergeometric_representation
1250 (bessel-k-hypergeometric order arg))
1253 (eqtest (list '(%bessel_k) order arg) expr)))))
1255 ;; Returns the hypergeometric representation of bessel_k
1256 (defun bessel-k-hypergeometric (order arg)
1257 ;; http://functions.wolfram.com/03.04.26.0002.01
1258 ;; hypergeometric([],[1-v],z^2/4)*2^(v-1)*gamma(v)/z^v
1259 ;; + hypergeometric([],[v+1],z^2/4)*2^(-v-1)*gamma(-v)*z^v
1260 (add (mul (power 2 (sub order 1))
1261 (take '(%gamma) order)
1262 (inv (power arg order))
1263 (take '($hypergeometric)
1264 (list '(mlist))
1265 (list '(mlist) (sub 1 order))
1266 (div (mul arg arg) 4)))
1267 (mul (inv (power 2 (add order 1)))
1268 (power arg order)
1269 (take '(%gamma) (neg order))
1270 (take '($hypergeometric)
1271 (list '(mlist))
1272 (list '(mlist) (add order 1))
1273 (div (mul arg arg) 4)))))
1275 ;; Compute value of Modified Bessel function of the second kind of order ORDER
1276 (defun bessel-k (order arg)
1277 (cond
1278 ((zerop (imagpart arg))
1279 ;; We have numeric args and the first arg is purely real. Call the
1280 ;; real-valued Bessel function. Handle orders 0 and 1 specially, when
1281 ;; possible.
1282 (let ((arg (realpart arg)))
1283 (cond
1284 ((< arg 0)
1285 ;; This is the extension for negative arg.
1286 ;; We use A&S 9.6.6 and 9.6.31 for evaluation:
1287 ;; K[v](-z) = K[|v|](-z)
1288 ;; = exp(-%i*%pi*|v|)*K[|v|](z) - %i*%pi*I[|v|](z)
1289 (let* ((dpi (coerce pi 'flonum))
1290 (s1 (cis (* dpi (- (abs order)))))
1291 (s2 (* (complex 0 -1) dpi))
1292 (result (+ (* s1 (bessel-k (abs order) (- arg)))
1293 (* s2 (bessel-i (abs order) (- arg)))))
1294 (rem (nth-value 1 (floor order))))
1295 (cond ((zerop rem)
1296 ;; order is an integer or a float representation of an
1297 ;; integer, the result is a general complex
1298 result)
1299 ((= rem 1/2)
1300 ;; order is half-integral-value or an float representation
1301 ;; and arg < 0, the result is pure imaginary
1302 (complex 0 (imagpart result)))
1303 ;; in all other cases general complex result
1304 (t result))))
1305 ((= order 0)
1306 (slatec:dbesk0 (float arg)))
1307 ((= order 1)
1308 (slatec:dbesk1 (float arg)))
1310 ;; From A&S 9.6.6, K[-v](z) = K[v](z), so take the
1311 ;; absolute value of the order.
1312 (multiple-value-bind (n alpha) (floor (abs (float order)))
1313 (let ((jvals (make-array (1+ n) :element-type 'flonum)))
1314 (slatec:dbesk (float arg) alpha 1 (1+ n) jvals 0)
1315 (aref jvals n)))))))
1317 ;; The arg is complex. Use the complex-valued Bessel function. From
1318 ;; A&S 9.6.6, K[-v](z) = K[v](z), so take the absolute value of the order.
1319 (multiple-value-bind (n alpha) (floor (abs (float order)))
1320 (let ((cyr (make-array (1+ n) :element-type 'flonum))
1321 (cyi (make-array (1+ n) :element-type 'flonum)))
1322 (multiple-value-bind (v-zr v-zi v-fnu v-kode v-n
1323 v-cyr v-cyi v-nz v-ierr)
1324 (slatec::zbesk (float (realpart arg))
1325 (float (imagpart arg))
1326 alpha 1 (1+ n) cyr cyi 0 0)
1327 (declare (ignore v-zr v-zi v-fnu v-kode v-n v-cyr v-cyi v-nz))
1329 ;; We should check for errors here based on the value of v-ierr.
1330 (when (plusp v-ierr)
1331 (format t "zbesk ierr = ~A~%" v-ierr))
1332 (complex (aref cyr n) (aref cyi n))))))))
1334 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
1336 ;;; Expansion of Bessel J and Y functions of half-integral order.
1338 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
1340 ;; From A&S 10.1.1, we have
1342 ;; J[n+1/2](z) = sqrt(2*z/%pi)*j[n](z)
1343 ;; Y[n+1/2](z) = sqrt(2*z/%pi)*y[n](z)
1345 ;; where j[n](z) is the spherical bessel function of the first kind
1346 ;; and y[n](z) is the spherical bessel function of the second kind.
