Update crosscompiling documentation.
[maxima.git] / tests / rtest_elliptic.mac
blobc4e194a58d385f5461b9d83ff26095479ccff225
1 /* Tests of Jacobi elliptic functions and elliptic integrals */
3 kill(all);
4 done$
6 /* derivatives */
7 diff(jacobi_sn(u,m),u);
8 jacobi_cn(u,m)*jacobi_dn(u,m);
10 diff(jacobi_sn(u,m),m);
11 jacobi_cn(u,m)*jacobi_dn(u,m)*(u-elliptic_e(asin(jacobi_sn(u,m)),m)/(1-m))
12   /(2*m)
13  +jacobi_cn(u,m)^2*jacobi_sn(u,m)/(2*(1-m));
15 diff(jacobi_cn(u,m),u);
16 -jacobi_dn(u,m)*jacobi_sn(u,m);
18 diff(jacobi_cn(u,m),m);
19 -(jacobi_dn(u,m)*jacobi_sn(u,m)*(u-elliptic_e(asin(jacobi_sn(u,m)),m)/(1-m))/(2*m))
20   -(jacobi_cn(u,m)*jacobi_sn(u,m)^2/(2*(1-m)));
22 diff(jacobi_dn(u,m),u);
23 -m*jacobi_cn(u,m)*jacobi_sn(u,m);
25 diff(jacobi_dn(u,m),m);
26 -(jacobi_cn(u,m)*jacobi_sn(u,m)*(u-elliptic_e(asin(jacobi_sn(u,m)),m)/(1-m))/2)
27   -(jacobi_dn(u,m)*'jacobi_sn(u,m)^2/(2*(1-m)));
29 diff(inverse_jacobi_sn(u,m),u);
30 1/(sqrt(1-u^2)*sqrt(1-m*u^2));
32 diff(inverse_jacobi_sn(u,m),m);
33 ((elliptic_e(asin(u),m)-(1-m)*elliptic_f(asin(u),m))/m-(u*sqrt(1-u^2)/sqrt(1-m*u^2)))/(1-m);
35 diff(inverse_jacobi_cn(u,m),u);
36 -(1/(sqrt(1-u^2)*sqrt(m*u^2-m+1)));
38 diff(inverse_jacobi_cn(u,m),m);
39 ((elliptic_e(asin(sqrt(1-u^2)),m)-(1-m)*elliptic_f(asin(sqrt(1-u^2)),m))/m
40    -(sqrt(1-u^2)*abs(u)/sqrt(1-m*(1-u^2))))/(1-m);
42 diff(inverse_jacobi_dn(u,m),u);
43 1/(sqrt(1-u^2)*sqrt(u^2+m-1));
45 diff(inverse_jacobi_dn(u,m),m);
46 ((elliptic_e(asin(sqrt(1-u^2)/sqrt(m)),m)-(1-m)*elliptic_f(asin(sqrt(1-u^2)/sqrt(m)),m))/m
47   -sqrt(1-(1-u^2)/m)*sqrt(1-u^2)/(sqrt(m)*abs(u)))/(1-m)
48 -(sqrt(1-u^2)/(2*m^(3/2)*sqrt(1-(1-u^2)/m)*abs(u)));
50 diff(elliptic_e(phi,m),phi);
51 sqrt(1-m*sin(phi)^2);
53 diff(elliptic_e(phi,m),m);
54 (elliptic_e(phi,m)-elliptic_f(phi,m))/(2*m);
56 diff(elliptic_f(phi,m),phi);
57 1/sqrt(1-m*sin(phi)^2);
59 diff(elliptic_f(phi,m),m);
60 ((elliptic_e(phi,m)-(1-m)*elliptic_f(phi,m))/m
61    -(cos(phi)*sin(phi)/sqrt(1-m*sin(phi)^2)))
62  /(2*(1-m));
64 diff(elliptic_pi(n,phi,m),n);
65 ((-(n*sqrt(1-m*sin(phi)^2)*sin(2*phi))/(2*(1-n*sin(phi)^2)))
66  +((m-n)*elliptic_f(phi,m))/n+elliptic_e(phi,m)
67  +((n^2-m)*elliptic_pi(n,phi,m))/n)
68  /(2*(m-n)*(n-1));
70 diff(elliptic_pi(n,phi,m),phi);
71 1/(sqrt(1-m*sin(phi)^2)*(1-n*sin(phi)^2));
73 diff(elliptic_pi(n,phi,m),m);
74 ((-(m*sin(2*phi))/(2*(m-1)*sqrt(1-m*sin(phi)^2)))
75  +elliptic_e(phi,m)/(m-1)+elliptic_pi(n,phi,m))
76  /(2*(n-m));
78 diff(elliptic_kc(m),m);
79 (elliptic_ec(m)-(1-m)*elliptic_kc(m))/(2*(1-m)*m);
81 diff(elliptic_ec(m),m);
82 (elliptic_ec(m)-elliptic_kc(m))/(2*m);
84 /* Integrals */
86 integrate(jacobi_sn(u,m),u); /* A&S 16.24.1 */
87 log(jacobi_dn(u,m)-sqrt(m)*jacobi_cn(u,m))/sqrt(m);
89 integrate(jacobi_cn(u,m),u); /* A&S 16.24.2 */
90 acos(jacobi_dn(u,m))/sqrt(m);
92 integrate(jacobi_dn(u,m),u); /* A&S 16.24.3 */
93 asin(jacobi_sn(u,m));
95 integrate(jacobi_cd(u,m),u); /* A&S 16.24.4 */
96 log(sqrt(m)*jacobi_sd(u,m)+jacobi_nd(u,m))/sqrt(m);
98 /* Use functions.wolfram.com 09.35.21.001.01, not A&S 16.24.5 */
99 integrate(jacobi_sd(u,m),u);
100 -(sqrt(1-m*jacobi_cd(u,m)^2)*jacobi_dn(u,m)*asin(sqrt(m)*jacobi_cd(u,m))
101   /((1-m)*sqrt(m)));
103 /* Use functions.wolfram.com 09.32.21.0001.01, not A&S 16.24.6 */
