Array functions can now be translated (again)
[maxima.git] / src / comm2.lisp
blob639011ce1c22ff1e845d926d0b989c6d07230742
1 ;;; -*- Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- ;;;;
2 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3 ;;; The data in this file contains enhancments. ;;;;;
4 ;;; ;;;;;
5 ;;; Copyright (c) 1984,1987 by William Schelter,University of Texas ;;;;;
6 ;;; All rights reserved ;;;;;
7 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
9 (in-package :maxima)
10 ;; ** (c) Copyright 1982 Massachusetts Institute of Technology **
12 (macsyma-module comm2)
14 ;;;; DIFF2
16 (declare-top (special $props $dotdistrib))
18 (defun diffint (e x)
19 (let (a)
20 (cond ((null (cdddr e))
21 (cond ((alike1 x (caddr e)) (cadr e))
22 ((and (not (atom (caddr e))) (atom x) (not (free (caddr e) x)))
23 (mul2 (cadr e) (sdiff (caddr e) x)))
24 ((or ($constantp (setq a (sdiff (cadr e) x)))
25 (and (atom (caddr e)) (free a (caddr e))))
26 (mul2 a (caddr e)))
27 (t (simplifya (list '(%integrate) a (caddr e)) t))))
28 ((alike1 x (caddr e)) (addn (diffint1 (cdr e) x x) t))
29 (t (addn (cons (if (equal (setq a (sdiff (cadr e) x)) 0)
31 (simplifya (list '(%integrate) a (caddr e)
32 (cadddr e) (car (cddddr e)))
33 t))
34 (diffint1 (cdr e) x (caddr e)))
35 t)))))
37 (defun diffint1 (e x y)
38 (let ((u (sdiff (cadddr e) x)) (v (sdiff (caddr e) x)))
39 (list (if (pzerop u) 0 (mul2 u (maxima-substitute (cadddr e) y (car e))))
40 (if (pzerop v) 0 (mul3 v (maxima-substitute (caddr e) y (car e)) -1)))))
42 (defun diffsumprod (e x)
43 (cond ((or (not ($mapatom x)) (not (free (cadddr e) x)) (not (free (car (cddddr e)) x)))
44 (diff%deriv (list e x 1)))
45 ((eq (caddr e) x) 0)
46 (t (let ((u (sdiff (cadr e) x)))
47 (setq u (simplifya (list '(%sum)
48 (if (eq (caar e) '%sum) u (div u (cadr e)))
49 (caddr e) (cadddr e) (car (cddddr e)))
50 t))
51 (if (eq (caar e) '%sum) u (mul2 e u))))))
53 (defun difflaplace (e x)
54 (cond ((or (not (atom x)) (eq (cadddr e) x)) (diff%deriv (list e x 1)))
55 ((eq (caddr e) x) 0)
56 (t ($laplace (sdiff (cadr e) x) (caddr e) (cadddr e)))))
58 (defun diff-%at (e x)
59 (cond ((freeof x e) 0)
60 ((not (freeofl x (hand-side (caddr e) 'r))) (diff%deriv (list e x 1)))
61 (t ($at (sdiff (cadr e) x) (caddr e)))))
63 (defun diffncexpt (e x)
64 (let ((base* (cadr e))
65 (pow (caddr e)))
66 (cond ((and (mnump pow) (or (not (fixnump pow)) (< pow 0))) ; POW cannot be 0
67 (diff%deriv (list e x 1)))
68 ((and (atom base*) (eq base* x) (free pow base*))
69 (mul2* pow (list '(mncexpt) base* (add2 pow -1))))
70 ((fixnump pow)
71 (let ((deriv (sdiff base* x))
72 (ans nil))
73 (do ((i 0 (1+ i))) ((= i pow))
74 (push (list '(mnctimes) (list '(mncexpt) base* i)
75 (list '(mnctimes) deriv
76 (list '(mncexpt) base* (- pow 1 i))))
77 ans))
78 (addn ans nil)))
79 ((and (not (depends pow x)) (or (atom pow) (and (atom base*) (free pow base*))))
80 (let ((deriv (sdiff base* x))
81 (index (gensumindex)))
82 (simplifya
83 (list '(%sum)
84 (list '(mnctimes) (list '(mncexpt) base* index)
85 (list '(mnctimes) deriv
86 (list '(mncexpt) base*
87 (list '(mplus) pow -1 (list '(mtimes) -1 index)))))
88 index 0 (list '(mplus) pow -1)) nil)))
89 (t (diff%deriv (list e x 1))))))
91 (defun stotaldiff (e)
92 (cond ((or (mnump e) (constant e)) 0)
93 ((or (atom e) (member 'array (cdar e) :test #'eq))
94 (let ((w (mget (if (atom e) e (caar e)) 'depends)))
95 (if w (cons '(mplus)
96 (mapcar #'(lambda (x)
97 (list '(mtimes) (chainrule e x) (list '(%del) x)))
98 w))
99 (list '(%del) e))))
100 ((specrepp e) (stotaldiff (specdisrep e)))
101 ((eq (caar e) 'mnctimes)
102 (let (($dotdistrib t))
103 (add2 (ncmuln (cons (stotaldiff (cadr e)) (cddr e)) t)
104 (ncmul2 (cadr e) (stotaldiff (ncmuln (cddr e) t))))))
105 ((eq (caar e) 'mncexpt)
106 (if (and (fixnump (caddr e)) (> (caddr e) 0))
107 (stotaldiff (list '(mnctimes) (cadr e)
108 (ncpower (cadr e) (1- (caddr e)))))
109 (list '(%derivative) e)))
110 (t (addn (cons 0 (mapcar #'(lambda (x)
111 (mul2 (sdiff e x) (list '(%del simp) x)))
112 (extractvars (margs e))))
113 t))))
115 (defun extractvars (e &aux vars)
116 (cond ((null e) nil)
117 ((atom (car e))
118 (cond ((not (maxima-constantp (car e)))
119 (cond ((setq vars (mget (car e) 'depends))
120 ;; The symbol has dependencies. Put the dependencies on
121 ;; the list of extracted vars.