1348 ;; A&S 10.1.8 and 10.1.9 give
1350 ;; j[n](z) = 1/z*[P(n+1/2,z)*sin(z-n*%pi/2) + Q(n+1/2,z)*cos(z-n*%pi/2)]
1352 ;; y[n](z) = (-1)^(n+1)*1/z*[P(n+1/2,z)*cos(z+n*%pi/2) - Q(n+1/2,z)*sin(z+n*%pi/2)]
1355 ;; A&S 10.1.10
1357 ;; j[n](z) = f[n](z)*sin(z) + (-1)^(n+1)*f[-n-1](z)*cos(z)
1359 ;; f[0](z) = 1/z, f[1](z) = 1/z^2
1361 ;; f[n-1](z) + f[n+1](z) = (2*n+1)/z*f[n](z)
1363 (defun f-fun (n z)
1364 (cond ((= n 0)
1365 (div 1 z))
1366 ((= n 1)
1367 (div 1 (mul z z)))
1368 ((= n -1)
1370 ((>= n 2)
1371 ;; f[n+1](z) = (2*n+1)/z*f[n](z) - f[n-1](z) or
1372 ;; f[n](z) = (2*n-1)/z*f[n-1](z) - f[n-2](z)
1373 (sub (mul (div (+ n n -1) z)
1374 (f-fun (1- n) z))
1375 (f-fun (- n 2) z)))
1377 ;; Negative n
1379 ;; f[n-1](z) = (2*n+1)/z*f[n](z) - f[n+1](z) or
1380 ;; f[n](z) = (2*n+3)/z*f[n+1](z) - f[n+2](z)
1381 (sub (mul (div (+ n n 3) z)
1382 (f-fun (1+ n) z))
1383 (f-fun (+ n 2) z)))))
1385 ;; Compute sqrt(2*z/%pi)
1386 (defun root-2z/pi (z)
1387 (power (mul 2 z (inv '$%pi)) '((rat simp) 1 2)))
1389 (defun bessel-j-half-order (order arg)
1390 "Compute J[n+1/2](z)"
1391 (let* ((n (floor order))
1392 (sign (if (oddp n) -1 1))
1393 (jn (sub (mul ($expand (f-fun n arg))
1394 (take '(%sin) arg))
1395 (mul sign
1396 ($expand (f-fun (- (- n) 1) arg))
1397 (take '(%cos) arg)))))
1398 (mul (root-2z/pi arg)
1399 jn)))
1401 (defun bessel-y-half-order (order arg)
1402 "Compute Y[n+1/2](z)"
1403 ;; A&S 10.1.1:
1404 ;; Y[n+1/2](z) = sqrt(2*z/%pi)*y[n](z)
1406 ;; A&S 10.1.15:
1407 ;; y[n](z) = (-1)^(n+1)*j[-n-1](z)
1409 ;; So
1410 ;; Y[n+1/2](z) = sqrt(2*z/%pi)*(-1)^(n+1)*j[-n-1](z)
1411 ;; = (-1)^(n+1)*sqrt(2*z/%pi)*j[-n-1](z)
1412 ;; = (-1)^(n+1)*J[-n-1/2](z)
1413 (let* ((n (floor order))
1414 (jn (bessel-j-half-order (- (- order) 1/2) arg)))
1415 (if (evenp n)
1416 (mul -1 jn)
1417 jn)))
1419 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
1421 ;;; Expansion of Bessel I and K functions of half-integral order.
1423 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
1425 ;; See A&S 10.2.12
1427 ;; I[n+1/2](z) = sqrt(2*z/%pi)*[g[n](z)*sinh(z) + g[-n-1](z)*cosh(z)]
1429 ;; g[0](z) = 1/z, g[1](z) = -1/z^2
1431 ;; g[n-1](z) - g[n+1](z) = (2*n+1)/z*g[n](z)
1434 (defun g-fun (n z)
1435 (declare (type integer n))
1436 (cond ((= n 0)
1437 (div 1 z))
1438 ((= n 1)
1439 (div -1 (mul z z)))
1440 ((>= n 2)
1441 ;; g[n](z) = g[n-2](z) - (2*n-1)/z*g[n-1](z)
1442 (sub (g-fun (- n 2) z)
1443 (mul (div (+ n n -1) z)
1444 (g-fun (- n 1) z))))
1446 ;; n is negative
1448 ;; g[n](z) = (2*n+3)/z*g[n+1](z) + g[n+2](z)
1449 (add (mul (div (+ n n 3) z)
1450 (g-fun (+ n 1) z))
1451 (g-fun (+ n 2) z)))))
1453 ;; See A&S 10.2.12
1455 ;; I[n+1/2](z) = sqrt(2*z/%pi)*[g[n](z)*sinh(z) + g[-n-1](z)*cosh(z)]
1457 (defun bessel-i-half-order (order arg)
1458 (let ((order (floor order)))
1459 (mul (root-2z/pi arg)
1460 (add (mul ($expand (g-fun order arg))
1461 (take '(%sinh) arg))
1462 (mul ($expand (g-fun (- (+ order 1)) arg))
1463 (take '(%cosh) arg))))))
1465 ;; See A&S 10.2.15
1467 ;; sqrt(%pi/2/z)*K[n+1/2](z) = (%pi/2/z)*exp(-z)*sum((n+1/2,k)/(2*z)^k,k,0,n)
1469 ;; or
1471 ;; K[n+1/2](z) = sqrt(%pi/2)/sqrt(z)*exp(-z)*sum((n+1/2,k)/(2*z)^k,k,0,n)
1473 ;; where (A&S 10.1.9)
1475 ;; (n+1/2,k) = (n+k)!/k!/(n-k)!
1477 (defun k-fun (n z)
1478 (declare (type unsigned-byte n))
1479 ;; Computes the sum above
1480 (let ((sum 1)
1481 (term 1))
1482 (loop for k from 0 upto n do
1483 (setf term (mul term
1484 (div (div (* (- n k) (+ n k 1))
1485 (+ k 1))
1486 (mul 2 z))))
1487 (setf sum (add sum term)))
1488 sum))
1490 (defun bessel-k-half-order (order arg)
1491 (let ((order (truncate (abs order))))
1492 (mul (mul (power (div '$%pi 2) '((rat simp) 1 2))
1493 (power arg '((rat simp) -1 2))
1494 (power '$%e (neg arg)))
1495 (k-fun (abs order) arg))))
1497 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
1499 ;;; Realpart und imagpart of Bessel functions
1501 ;;; We handle the special cases when we know that the Bessel function
1502 ;;; is pure real or pure imaginary. In all other cases Maxima generates
1503 ;;; a general noun form as result.
1505 ;;; To get the complex sign of the order an argument of the Bessel function
1506 ;;; the function $csign is used which calls $sign in a complex mode.
1508 ;;; This is an extension of of the algorithm of the function risplit in
1509 ;;; the file rpart.lisp. risplit looks for a risplit-function on the
1510 ;;; property list and call it if available.
1512 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
1514 (defvar *debug-bessel* nil)
1516 ;;; Put the risplit-function for Bessel J and Bessel I on the property list
1518 (defprop %bessel_j risplit-bessel-j-or-i risplit-function)
1519 (defprop %bessel_i risplit-bessel-j-or-i risplit-function)
1521 ;;; realpart und imagpart for Bessel J and Bessel I function
1523 (defun risplit-bessel-j-or-i (expr)
1524 (when *debug-bessel*
1525 (format t "~&RISPLIT-BESSEL-J with ~A~%" expr))
1526 (let ((order (cadr expr))
1527 (arg (caddr expr))
1528 (sign-order ($csign (cadr expr)))
1529 (sign-arg ($csign (caddr expr))))
1531 (when *debug-bessel*
1532 (format t "~& : order = ~A~%" order)
1533 (format t "~& : arg = ~A~%" arg)
1534 (format t "~& : sign-order = ~A~%" sign-order)
1535 (format t "~& : sign-arg = ~A~%" sign-arg))
1537 (cond
1538 ((or (member sign-order '($complex $imaginary))
1539 (eq sign-arg '$complex))
1540 ;; order or arg are complex, return general noun-form
1541 (risplit-noun expr))
1542 ((eq sign-arg '$imaginary)
1543 ;; arg is pure imaginary
1544 (cond
1545 ((or ($oddp order)
1546 ($featurep order '$odd))
1547 ;; order is an odd integer, pure imaginary noun-form
1548 (cons 0 (mul -1 '$%i expr)))
1549 ((or ($evenp order)
1550 ($featurep order '$even))
1551 ;; order is an even integer, real noun-form
1552 (cons expr 0))
1554 ;; order is not an odd or even integer, or Maxima can not
1555 ;; determine it, return general noun-form
1556 (risplit-noun expr))))
1557 ;; At this point order and arg are real.
1558 ;; We have to look for some special cases involing a negative arg
1559 ((or (maxima-integerp order)
1560 (member sign-arg '($pos $pz)))
1561 ;; arg is positive or order an integer, real noun-form
1562 (cons expr 0))
1563 ;; At this point we know that arg is negative or the sign is not known
1564 ((zerop1 (sub ($truncate ($multthru 2 order)) ($multthru 2 order)))
1565 ;; order is half integral
1566 (cond
1567 ((eq sign-arg '$neg)
1568 ;; order is half integral and arg negative, imaginary noun-form
1569 (cons 0 (mul -1 '$%i expr)))
1571 ;; the sign of arg or order is not known
1572 (risplit-noun expr))))
1574 ;; the sign of arg or order is not known
1575 (risplit-noun expr)))))
1577 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
1579 ;;; Put the risplit-function for Bessel K and Bessel Y on the property list
1581 (defprop %bessel_k risplit-bessel-k-or-y risplit-function)
1582 (defprop %bessel_y risplit-bessel-k-or-y risplit-function)
1584 ;;; realpart und imagpart for Bessel K and Bessel Y function
1586 (defun risplit-bessel-k-or-y (expr)
1587 (when *debug-bessel*
1588 (format t "~&RISPLIT-BESSEL-K with ~A~%" expr))
1589 (let ((order (cadr expr))
1590 (arg (caddr expr))
1591 (sign-order ($csign (cadr expr)))
1592 (sign-arg ($csign (caddr expr))))
1594 (when *debug-bessel*
1595 (format t "~& : order = ~A~%" order)
1596 (format t "~& : arg = ~A~%" arg)
1597 (format t "~& : sign-order = ~A~%" sign-order)
1598 (format t "~& : sign-arg = ~A~%" sign-arg))
1600 (cond
1601 ((or (member sign-order '($complex $imaginary))
1602 (member sign-arg '($complex '$imaginary)))
1603 (risplit-noun expr))
1604 ;; At this point order and arg are real valued.
1605 ;; We have to look for some special cases involing a negative arg
1606 ((member sign-arg '($pos $pz))
1607 ;; arg is positive
1608 (cons expr 0))
1609 ;; At this point we know that arg is negative or the sign is not known
1610 ((and (not (maxima-integerp order))
1611 (zerop1 (sub ($truncate ($multthru 2 order)) ($multthru 2 order))))
1612 ;; order is half integral
1613 (cond
1614 ((eq sign-arg '$neg)
1615 (cons 0 (mul -1 '$%i expr)))
1617 ;; the sign of arg is not known
1618 (risplit-noun expr))))
1620 ;; the sign of arg is not known
1621 (risplit-noun expr)))))
1623 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
1625 ;;; Implementation of scaled Bessel I functions
1627 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
1629 ;; FIXME: The following scaled functions need work. They should be
1630 ;; extended to match bessel_i, but still carefully compute the scaled
1631 ;; value.
1633 ;; I think g0(x) = exp(-x)*I[0](x), g1(x) = exp(-x)*I[1](x), and
1634 ;; gn(x,n) = exp(-x)*I[n](x), based on some simple numerical
1635 ;; evaluations.
1637 (defmfun $scaled_bessel_i0 ($x)
1638 (cond ((mnump $x)
1639 ;; XXX Should we return noun forms if $x is rational?
1640 (slatec:dbsi0e ($float $x)))
1642 (mul (power '$%e (neg (simplifya `((mabs) ,$x) nil)))
1643 `((%bessel_i) 0 ,$x)))))
1645 (defmfun $scaled_bessel_i1 ($x)
1646 (cond ((mnump $x)
1647 ;; XXX Should we return noun forms if $x is rational?