122 (union* vars (extractvars (cdr e))))
124 ;; Put the symbol on the list of extracted vars.
125 (union* (ncons (car e)) (extractvars (cdr e))))))
126 (t (extractvars (cdr e)))))
127 ((member 'array (cdaar e) :test #'eq)
128 (union* (ncons (car e)) (extractvars (cdr e))))
129 (t (union* (extractvars (cdar e)) (extractvars (cdr e))))))
131 ;;;; AT
133 ;;dummy-variable-operators is defined in COMM, which uses it inside of SUBST1.
134 (declare-top (special atvars *atp* munbound dummy-variable-operators))
136 (defmfun $atvalue (exp eqs val)
137 (let (dl vl fun)
138 (cond ((notloreq eqs) (improper-arg-err eqs '$atvalue))
139 ((or (atom exp) (and (eq (caar exp) '%derivative) (atom (cadr exp))))
140 (improper-arg-err exp '$atvalue)))
141 (cond ((not (eq (caar exp) '%derivative))
142 (setq fun (caar exp)
143 vl (cdr exp)
144 dl (make-list (length vl) :initial-element 0)))
145 (t (setq fun (caaadr exp) vl (cdadr exp))
146 (dolist (v vl)
147 (setq dl (nconc dl (ncons (or (getf (cddr exp) v) 0)))))))
148 (if (or (mopp fun) (eq fun 'mqapply)) (improper-arg-err exp '$atvalue))
149 (atvarschk vl)
150 (do ((vl1 vl (cdr vl1)) (l atvars (cdr l))) ((null vl1))
151 (if (and (symbolp (car vl1)) (not (kindp (car vl1) '$constant)))
152 (setq val (maxima-substitute (car l) (car vl1) val))
153 (improper-arg-err (cons '(mlist) vl) '$atvalue)))
154 (setq eqs (if (eq (caar eqs) 'mequal) (list eqs) (cdr eqs)))
155 (setq eqs (do ((eqs eqs (cdr eqs)) (l)) ((null eqs) l)
156 (if (not (member (cadar eqs) vl :test #'eq))
157 (improper-arg-err (car eqs) '$atvalue))
158 (setq l (nconc l (ncons (cons (cadar eqs) (caddar eqs)))))))
159 (setq vl (do ((vl vl (cdr vl)) (l)) ((null vl) l)
160 (setq l (nconc l (ncons (cdr (or (assoc (car vl) eqs :test #'eq)
161 (cons nil munbound))))))))
162 (do ((atvalues (mget fun 'atvalues) (cdr atvalues)))
163 ((null atvalues)
164 (mputprop fun (cons (list dl vl val) (mget fun 'atvalues)) 'atvalues))
165 (when (and (equal (caar atvalues) dl) (equal (cadar atvalues) vl))
166 (rplaca (cddar atvalues) val) (return nil)))
167 (add2lnc fun $props)
168 val))
170 (defprop %at simp-%at operators)
172 (defun simp-%at (expr ignored simp-flag)
173 (declare (ignore ignored))
174 (twoargcheck expr)
175 (let* ((arg (simpcheck (cadr expr) simp-flag))
176 (e (resimplify (caddr expr)))
177 (eqn (if ($listp e)
178 (if (= ($length e) 1) ($first e) (cons '(mlist simp) (cdr ($sort e))))
179 e)))
180 (cond (($constantp arg) arg)
181 ((alike1 eqn '((mlist))) arg)
182 ((at-not-dependent eqn arg))
183 (t (eqtest (list '(%at) arg eqn) expr)))))
185 ;; Remove any variable from EQN if ARG is not dependent on it.
186 (defun at-not-dependent (eqn arg)
187 (if (eq (caar eqn) 'mequal)
188 (setq eqn (list '(mlist) eqn)))
189 (multiple-value-bind (e0 e1) (at-not-dependent-find-vars eqn arg)
190 (if e0
191 (if e1
192 (let*
193 ((e1 (mapcar #'(lambda (x) (list '(mequal) x ($assoc x eqn))) e1))
194 (eqn1 (if (= (length e1) 1) (first e1) (cons '(mlist) e1))))
195 (list '(%at) arg eqn1))
196 arg))))
198 ;; Test dependence via derivative to account for declared dependencies.
199 (defun at-not-dependent-find-vars (eqn arg)
200 (let ((e (mapcar #'second (rest eqn))))
201 (partition-by #'(lambda (x) (at-not-dependent-find-vars-1 x arg)) e)))
203 (defun at-not-dependent-find-vars-1 (x arg)
204 (if ($mapatom x)
205 (eql (mfuncall '$diff arg x) 0)
206 ;; We might be called with something like -1*x as the variable.