1648 (slatec:dbsi1e ($float $x)))
1650 (mul (power '$%e (neg (simplifya `((mabs) ,$x) nil)))
1651 `((%bessel_i) 1 ,$x)))))
1653 (defmfun $scaled_bessel_i ($n $x)
1654 (cond ((and (mnump $x) (mnump $n))
1655 ;; XXX Should we return noun forms if $n and $x are rational?
1656 (multiple-value-bind (n alpha) (floor ($float $n))
1657 (let ((iarray (make-array (1+ n) :element-type 'flonum)))
1658 (slatec:dbesi ($float $x) alpha 2 (1+ n) iarray 0)
1659 (aref iarray n))))
1661 (mul (power '$%e (neg (simplifya `((mabs) ,$x) nil)))
1662 ($bessel_i $n $x)))))
1664 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
1666 ;;; Implementation of the Hankel 1 function
1668 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
1670 (defmfun $hankel_1 (v z)
1671 (simplify (list '(%hankel_1) v z)))
1673 (defprop $hankel_1 %hankel_1 alias)
1674 (defprop $hankel_1 %hankel_1 verb)
1675 (defprop %hankel_1 $hankel_1 reversealias)
1676 (defprop %hankel_1 $hankel_1 noun)
1678 ;; hankel_1 distributes over lists, matrices, and equations
1680 (defprop %hankel_1 (mlist $matrix mequal) distribute_over)
1682 (defprop %hankel_1 simp-hankel-1 operators)
1684 ; Derivatives of the Hankel 1 function
1685 (defprop %hankel_1
1686 ((n x)
1689 ;; Derivative wrt arg x. A&S 9.1.27.
1690 ((mtimes)
1691 ((mplus)
1692 ((%hankel_1) ((mplus) -1 n) x)
1693 ((mtimes) -1 ((%hankel_1) ((mplus) 1 n) x)))
1694 ((rat) 1 2)))
1695 grad)
1697 (defun simp-hankel-1 (expr ignored z)
1698 (declare (ignore ignored))
1699 (twoargcheck expr)
1700 (let ((order (simpcheck (cadr expr) z))
1701 (arg (simpcheck (caddr expr) z))
1702 rat-order)
1703 (cond
1704 ((zerop1 arg)
1705 (simp-domain-error
1706 (intl:gettext "hankel_1: hankel_1(~:M,~:M) is undefined.")
1707 order arg))
1708 ((complex-float-numerical-eval-p order arg)
1709 (cond ((= 0 ($imagpart order))
1710 ;; order is real, arg is real or complex
1711 (complexify (hankel-1 ($float order)
1712 (complex ($float ($realpart arg))
1713 ($float ($imagpart arg))))))
1715 ;; The order is complex. Use
1716 ;; hankel_1(v,z) = bessel_j(v,z) + %i*bessel_y(v,z)
1717 ;; and evaluate using the hypergeometric function
1718 (let (($numer t)
1719 ($float t)
1720 (order ($float order))
1721 (arg ($float arg)))
1722 ($float
1723 ($rectform
1724 (add (bessel-j-hypergeometric order arg)
1725 (mul '$%i
1726 (bessel-y-hypergeometric order arg)))))))))
1727 ((and $besselexpand
1728 (setq rat-order (max-numeric-ratio-p order 2)))
1729 ;; When order is a fraction with a denominator of 2, we can express
1730 ;; the result in terms of elementary functions.
1731 ;; Use the definition hankel_1(v,z) = bessel_j(v,z)+%i*bessel_y(v,z)
1732 (sratsimp
1733 (add (bessel-j-half-order rat-order arg)
1734 (mul '$%i
1735 (bessel-y-half-order rat-order arg)))))
1736 (t (eqtest (list '(%hankel_1) order arg) expr)))))
1738 ;; Numerically compute H1[v](z).
1740 ;; A&S 9.1.3 says H1[v](z) = J[v](z) + %i * Y[v](z)
1742 (defun hankel-1 (v z)
1743 (let ((v (float v))
1744 (z (coerce z '(complex flonum))))
1745 (cond ((minusp v)
1746 ;; A&S 9.1.6:
1748 ;; H1[-v](z) = exp(v*%pi*%i)*H1[v](z)
1750 ;; or
1752 ;; H1[v](z) = exp(-v*%pi*%i)*H1[-v](z)
1754 (* (cis (* (float pi) (- v))) (hankel-1 (- v) z)))
1756 (multiple-value-bind (n fnu) (floor v)
1757 (let ((zr (realpart z))
1758 (zi (imagpart z))
1759 (cyr (make-array (1+ n) :element-type 'flonum))
1760 (cyi (make-array (1+ n) :element-type 'flonum)))
1761 (multiple-value-bind (dzr dzi df dk dm dn dcyr dcyi nz ierr)
1762 (slatec::zbesh zr zi fnu 1 1 (1+ n) cyr cyi 0 0)
1763 (declare (ignore dzr dzi df dk dm dn dcyr dcyi nz ierr))
1764 (complex (aref cyr n) (aref cyi n)))))))))
1766 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
1768 ;;; Implementation of the Hankel 2 function
1770 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
1772 (defmfun $hankel_2 (v z)
1773 (simplify (list '(%hankel_2) v z)))
1775 (defprop $hankel_2 %hankel_2 alias)
1776 (defprop $hankel_2 %hankel_2 verb)
1777 (defprop %hankel_2 $hankel_2 reversealias)
1778 (defprop %hankel_2 $hankel_2 noun)
1780 ;; hankel_2 distributes over lists, matrices, and equations
1782 (defprop %hankel_2 (mlist $matrix mequal) distribute_over)
1784 (defprop %hankel_2 simp-hankel-2 operators)
1786 ; Derivatives of the Hankel 2 function
1787 (defprop %hankel_2
1788 ((n x)
1791 ;; Derivative wrt arg x. A&S 9.1.27.
1792 ((mtimes)
1793 ((mplus)
1794 ((%hankel_2) ((mplus) -1 n) x)
1795 ((mtimes) -1 ((%hankel_2) ((mplus) 1 n) x)))
1796 ((rat) 1 2)))
1797 grad)
1799 (defun simp-hankel-2 (expr ignored z)
1800 (declare (ignore ignored))
1801 (twoargcheck expr)
1802 (let ((order (simpcheck (cadr expr) z))
1803 (arg (simpcheck (caddr expr) z))
1804 rat-order)
1805 (cond
1806 ((zerop1 arg)
1807 (simp-domain-error
1808 (intl:gettext "hankel_2: hankel_2(~:M,~:M) is undefined.")
1809 order arg))
1810 ((complex-float-numerical-eval-p order arg)
1811 (cond ((= 0 ($imagpart order))
1812 ;; order is real, arg is real or complex
1813 (complexify (hankel-2 ($float order)
1814 (complex ($float ($realpart arg))
1815 ($float ($imagpart arg))))))
1817 ;; The order is complex. Use
1818 ;; hankel_2(v,z) = bessel_j(v,z) - %i*bessel_y(v,z)
1819 ;; and evaluate using the hypergeometric function
1820 (let (($numer t)
1821 ($float t)
1822 (order ($float order))
1823 (arg ($float arg)))
1824 ($float
1825 ($rectform
1826 (sub (bessel-j-hypergeometric order arg)
1827 (mul '$%i
1828 (bessel-y-hypergeometric order arg)))))))))
1829 ((and $besselexpand
1830 (setq rat-order (max-numeric-ratio-p order 2)))
1831 ;; When order is a fraction with a denominator of 2, we can express
1832 ;; the result in terms of elementary functions.
1833 ;; Use the definition hankel_2(v,z) = bessel_j(v,z)-%i*bessel_y(v,z)
1834 (sratsimp
1835 (sub (bessel-j-half-order rat-order arg)
1836 (mul '$%i
1837 (bessel-y-half-order rat-order arg)))))
1838 (t (eqtest (list '(%hankel_2) order arg) expr)))))
1840 ;; Numerically compute H2[v](z).
1842 ;; A&S 9.1.4 says H2[v](z) = J[v](z) - %i * Y[v](z)
1844 (defun hankel-2 (v z)
1845 (let ((v (float v))
1846 (z (coerce z '(complex flonum))))
1847 (cond ((minusp v)
1848 ;; A&S 9.1.6:
1850 ;; H2[-v](z) = exp(-v*%pi*%i)*H2[v](z)
1852 ;; or
1854 ;; H2[v](z) = exp(v*%pi*%i)*H2[-v](z)
1856 (* (cis (* (float pi) v)) (hankel-2 (- v) z)))
1858 (multiple-value-bind (n fnu) (floor v)
1859 (let ((zr (realpart z))
1860 (zi (imagpart z))
1861 (cyr (make-array (1+ n) :element-type 'flonum))
1862 (cyi (make-array (1+ n) :element-type 'flonum)))
1863 (multiple-value-bind (dzr dzi df dk dm dn dcyr dcyi nz ierr)
1864 (slatec::zbesh zr zi fnu 1 2 (1+ n) cyr cyi 0 0)
1865 (declare (ignore dzr dzi df dk dm dn dcyr dcyi nz ierr))
1866 (complex (aref cyr n) (aref cyi n)))))))))
1868 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
1870 ;;; Implementation of Struve H function
1872 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
1874 (defmfun $struve_h (v z)
1875 (simplify (list '(%struve_h) v z)))
1877 (defprop $struve_h %struve_h alias)
1878 (defprop $struve_h %struve_h verb)
1879 (defprop %struve_h $struve_h reversealias)
1880 (defprop %struve_h $struve_h noun)
1882 ;; struve_h distributes over lists, matrices, and equations
1884 (defprop %struve_h (mlist $matrix mequal) distribute_over)
1886 (defprop %struve_h simp-struve-h operators)
1888 ; Derivatives of the Struve H function
1889 (defprop %struve_h
1890 ((v z)
1893 ;; Derivative wrt arg z. A&S 12.1.10.
1894 ((mtimes)
1895 ((rat) 1 2)
1896 ((mplus)
1897 ((%struve_h) ((mplus) -1 v) z)
1898 ((mtimes) -1 ((%struve_h) ((mplus) 1 v) z))
1899 ((mtimes)
1900 ((mexpt) $%pi ((rat) -1 2))
1901 ((mexpt) 2 ((mtimes) -1 v))
1902 ((mexpt) ((%gamma) ((mplus) ((rat) 3 2) v)) -1)
1903 ((mexpt) z v)))))
1904 grad)
1906 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
1908 (defun simp-struve-h (expr ignored z)
1909 (declare (ignore ignored))
1910 (twoargcheck expr)
1911 (let ((order (simpcheck (cadr expr) z))
1912 (arg (simpcheck (caddr expr) z)))
1913 (cond
1915 ;; Check for special values
1917 ((zerop1 arg)
1918 (cond ((eq ($csign (add order 1)) '$zero)
1919 ; http://functions.wolfram.com/03.09.03.0018.01
1920 (cond ((or ($bfloatp order)
1921 ($bfloatp arg))
1922 ($bfloat (div 2 '$%pi)))
1923 ((or (floatp order)
1924 (floatp arg))
1925 ($float (div 2 '$%pi)))
1927 (div 2 '$%pi))))
1928 ((eq ($sign (add ($realpart order) 1)) '$pos)
1929 ; http://functions.wolfram.com/03.09.03.0001.01
1930 arg)
1931 ((member ($sign (add ($realpart order) 1)) '($zero $neg $nz))
1932 (simp-domain-error
1933 (intl:gettext "struve_h: struve_h(~:M,~:M) is undefined.")