207 ;; (That might or might not be a bug in itself, but let it go for the moment.)
208 ;; Try to extract a variable and test for dependence on that.
209 ;; If there are 2 or more variables, return NIL (i.e., not at-not-dependent).
210 (let ((v ($listofvars x)))
211 (if (eql ($length v) 1)
212 (at-not-dependent-find-vars-1 ($first v) arg)))))
214 (defmfun $at (expr ateqs)
215 (if (notloreq ateqs) (improper-arg-err ateqs '$at))
216 (atscan (let ((*atp* t)) ($psubstitute ateqs expr)) ateqs))
218 (defun atscan (expr ateqs)
219 (cond ((or (atom expr)
220 (eq (caar expr) 'mrat)
221 (like ateqs '((mlist))))
222 expr)
223 ((eq (caar expr) '%derivative)
224 (or (and (not (atom (cadr expr)))
225 (let ((vl (cdadr expr)) dl)
226 (dolist (v vl)
227 (setq dl (nconc dl (ncons (or (getf (cddr expr) v) 0)))))
228 (atfind (caaadr expr)
229 (cdr ($psubstitute ateqs (cons '(mlist) vl)))
230 dl)))
231 (list '(%at) expr ateqs)))
232 ((member (caar expr) dummy-variable-operators :test #'eq)
233 (list '(%at) expr ateqs))
234 ((at1 expr))
235 (t (recur-apply #'(lambda (x) (atscan x ateqs)) expr))))
237 (defun at1 (expr)
238 (atfind (caar expr) (cdr expr) (make-list (length (cdr expr)) :initial-element 0)))
240 (defun atfind (fun vl dl)
241 (do ((atvalues (mget fun 'atvalues) (cdr atvalues)))
242 ((null atvalues))
243 (and (equal (caar atvalues) dl)
244 (do ((l (cadar atvalues) (cdr l)) (vl vl (cdr vl)))
245 ((null l) t)
246 (if (and (not (equal (car l) (car vl)))
247 (not (eq (car l) munbound)))
248 (return nil)))
249 (return (prog2
250 (atvarschk vl)
251 (substitutel vl atvars (caddar atvalues)))))))
253 (declare-top (special $ratfac genvar varlist $keepfloat))
255 (defmvar $logconcoeffp nil)
257 (defmfun $logcontract (e)
258 (lgcreciprocal (logcon e))) ; E is assumed to be simplified.
260 (defun logcon (e)
261 (cond ((atom e) e)
262 ((member (caar e) '(mplus mtimes) :test #'eq)
263 (if (not (lgcsimplep e)) (setq e (lgcsort e)))
264 (cond ((mplusp e) (lgcplus e))
265 ((mtimesp e) (lgctimes e))
266 (t (logcon e))))
267 (t (recur-apply #'logcon e))))
269 ;; The logcontract algorithm for a sum.
271 ;; The function accumulates the arguments of things like log(a)+log(b) into a
272 ;; list called LOG. It calls out to lgctimes to deal with things like
273 ;; a*log(b). When all the arguments have been processed, it simplifies all the
274 ;; logarithmic arguments using sratsimp.
275 (defun lgcplus (e)
276 (let ((log) (notlogs))
277 (dolist (arg (cdr e))
278 (cond
279 ((atom arg) (push arg notlogs))
280 ;; Only gather up log(x), not log[x]. It's not particularly obvious
281 ;; whether log(x)+log[y] should become log(x*y) or log[x*y], so we just
282 ;; ignore the fact that log[x] is a logarithm.
283 ((and (eq (caar arg) '%log)
284 (not (member 'array (car arg))))
285 (push (logcon (second arg)) log))
286 ((eq (caar arg) 'mtimes)
287 (let ((y (lgctimes arg)))
288 (if (or (atom y) (not (eq (caar y) '%log)))
289 (push y notlogs)
290 (push (cadr y) log))))
292 (push (logcon arg) notlogs))))
293 (cond
294 ((null log)
295 (subst0 (cons '(mplus) (nreverse notlogs)) e))
297 (let ((simplified-log (lgcsimp
298 (let (($ratfac t))
299 (sratsimp (muln log t))))))
300 (addn (cons simplified-log notlogs) t))))))
302 ;; The logcontract algorithm for a product
304 ;; The main transformation this does is of the form 3*log(x) => log(x^3). To
305 ;; make this work, we find the first %log term and insert any coefficients we
306 ;; find into that. Coefficients are identified by LOGCONCOEFFP, which checks the
307 ;; $LOGCONCOEFFP user variable.
308 (defun lgctimes (e)
309 ;; Apply logcontract to the arguments. It's possible that the subsequent
310 ;; simplification means that the result isn't a product any more. In that
311 ;; case, just return it.
312 (setq e (subst0 (cons '(mtimes) (mapcar 'logcon (cdr e))) e))
313 (if (not (mtimesp e))
315 (let ((log) (notlogs) (decints))
316 (dolist (arg (cdr e))
317 (cond ((and (null log) (not (atom arg))
318 (eq (caar arg) '%log) (not (equal (cadr arg) -1)))
319 (setq log (cadr arg)))
320 ((logconcoeffp arg) (push arg decints))
321 (t (setq notlogs (push arg notlogs)))))
322 (cond
323 ((or (null log) (null decints)) e)
324 (t (muln (cons (lgcsimp (power log (muln decints t)))
325 notlogs)
326 t))))))
328 (defun lgcsimp (e)
329 (cond ((atom e)
330 ;; e.g. log(1) -> 0, or log(%e) -> 1
331 (simplify (list '(%log) e)))
332 ((and (mexptp e) (eq (cadr e) '$%e))
333 ;; log(%e^expr) -> expr
334 (simplify (list '(%log) e)))
336 (list '(%log simp) e))))
338 ;; Tests that its argument is a sum of terms that are "simple".