1934 order arg))
1936 (eqtest (list '(%struve_h) order arg) expr))))
1938 ;; Check for numerical evaluation
1940 ((complex-float-numerical-eval-p order arg)
1941 ; A&S 12.1.21
1942 (let (($numer t) ($float t))
1943 ($rectform
1944 ($float
1945 (mul
1946 ($rectform (power arg (add order 1.0)))
1947 ($rectform (inv (power 2.0 order)))
1948 (inv (power ($float '$%pi) 0.5))
1949 (inv (simplify (list '(%gamma) (add order 1.5))))
1950 (simplify (list '($hypergeometric)
1951 (list '(mlist) 1)
1952 (list '(mlist) '((rat simp) 3 2)
1953 (add order '((rat simp) 3 2)))
1954 (div (mul arg arg) -4.0))))))))
1956 ((complex-bigfloat-numerical-eval-p order arg)
1957 ; A&S 12.1.21
1958 (let (($ratprint nil)
1959 (arg ($bfloat arg))
1960 (order ($bfloat order)))
1961 ($rectform
1962 ($bfloat
1963 (mul
1964 ($rectform (power arg (add order 1)))
1965 ($rectform (inv (power 2 order)))
1966 (inv (power ($bfloat '$%pi) ($bfloat '((rat simp) 1 2))))
1967 (inv (simplify (list '(%gamma)
1968 (add order ($bfloat '((rat simp) 3 2))))))
1969 (simplify (list '($hypergeometric)
1970 (list '(mlist) 1)
1971 (list '(mlist) '((rat simp) 3 2)
1972 (add order '((rat simp) 3 2)))
1973 (div (mul arg arg) ($bfloat -4)))))))))
1975 ;; Transformations and argument simplifications
1977 ((and $besselexpand
1978 (ratnump order)
1979 (integerp (mul 2 order)))
1980 (cond
1981 ((eq ($sign order) '$pos)
1982 ;; Expansion of Struve H for a positive half integral order.
1983 (sratsimp
1984 (add
1985 (mul
1986 (inv (simplify (list '(mfactorial) (sub order
1987 '((rat simp) 1 2)))))
1988 (inv (power '$%pi '((rat simp) 1 2 )))
1989 (power (div arg 2) (add order -1))
1990 (let ((index (gensumindex)))
1991 (dosum
1992 (mul
1993 (simplify (list '($pochhammer) '((rat simp) 1 2) index))
1994 (simplify (list '($pochhammer)
1995 (sub '((rat simp) 1 2) order)
1996 index))
1997 (power (mul -1 arg arg (inv 4)) (mul -1 index)))
1998 index 0 (sub order '((rat simp) 1 2)) t)))
1999 (mul
2000 (power (div 2 '$%pi) '((rat simp) 1 2))
2001 (power -1 (add order '((rat simp) 1 2)))
2002 (inv (power arg '((rat simp) 1 2)))
2003 (add
2004 (mul
2005 (simplify
2006 (list '(%sin)
2007 (add (mul '((rat simp) 1 2)
2008 '$%pi
2009 (add order '((rat simp) 1 2)))
2010 arg)))
2011 (let ((index (gensumindex)))
2012 (dosum
2013 (mul
2014 (power -1 index)
2015 (simplify (list '(mfactorial)
2016 (add (mul 2 index)
2017 order
2018 '((rat simp) -1 2))))
2019 (inv (simplify (list '(mfactorial) (mul 2 index))))
2020 (inv (simplify (list '(mfactorial)
2021 (add (mul -2 index)
2022 order
2023 '((rat simp) -1 2)))))
2024 (inv (power (mul 2 arg) (mul 2 index))))
2025 index 0
2026 (simplify (list '($floor)
2027 (div (sub (mul 2 order) 1) 4)))
2028 t)))
2029 (mul
2030 (simplify (list '(%cos)
2031 (add (mul '((rat simp) 1 2)
2032 '$%pi
2033 (add order '((rat simp) 1 2)))
2034 arg)))
2035 (let ((index (gensumindex)))
2036 (dosum
2037 (mul
2038 (power -1 index)
2039 (simplify (list '(mfactorial)
2040 (add (mul 2 index)
2041 order
2042 '((rat simp) 1 2))))
2043 (power (mul 2 arg) (mul -1 (add (mul 2 index) 1)))
2044 (inv (simplify (list '(mfactorial)
2045 (add (mul 2 index) 1))))
2046 (inv (simplify (list '(mfactorial)
2047 (add (mul -2 index)
2048 order
2049 '((rat simp) -3 2))))))
2050 index 0
2051 (simplify (list '($floor)
2052 (div (sub (mul 2 order) 3) 4)))
2053 t))))))))
2055 ((eq ($sign order) '$neg)
2056 ;; Expansion of Struve H for a negative half integral order.