340 ;; A "simple" term is either completely free of logarithms, is a logarithm
341 ;; itself, or is a number times a logarithm.
343 ;; This function assumes that its argument is not an atom.
344 (defun lgcsimplep (e)
345 (flet ((lgc-nonsimple-arg-p (arg)
346 (not (or (atom arg)
347 (eq (caar arg) '%log)
348 (not (isinop arg '%log))
349 ;; Product of a number with a logarithm e.g. 3*log(x)
350 (and (eq (caar arg) 'mtimes)
351 (null (cdddr arg))
352 (mnump (cadr arg))
353 (not (atom (caddr arg)))
354 (eq (caar (caddr arg)) '%log))))))
355 (and (eq (caar e) 'mplus)
356 (not (find-if #'lgc-nonsimple-arg-p (cdr e))))))
358 ;; Sort the argument so that coefficients come before logarithms and logarithms
359 ;; come before everything else.
360 (defun lgcsort (e)
361 (let ((logs) (notlogs) (decints) (varlist))
362 ;; Split the variables in E into logs, notlogs and coefficients. The list of
363 ;; variables is calculated by NEWVAR (and stored in the special variable
364 ;; VARLIST, which is why we have to bind it above).
365 (dolist (var (newvar e))
366 (cond
367 ((and (not (atom var)) (eq (caar var) '%log)) (push var logs))
368 ((logconcoeffp var) (push var decints))
369 (t (push var notlogs))))
370 (let* ((vl (nreconc decints (nconc (sort logs #'great)
371 (nreverse notlogs))))
372 (e1 (ratdisrep (ratrep e vl))))
373 (if (alike1 e e1) e e1))))
375 ;; lgcreciprocal performs the transformation log(1/x) => -log(x)
376 (defun lgcreciprocal (e)
377 (let (num denom)
378 (cond
379 ((atom e) e)
380 ((and (eq (caar e) '%log)
381 (setq num (member ($num (cadr e)) '(1 -1) :test #'equal))
382 (not (equal (setq denom ($denom (cadr e))) 1)))
383 (list '(mtimes simp) -1
384 (list '(%log simp) (if (= (car num) 1) denom (neg denom)))))
385 (t (recur-apply #'lgcreciprocal e)))))
387 (defun logconcoeffp (e)
388 (if $logconcoeffp
389 (is `(($logconcoeffp) ,e))
390 (maxima-integerp e)))
392 ;;;; RTCON
394 (declare-top (special $radexpand $domain))
396 (defmvar $rootsconmode t)
398 (defmfun $rootscontract (e) ; E is assumed to be simplified
399 (let ((radpe (and $radexpand (not (eq $radexpand '$all)) (eq $domain '$real)))
400 ($radexpand nil))
401 (rtcon e radpe)))
403 (defun rtcon (e radpe)
404 (cond ((atom e) e)
405 ((eq (caar e) 'mtimes)
406 (do ((x (cdr e) (cdr x)) (roots) (notroots) (y))
407 ((null x)
408 (cond ((null roots) (subst0 (cons '(mtimes) (nreverse notroots)) e))
409 (t (if $rootsconmode
410 (multiple-value-bind (min gcd lcm)
411 (rtc-getinfo roots)
412 (cond ((and (= min gcd) (not (= gcd 1))
413 (not (= min lcm))
414 (not (eq $rootsconmode '$all)))
415 (setq roots
416 (rt-separ
417 (list gcd
418 (rtcon
419 (rtc-fixitup
420 (rtc-divide-by-gcd roots gcd)
421 nil) radpe)
423 nil)))
424 ((eq $rootsconmode '$all)
425 (setq roots
426 (rt-separ (simp-roots lcm roots)
427 nil))))))
428 (rtc-fixitup roots notroots))))
429 (cond ((atom (car x))
430 (cond ((eq (car x) '$%i) (setq roots (rt-separ (list 2 -1) roots)))
431 (t (setq notroots (cons (car x) notroots)))))
432 ((and (eq (caaar x) 'mexpt) (ratnump (setq y (caddar x))))
433 (setq roots (rt-separ (list (caddr y)
434 (list '(mexpt)
435 (rtcon (cadar x) radpe) (cadr y)))
436 roots)))
438 ((and radpe (eq (caaar x) 'mabs))
439 (setq roots (rt-separ (list 2 `((mexpt) ,(rtcon (cadar x) radpe) 2) 1)
440 roots)))
441 (t (setq notroots (cons (rtcon (car x) radpe) notroots))))))
442 ((and radpe (eq (caar e) 'mabs))
443 (power (power (rtcon (cadr e) radpe) 2) '((rat simp) 1 2)))
444 (t (recur-apply #'(lambda (x) (rtcon x radpe)) e))))
446 ;; RT-SEPAR separates like roots into their appropriate "buckets",
447 ;; where a bucket looks like:
448 ;; ((<denom of power> (<term to be raised> <numer of power>)
449 ;; (<term> <numer>)) etc)
451 (defun rt-separ (a roots)
452 (let ((u (assoc (car a) roots :test #'equal)))
453 (cond (u (nconc u (cdr a))) (t (setq roots (cons a roots)))))
454 roots)
456 (defun simp-roots (lcm root-list)
457 (let (root1)
458 (do ((x root-list (cdr x)))
459 ((null x) (push lcm root1))
460 (push (list '(mexpt) (muln (cdar x) nil) (quotient lcm (caar x)))
461 root1))))
463 (defun rtc-getinfo (list)
464 (let ((m (caar list))
465 (g (caar list))
466 (l (caar list)))
467 (dolist (x (cdr list) (values m g l))
468 (setq m (min m (car x))
469 g (gcd g (car x))
470 l (lcm l (car x))))))
472 (defun rtc-fixitup (roots notroots)
473 (mapcar #'(lambda (x) (rplacd x (list (sratsimp (muln (cdr x) (not $rootsconmode))))))
474 roots)
475 (muln (nconc (mapcar #'(lambda (x) (power* (cadr x) `((rat) 1 ,(car x))))
476 roots)
477 notroots)
478 (not $rootsconmode)))
480 (defun rtc-divide-by-gcd (llist gcd)
481 (mapcar #'(lambda (x) (rplaca x (quotient (car x) gcd))) llist)
482 llist)
484 (defmfun $nterms (e)
485 (cond ((zerop1 e) 0)
486 ((atom e) 1)
487 ((eq (caar e) 'mtimes)
488 (if (equal -1 (cadr e)) (setq e (cdr e)))
489 (do ((l (cdr e) (cdr l)) (c 1 (* c ($nterms (car l)))))
490 ((null l) c)))
491 ((eq (caar e) 'mplus)
492 (do ((l (cdr e) (cdr l)) (c 0 (+ c ($nterms (car l)))))
493 ((null l) c)))
494 ((and (eq (caar e) 'mexpt) (integerp (caddr e)) (plusp (caddr e)))
495 ($binomial (+ (caddr e) ($nterms (cadr e)) -1) (caddr e)))
496 ((specrepp e) ($nterms (specdisrep e)))
497 (t 1)))
499 ;;;; ATAN2
501 (declare-top (special $numer $logarc $trigsign))
503 ;; atan2 distributes over lists, matrices, and equations
504 (defprop $atan2 (mlist $matrix mequal) distribute_over)
506 (defun simpatan2 (expr vestigial z) ; atan2(y,x) ~ atan(y/x)
507 (declare (ignore vestigial))
508 (twoargcheck expr)
509 (let (y x signy signx)
510 (setq y (simpcheck (cadr expr) z)
511 x (simpcheck (caddr expr) z))
512 (cond ((and (zerop1 y) (zerop1 x))
513 (merror (intl:gettext "atan2: atan2(0,0) is undefined.")))
514 ( ;; float contagion
515 (and (or (numberp x) (ratnump x)) ; both numbers
516 (or (numberp y) (ratnump y)) ; ... but not bigfloats
517 (or $numer (floatp x) (floatp y))) ; at least one float
518 (atan ($float y) ($float x)))
519 ( ;; bfloat contagion
520 (and (mnump x)
521 (mnump y)
522 (or ($bfloatp x) ($bfloatp y))) ; at least one bfloat
523 (setq x ($bfloat x)
524 y ($bfloat y))
525 (*fpatan y (list x)))
526 ;; Simplifify infinities
527 ((or (eq x '$inf)
528 (alike1 x '((mtimes) -1 $minf)))
529 ;; Simplify atan2(y,inf) -> 0
531 ((or (eq x '$minf)
532 (alike1 x '((mtimes) -1 $inf)))
533 ;; Simplify atan2(y,minf) -> %pi for realpart(y)>=0 or
534 ;; -%pi for realpart(y)<0. When sign of y unknwon, return noun form.
535 (cond ((member (setq signy ($sign ($realpart x))) '($pos $pz $zero))
536 '$%pi)
537 ((eq signy '$neg) (mul -1 '$%pi))
538 (t (eqtest (list '($atan2) y x) expr))))
539 ((or (eq y '$inf)
540 (alike1 y '((mtimes) -1 $minf)))
541 ;; Simplify atan2(inf,x) -> %pi/2
542 (div '$%pi 2))
543 ((or (eq y '$minf)
544 (alike1 y '((mtimes -1 $inf))))
545 ;; Simplify atan2(minf,x) -> -%pi/2
546 (div '$%pi -2))
547 ((and (free x '$%i) (setq signx ($sign x))
548 (free y '$%i) (setq signy ($sign y))
549 (cond ((zerop1 y)
550 (cond ((eq signx '$neg) '$%pi)
551 ((member signx '($pos $pz)) 0)))
552 ((zerop1 x)
553 (cond ((eq signy '$neg) (div '$%pi -2))
554 ((member signy '($pos $pz)) (div '$%pi 2))))
555 ((alike1 y x)
556 (cond ((eq signx '$neg) (mul -3 (div '$%pi 4)))
557 ((member signx '($pos $pz)) (div '$%pi 4))))
558 ((alike1 y (mul -1 x))
559 (cond ((eq signx '$neg) (mul 3 (div '$%pi 4)))
560 ((member signx '($pos $pz)) (div '$%pi -4)))))))
561 ($logarc
562 (logarc '%atan2 (list ($logarc y) ($logarc x))))
563 ((and $trigsign (eq t (mminusp y)))
564 (neg (take '($atan2) (neg y) x)))
565 ;; atan2(y,x) = atan(y/x) + pi sign(y) (1-sign(x))/2
566 ((eq signx '$pos)
567 (take '(%atan) (div y x)))
568 ((and (eq signx '$neg)
569 (member (setq signy ($csign y)) '($pos $neg) :test #'eq))
570 (add (take '(%atan) (div y x))
571 (porm (eq signy '$pos) '$%pi)))
572 ((and (eq signx '$zero) (eq signy '$zero))
573 ;; Unfortunately, we'll rarely get here. For example,
574 ;; assume(equal(x,0)) atan2(x,x) simplifies via the alike1 case above
575 (merror (intl:gettext "atan2: atan2(0,0) is undefined.")))