2057 (sratsimp
2058 (add
2059 (mul
2060 (power (div 2 '$%pi) '((rat simp) 1 2))
2061 (power -1 (add order '((rat simp) 1 2)))
2062 (inv (power arg '((rat simp) 1 2)))
2063 (add
2064 (mul
2065 (simplify (list '(%sin)
2066 (add
2067 (mul
2068 '((rat simp) 1 2)
2069 '$%pi
2070 (add order '((rat simp) 1 2)))
2071 arg)))
2072 (let ((index (gensumindex)))
2073 (dosum
2074 (mul
2075 (power -1 index)
2076 (simplify (list '(mfactorial)
2077 (add (mul 2 index)
2078 (neg order)
2079 '((rat simp) -1 2))))
2080 (inv (simplify (list '(mfactorial) (mul 2 index))))
2081 (inv (simplify (list '(mfactorial)
2082 (add (mul -2 index)
2083 (neg order)
2084 '((rat simp) -1 2)))))
2085 (inv (power (mul 2 arg) (mul 2 index))))
2086 index 0
2087 (simplify (list '($floor)
2088 (div (add (mul 2 order) 1) -4)))
2089 t)))
2090 (mul
2091 (simplify (list '(%cos)
2092 (add
2093 (mul
2094 '((rat simp) 1 2)
2095 '$%pi
2096 (add order '((rat simp) 1 2)))
2097 arg)))
2098 (let ((index (gensumindex)))
2099 (dosum
2100 (mul
2101 (power -1 index)
2102 (simplify (list '(mfactorial)
2103 (add (mul 2 index)
2104 (neg order)
2105 '((rat simp) 1 2))))
2106 (power (mul 2 arg) (mul -1 (add (mul 2 index) 1)))
2107 (inv (simplify (list '(mfactorial)
2108 (add (mul 2 index) 1))))
2109 (inv (simplify (list '(mfactorial)
2110 (add (mul -2 index)
2111 (neg order)
2112 '((rat simp) -3 2))))))
2113 index 0
2114 (simplify (list '($floor)
2115 (div (add (mul 2 order) 3) -4)))
2116 t))))))))))
2118 (eqtest (list '(%struve_h) order arg) expr)))))
2120 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
2122 ;;; Implementation of Struve L function
2124 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
2126 (defmfun $struve_l (v z)
2127 (simplify (list '(%struve_l) v z)))
2129 (defprop $struve_l %struve_l alias)
2130 (defprop $struve_l %struve_l verb)
2131 (defprop %struve_l $struve_l reversealias)
2132 (defprop %struve_l $struve_l noun)
2134 (defprop %struve_l simp-struve-l operators)
2136 ;; struve_l distributes over lists, matrices, and equations
2138 (defprop %struve_l (mlist $matrix mequal) distribute_over)
2140 ; Derivatives of the Struve L function
2141 (defprop %struve_l
2142 ((v z)
2145 ;; Derivative wrt arg z. A&S 12.2.5.
2146 ((mtimes)
2147 ((rat) 1 2)
2148 ((mplus)
2149 ((%struve_l) ((mplus) -1 v) z)
2150 ((%struve_l) ((mplus) 1 v) z)
2151 ((mtimes)
2152 ((mexpt) $%pi ((rat) -1 2))
2153 ((mexpt) 2 ((mtimes) -1 v))
2154 ((mexpt) ((%gamma) ((mplus) ((rat) 3 2) v)) -1)
2155 ((mexpt) z v)))))
2156 grad)
2158 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
2160 (defun simp-struve-l (expr ignored z)
2161 (declare (ignore ignored))
2162 (twoargcheck expr)
2163 (let ((order (simpcheck (cadr expr) z))
2164 (arg (simpcheck (caddr expr) z)))
2165 (cond
2167 ;; Check for special values
2169 ((zerop1 arg)
2170 (cond ((eq ($csign (add order 1)) '$zero)
2171 ; http://functions.wolfram.com/03.10.03.0018.01
2172 (cond ((or ($bfloatp order)
2173 ($bfloatp arg))
2174 ($bfloat (div 2 '$%pi)))
2175 ((or (floatp order)
2176 (floatp arg))
2177 ($float (div 2 '$%pi)))
2179 (div 2 '$%pi))))
2180 ((eq ($sign (add ($realpart order) 1)) '$pos)
2181 ; http://functions.wolfram.com/03.10.03.0001.01
2182 arg)
2183 ((member ($sign (add ($realpart order) 1)) '($zero $neg $nz))
2184 (simp-domain-error
2185 (intl:gettext "struve_l: struve_l(~:M,~:M) is undefined.")
2186 order arg))
2188 (eqtest (list '(%struve_l) order arg) expr))))
2190 ;; Check for numerical evaluation
2192 ((complex-float-numerical-eval-p order arg)
2193 ; http://functions.wolfram.com/03.10.26.0002.01
2194 (let (($numer t) ($float t))
2195 ($rectform
2196 ($float
2197 (mul
2198 ($rectform (power arg (add order 1.0)))
2199 ($rectform (inv (power 2.0 order)))
2200 (inv (power ($float '$%pi) 0.5))
2201 (inv (simplify (list '(%gamma) (add order 1.5))))
2202 (simplify (list '($hypergeometric)
2203 (list '(mlist) 1)
2204 (list '(mlist) '((rat simp) 3 2)
2205 (add order '((rat simp) 3 2)))
2206 (div (mul arg arg) 4.0))))))))
2208 ((complex-bigfloat-numerical-eval-p order arg)
2209 ; http://functions.wolfram.com/03.10.26.0002.01
2210 (let (($ratprint nil))
2211 ($rectform
2212 ($bfloat
2213 (mul
2214 ($rectform (power arg (add order 1)))
2215 ($rectform (inv (power 2 order)))
2216 (inv (power ($bfloat '$%pi) ($bfloat '((rat simp) 1 2))))
2217 (inv (simplify (list '(%gamma) (add order '((rat simp) 3 2)))))
2218 (simplify (list '($hypergeometric)
2219 (list '(mlist) 1)
2220 (list '(mlist) '((rat simp) 3 2)
2221 (add order '((rat simp) 3 2)))
2222 (div (mul arg arg) 4))))))))
2224 ;; Transformations and argument simplifications
2226 ((and $besselexpand
2227 (ratnump order)
2228 (integerp (mul 2 order)))
2229 (cond
2230 ((eq ($sign order) '$pos)
2231 ;; Expansion of Struve L for a positive half integral order.