576 (t (eqtest (list '($atan2) y x) expr)))))
578 ;;;; ARITHF
580 (defmfun $fibtophi (e &optional (lnorecurse nil))
581 (cond ((atom e) e)
582 ((eq (caar e) '$fib)
583 (setq e (cond (lnorecurse (cadr e)) (t ($fibtophi (cadr e) lnorecurse))))
584 (let ((phi (meval '$%phi)))
585 (div (add2 (power phi e) (neg (power (add2 1 (neg phi)) e)))
586 (add2 -1 (mul2 2 phi)))))
587 (t (recur-apply #'(lambda (x) ($fibtophi x lnorecurse)) e))))
589 (defmspec $numerval (l) (setq l (cdr l))
590 (do ((l l (cddr l)) (x (ncons '(mlist simp)))) ((null l) x)
591 (cond ((null (cdr l)) (merror (intl:gettext "numerval: expected an even number of arguments.")))
592 ((not (symbolp (car l)))
593 (merror (intl:gettext "numerval: expected a symbol; found ~M") (car l)))
594 ((boundp (car l))
595 (merror (intl:gettext "numerval: cannot declare a value because ~M is bound.") (car l))))
596 (mputprop (car l) (cadr l) '$numer)
597 (add2lnc (car l) $props)
598 (nconc x (ncons (car l)))))
600 (let (my-powers)
601 (declare (special my-powers))
603 (defmfun $derivdegree (e depvar var)
604 (let (my-powers) (declare (special my-powers)) (derivdeg1 e depvar var) (if (null my-powers) 0 (maximin my-powers '$max))))
606 (defun derivdeg1 (e depvar var)
607 (cond ((or (atom e) (specrepp e)))
608 ((eq (caar e) '%derivative)
609 (cond ((alike1 (cadr e) depvar)
610 (do ((l (cddr e) (cddr l))) ((null l))
611 (cond ((alike1 (car l) var)
612 (return (setq my-powers (cons (cadr l) my-powers)))))))))
613 (t (mapc #'(lambda (x) (derivdeg1 x depvar var)) (cdr e))))))
615 ;;;; BOX
617 ;; Set the the property reversealias
618 (defprop mbox $box reversealias)
619 (defprop mlabox $box reversealias)
621 (defmfun $dpart (&rest args)
622 (mpart args nil t nil '$dpart))
624 (defmfun $lpart (e &rest args)
625 (mpart args nil (list e) nil '$lpart))
627 (defmfun $box (e &optional (l nil l?))
628 (if l?
629 (list '(mlabox) e (box-label l))
630 (list '(mbox) e)))
632 (defun box (e label)
633 (if (eq label t)
634 (list '(mbox) e)
635 ($box e (car label))))
637 (defun box-label (x)
638 (if (atom x)
640 (coerce (mstring x) 'string)))
642 (defmfun $rembox (e &optional (l nil l?))
643 (let ((label (if l? (box-label l) '(nil))))
644 (rembox1 e label)))
646 (defun rembox1 (e label)
647 (cond ((atom e) e)
648 ((or (and (eq (caar e) 'mbox)
649 (or (equal label '(nil)) (member label '($unlabelled $unlabeled) :test #'eq)))
650 (and (eq (caar e) 'mlabox)
651 (or (equal label '(nil)) (equal label (caddr e)))))
652 (rembox1 (cadr e) label))
653 (t (recur-apply #'(lambda (x) (rembox1 x label)) e))))
655 ;;;; MAPF
657 (declare-top (special scanmapp))
659 (defmspec $scanmap (l)
660 (let ((scanmapp t))
661 (resimplify (apply #'scanmap1 (mmapev l)))))
663 (defun scanmap1 (func e &optional (flag nil flag?))
664 (let ((arg2 (specrepcheck e)) newarg2)
665 (cond ((eq func '$rat)
666 (merror (intl:gettext "scanmap: cannot apply 'rat'.")))
667 (flag?