2232 (sratsimp
2233 (add
2234 (mul -1
2235 (power 2 (sub 1 order))
2236 (power arg (sub order 1))
2237 (inv (power '$%pi '((rat simp) 1 2)))
2238 (inv (simplify (list '(mfactorial) (sub order
2239 '((rat simp) 1 2)))))
2240 (let ((index (gensumindex)))
2241 (dosum
2242 (mul
2243 (simplify (list '($pochhammer) '((rat simp) 1 2) index))
2244 (simplify (list '($pochhammer)
2245 (sub '((rat simp) 1 2) order)
2246 index))
2247 (power (mul arg arg (inv 4)) (mul -1 index)))
2248 index 0 (sub order '((rat simp) 1 2)) t)))
2249 (mul -1
2250 (power (div 2 '$%pi) '((rat simp) 1 2))
2251 (inv (power arg '((rat simp) 1 2)))
2252 ($exp (div (mul '$%pi '$%i (add order '((rat simp) 1 2))) 2))
2253 (add
2254 (mul
2255 (let (($trigexpand t))
2256 (simplify (list '(%sinh)
2257 (sub (mul '((rat simp) 1 2)
2258 '$%pi
2259 '$%i
2260 (add order '((rat simp) 1 2)))
2261 arg))))
2262 (let ((index (gensumindex)))
2263 (dosum
2264 (mul
2265 (simplify (list '(mfactorial)
2266 (add (mul 2 index)
2267 (simplify (list '(mabs) order))
2268 '((rat simp) -1 2))))
2269 (inv (simplify (list '(mfactorial) (mul 2 index))))
2270 (inv (simplify (list '(mfactorial)
2271 (add (simplify (list '(mabs)
2272 order))
2273 (mul -2 index)
2274 '((rat simp) -1 2)))))
2275 (inv (power (mul 2 arg) (mul 2 index))))
2276 index 0
2277 (simplify (list '($floor)
2278 (div (sub (mul 2
2279 (simplify (list '(mabs)
2280 order)))
2282 4)))
2283 t)))
2284 (mul
2285 (let (($trigexpand t))
2286 (simplify (list '(%cosh)
2287 (sub (mul '((rat simp) 1 2)
2288 '$%pi
2289 '$%i
2290 (add order '((rat simp) 1 2)))
2291 arg))))
2292 (let ((index (gensumindex)))
2293 (dosum
2294 (mul
2295 (simplify (list '(mfactorial)
2296 (add (mul 2 index)
2297 (simplify (list '(mabs) order))
2298 '((rat simp) 1 2))))
2299 (power (mul 2 arg) (neg (add (mul 2 index) 1)))
2300 (inv (simplify (list '(mfactorial)
2301 (add (mul 2 index) 1))))
2302 (inv (simplify (list '(mfactorial)
2303 (add (simplify (list '(mabs)
2304 order))
2305 (mul -2 index)
2306 '((rat simp) -3 2))))))
2307 index 0
2308 (simplify (list '($floor)
2309 (div (sub (mul 2
2310 (simplify (list '(mabs)
2311 order)))
2313 4)))
2314 t))))))))
2315 ((eq ($sign order) '$neg)
2316 ;; Expansion of Struve L for a negative half integral order.
2317 (sratsimp
2318 (add
2319 (mul -1
2320 (power (div 2 '$%pi) '((rat simp) 1 2))
2321 (inv (power arg '((rat simp) 1 2)))
2322 ($exp (div (mul '$%pi '$%i (add order '((rat simp) 1 2))) 2))
2323 (add
2324 (mul
2325 (let (($trigexpand t))
2326 (simplify (list '(%sinh)
2327 (sub (mul '((rat simp) 1 2)
2328 '$%pi
2329 '$%i
2330 (add order '((rat simp) 1 2)))
2331 arg))))
2332 (let ((index (gensumindex)))
2333 (dosum
2334 (mul
2335 (simplify (list '(mfactorial)
2336 (add (mul 2 index)
2337 (neg order)
2338 '((rat simp) -1 2))))
2339 (inv (simplify (list '(mfactorial) (mul 2 index))))
2340 (inv (simplify (list '(mfactorial)
2341 (add (neg order)
2342 (mul -2 index)
2343 '((rat simp) -1 2)))))
2344 (inv (power (mul 2 arg) (mul 2 index))))
2345 index 0
2346 (simplify (list '($floor)
2347 (div (add (mul 2 order) 1) -4)))
2348 t)))
2349 (mul
2350 (let (($trigexpand t))
2351 (simplify (list '(%cosh)
2352 (sub (mul '((rat simp) 1 2)
2353 '$%pi
2354 '$%i
2355 (add order '((rat simp) 1 2)))
2356 arg))))
2357 (let ((index (gensumindex)))
2358 (dosum
2359 (mul
2360 (simplify (list '(mfactorial)
2361 (add (mul 2 index)
2362 (neg order)
2363 '((rat simp) 1 2))))
2364 (power (mul 2 arg) (neg (add (mul 2 index) 1)))
2365 (inv (simplify (list '(mfactorial)
2366 (add (mul 2 index) 1))))
2367 (inv (simplify (list '(mfactorial)
2368 (add (neg order)
2369 (mul -2 index)
2370 '((rat simp) -3 2))))))
2371 index 0
2372 (simplify (list '($floor)
2373 (div (add (mul 2 order) 3) -4)))
2374 t))))))))))
2376 (eqtest (list '(%struve_l) order arg) expr)))))
2378 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
2380 (defmspec $gauss (form)
2381 (format t
2382 "NOTE: The gauss function is superseded by random_normal in the `distrib' package.
2383 Perhaps you meant to enter `~a'.~%"
2384 (print-invert-case (implode (mstring `(($random_normal) ,@ (cdr form))))))
2385 '$done)