668 (unless (eq flag '$bottomup)
669 (merror (intl:gettext "scanmap: third argument must be 'bottomup', if present; found ~M") flag))
670 (if (mapatom arg2)
671 (funcer func (ncons arg2))
672 (subst0 (funcer func
673 (ncons (mcons-op-args (mop arg2)
674 (mapcar #'(lambda (u)
675 (scanmap1 func u '$bottomup))
676 (margs arg2)))))
677 arg2)))
678 ((mapatom arg2)
679 (funcer func (ncons arg2)))
681 (setq newarg2 (specrepcheck (funcer func (ncons arg2))))
682 (cond ((mapatom newarg2)
683 newarg2)
684 ((and (alike1 (cadr newarg2) arg2) (null (cddr newarg2)))
685 (subst0 (cons (ncons (caar newarg2))
686 (ncons (subst0
687 (mcons-op-args (mop arg2)
688 (mapcar #'(lambda (u) (scanmap1 func u))
689 (margs arg2)))
690 arg2)))
691 newarg2))
693 (subst0 (mcons-op-args (mop newarg2)
694 (mapcar #'(lambda (u) (scanmap1 func u))
695 (margs newarg2)))
696 newarg2)))))))
698 (defun subgen (form) ; This function does mapping of subscripts.
699 (do ((ds (if (eq (caar form) 'mqapply) (list (car form) (cadr form))
700 (ncons (car form)))
701 (outermap1 #'dsfunc1 (simplify (car sub)) ds))
702 (sub (reverse (or (and (eq 'mqapply (caar form)) (cddr form))
703 (cdr form)))
704 (cdr sub)))
705 ((null sub) ds)))
707 (defun dsfunc1 (dsn dso)
708 (cond ((or (atom dso) (atom (car dso))) dso)
709 ((member 'array (car dso) :test #'eq)
710 (cond ((eq 'mqapply (caar dso))
711 (nconc (list (car dso) (cadr dso) dsn) (cddr dso)))
712 (t (nconc (list (car dso) dsn) (cdr dso)))))
713 (t (mapcar #'(lambda (d) (dsfunc1 dsn d)) dso))))
715 ;;;; GENMAT
717 (defmfun $genmatrix (a i2 &optional (j2 i2) (i1 1) (j1 i1))
718 (let ((f) (l (ncons '($matrix))))
719 (setq f (if (or (symbolp a) (hash-table-p a) (arrayp a))
720 #'(lambda (i j) (meval (list (list a 'array) i j)))
721 #'(lambda (i j) (mfuncall a i j))))
723 (if (notevery #'fixnump (list i2 j2 i1 j1))
724 (merror (intl:gettext "genmatrix: bounds must be integers; found ~M, ~M, ~M, ~M") i2 j2 i1 j1))
726 (if (or (> i1 i2) (> j1 j2))
727 (merror (intl:gettext "genmatrix: upper bounds must be greater than or equal to lower bounds; found ~M, ~M, ~M, ~M") i2 j2 i1 j1))
729 (dotimes (i (1+ (- i2 i1)))
730 (nconc l (ncons (ncons '(mlist)))))
731 (do ((i i1 (1+ i))
732 (l (cdr l) (cdr l)))
733 ((> i i2))
734 (do ((j j1 (1+ j)))
735 ((> j j2))
736 (nconc (car l) (ncons (funcall f i j)))))
739 ; Execute deep copy for copymatrix and copylist.
740 ; Resolves SF bug report [ 1224960 ] sideeffect with copylist.
741 ; An optimization would be to call COPY-TREE only on mutable expressions.
743 (defmfun $copymatrix (x)
744 (unless ($matrixp x)
745 (merror (intl:gettext "copymatrix: argument must be a matrix; found ~M") x))
746 (copy-tree x))
748 (defmfun $copylist (x)
749 (unless ($listp x)
750 (merror (intl:gettext "copylist: argument must be a list; found ~M") x))
751 (copy-tree x))
753 (defmfun $copy (x)
754 (copy-tree x))
756 ;;;; ADDROW
758 (defmfun $addrow (m &rest rows)
759 (declare (dynamic-extent rows))
760 (cond ((not ($matrixp m))
761 (merror
762 (intl:gettext "addrow: first argument must be a matrix; found ~M")
764 ((null rows) m)
766 (let ((m (copy-tree m)))
767 (dolist (r rows m)
768 (setq m (addrow m r)))))))
770 (defmfun $addcol (m &rest cols)
771 (declare (dynamic-extent cols))
772 (cond ((not ($matrixp m)) (merror (intl:gettext "addcol: first argument must be a matrix; found ~M") m))
773 ((null cols) m)
774 ((null (cdr m))
775 (apply '$addcol (cons (ensure-matrix-column (first cols)) (rest cols))))
776 (t (let ((m ($transpose m)))
777 (dolist (c cols ($transpose m))
778 (setq m (addrow m ($transpose c))))))))
780 (defun ensure-matrix-column (a)
781 (if ($matrixp a) a
782 ;; otherwise must be a MLIST.
783 `(($matrix) ,@(mapcar #'(lambda (e) `((mlist) ,e)) (cdr a)))))
785 (defun addrow (m r)
786 (cond ((not (mxorlistp r)) (merror (intl:gettext "addrow or addcol: argument must be a matrix or list; found ~M") r))
787 ((and (cdr m)
788 (or (and (eq (caar r) 'mlist) (not (= (length (cadr m)) (length r))))
789 (and (eq (caar r) '$matrix)
790 (not (= (length (cadr m)) (length (cadr r))))
791 (prog2 (setq r ($transpose r))
792 (not (= (length (cadr m)) (length (cadr r))))))))
793 (merror (intl:gettext "addrow or addcol: incompatible structure."))))
794 (append m (if (eq (caar r) '$matrix) (cdr r) (ncons r))))
796 ;;;; ARRAYF
798 (defun my-nonatomic-expr-p (e)
799 (and (consp e) (consp (car e)) (symbolp (caar e))))
801 (defun my-lambda-expr-p (e)
802 (and (consp e) (consp (car e)) (eq 'lambda (caar e))))
804 (defmfun $arraymake (ary subs)
805 (cond
806 ;; We go through some gyrations here to allow as wide a range of inputs as possible.
807 ;; Previously $ARRAYMAKE didn't check the first argument at all;
808 ;; this is an attempt at a minimally-restrictive change.
809 ((not (or (symbolp ary) ($subvarp ary) (and (my-nonatomic-expr-p ary) (not (my-lambda-expr-p ary)))))
810 (merror (intl:gettext "arraymake: first argument must be a symbol, subscripted symbol, or nonatomic expression (but not a lambda expression); found: ~M") ary))
811 ((or (not ($listp subs)) (null (cdr subs)))
812 (merror (intl:gettext "arraymake: second argument must be a list of one or more elements; found ~M") subs))
813 ((symbolp ary)
814 (cons (cons (getopr ary) '(array)) (cdr subs)))
815 (t (cons '(mqapply array) (cons ary (cdr subs))))))
817 (defmspec $arrayinfo (ary)
818 (setq ary (cdr ary))
819 (arrayinfo-aux (car ary) (getvalue (car ary))))
821 (defun arrayinfo-aux (sym val)
822 (prog (arra ary)
823 (setq arra val)
824 (setq ary sym)
825 (if (and arra
826 (or (hash-table-p arra)
827 (arrayp arra)
828 (eq (marray-type arra) '$functional)))
829 (cond ((hash-table-p arra)
830 (let ((dim1 (gethash 'dim1 arra)))
831 (return (list* '(mlist) '$hash_table (if dim1 1 t)
832 (loop for u being the hash-keys in arra
833 unless (eq u 'dim1)
834 collect
835 (if dim1
837 (cons '(mlist simp) u)))))))
838 ((arrayp arra)
839 (return (let ((dims (array-dimensions arra)))
840 (list '(mlist) '$declared
841 ;; they don't want more info (array-type arra)
842 (length dims)
843 (cons '(mlist) (mapcar #'1- dims))))))
844 ((eq (marray-type arra) '$functional)
845 (return (arrayinfo-aux sym (mgenarray-content arra)))))
846 (let ((gen (safe-mgetl sym '(hashar array))) ary1)
847 (when (null gen)
848 (merror (intl:gettext "arrayinfo: ~M is not an array.") ary))
849 (setq ary1 (cadr gen))
850 (cond ((eq (car gen) 'hashar)
851 (setq ary1 (symbol-array ary1))
852 (return (append '((mlist simp) $hashed)
853 (cons (aref ary1 2)
854 (do ((i 3 (1+ i)) (l)
855 (n (cadr (arraydims ary1))))
856 ((= i n) (sort l #'(lambda (x y) (great y x))))
857 (do ((l1 (aref ary1 i) (cdr l1)))
858 ((null l1))
859 (push (cons '(mlist simp) (caar l1)) l)))))))
860 (t (setq ary1 (arraydims ary1))
861 (return (list '(mlist simp)
862 (cond ((safe-get ary 'array)
863 (cdr (assoc (car ary1)
864 '((t . $complete) (fixnum . $integer)
865 (flonum . $float)) :test #'eq)))
866 (t '$declared))
867 (length (cdr ary1))
868 (cons '(mlist simp) (mapcar #'1- (cdr ary1)))))))))))
870 ;;;; ALIAS
872 (declare-top (special greatorder lessorder))
874 (defmspec $ordergreat (l)
875 (if greatorder (merror (intl:gettext "ordergreat: reordering is not allowed.")))
876 (makorder (setq greatorder (reverse (cdr l))) '_))
878 (defmspec $orderless (l)
879 (if lessorder (merror (intl:gettext "orderless: reordering is not allowed.")))
880 (makorder (setq lessorder (cdr l)) '|#|))
882 (defun makorder (l char)
883 (do ((l l (cdr l))
884 (n 101 (1+ n)))
885 ((null l) '$done)
886 (alias (car l)
887 (implode (nconc (ncons char) (mexploden n)
888 (exploden (stripdollar (car l))))))))
890 (defmfun $unorder ()
891 (let ((l (delete nil
892 (cons '(mlist simp)
893 (nconc (mapcar #'(lambda (x) (remalias (getalias x))) lessorder)
894 (mapcar #'(lambda (x) (remalias (getalias x))) greatorder)))
895 :test #'eq)))
896 (setq lessorder nil greatorder nil)
899 ;;;; CONCAT
901 (defmfun $concat (&rest l)
902 "Concatenates its arguments.
903 The arguments must evaluate to atoms. The return value is a symbol if
904 the first argument is a symbol and a string otherwise."
905 (when (null l)
906 (merror (intl:gettext "concat: there must be at least one argument.")))
907 (let ((result-is-a-string (or (numberp (car l)) (stringp (car l)))))
908 (setq l (mapcan #'(lambda (x) (unless (atom x) (merror (intl:gettext "concat: argument must be an atom; found ~M") x)) (string* x)) l))
909 (if result-is-a-string
910 (coerce l 'string)
911 (getalias (implode (cons '#\$ l))))))