104 integrate(jacobi_nd(u,m),u); 
105 sqrt(1-jacobi_cd(u,m)^2)*acos(jacobi_cd(u,m))/((1-m)*jacobi_sd(u,m));
107 integrate(jacobi_dc(u,m),u); /* A&S 16.24.7 */
108 log(jacobi_sc(u,m)+jacobi_nc(u,m));
110 integrate(jacobi_nc(u,m),u); /* A&S 16.24.8 */
111 log(sqrt(1-m)*jacobi_sc(u,m)+jacobi_dc(u,m))/sqrt(1-m);
113 integrate(jacobi_sc(u,m),u); /* A&S 16.24.9 */
114 log(sqrt(1-m)*jacobi_nc(u,m)+jacobi_dc(u,m))/sqrt(1-m);
116 integrate(jacobi_ns(u,m),u); /* A&S 16.24.10 */
117 log(jacobi_ds(u,m)-jacobi_cs(u,m));
119 /* Use functions.wolfram.com 09.30.21.0001.01, not A&S 16.24.11 */
120 integrate(jacobi_ds(u,m),u);
121 log((1-jacobi_cn(u,m))/jacobi_sn(u,m));
123 integrate(jacobi_cs(u,m),u); /* A&S 16.24.12 */
124 log(jacobi_ns(u,m)-jacobi_ds(u,m));
126 /* Check the integrals and derivatives by confirming
128        f(x,m)-diff(integral(x,m),x),x) = constant
130   Look at Taylor expansion about zero, rather than messing about with 
131   elliptic function.  This was sufficient to find several errors  */
132 (te(f,n):=ratsimp(
133            taylor(f(x,m)
134            -diff(integrate(f(x,m),x),x),x,0,n)),
135 ti(f,n):=ratsimp(
136            taylor(integrate(f(x,m),x),x,0,n)
137             -integrate(taylor(f(x,m),x,0,n-1),x)),
138 td(f,n):=ratsimp(
139            taylor(diff(f(x,m),x),x,0,n)
140             -diff(taylor(f(x,m),x,0,n+1),x)),
141 /* Compare analytic and numerical integral */
142 ni(f,x1,x2,m):= block(
143   [x,n,I,In,Ia,key:1,eps:1.0e-14],
144   I:integrate(f(x,n),x),
145   In:quad_qag(f(x,m),x,x1,x2,key),
146   Ia:subst([x=float(x2),n=float(m)],I)-subst([x=float(x1),n=float(m)],I),
147   if ( abs(Ia-In[1]) < eps ) then
148     true
149   else
150     [Ia,In[1]]
152 done);
153 done;
155 te(jacobi_sn,4);
158 te(jacobi_cn,4);
161 te(jacobi_dn,4);
164 te(jacobi_cd,4);
167 assume(m>0,m<1); /* also ok for m<0 and m>0 */
168 [m > 0, m < 1];
169 te(jacobi_sd,4);
171 forget(m>0,m<1);
172 [m > 0, m < 1];
174 te(jacobi_nd,4);
177 te(jacobi_dc,4);
180 te(jacobi_nc,4);
183 te(jacobi_sc,4);
186 /* jacobi_ns, jacobi_ds and jacobi_cs are singular at x=0 
187    Compare numerical and analytic integrals for a single case.
190 ni(jacobi_ns,1,2,1/2);
191 true;
193 ni(jacobi_ds,1,2,1/2);
194 true;
196 ni(jacobi_cs,1,2,1/2);
197 true;
199 kill(te,ti,td,ni);
200 done;
202 /* Slightly modified version of test_table taken from rtest_expintegral.mac */
204 (test_table(func,table,eps) :=
205 block([badpoints : [],
206        abserr    : 0,
207        maxerr    : -1],
208   for entry in table do
209     block([z : entry[1],
210            result, answer],
211       z : expand(rectform(bfloat(entry[1]))),
212       result : rectform(apply(func, z)),
213       answer : expand(rectform(bfloat(entry[2]))),
214       abserr : abs(result-answer),
215       maxerr : max(maxerr,abserr),
216       if abserr > eps then
217         badpoints : cons ([z,result,answer,abserr],badpoints)
218     ),
219   if badpoints # [] then
220     cons(maxerr,badpoints)
221   else
222     badpoints
223 ),done);
224 done;
226 /* These test values come from http://getnet.net/~cherry/testrf.mac */
228 (mrf:[[[1,2,0],1.3110287771461b0],
229      [[%i,-%i,0],1.8540746773014b0],
230      [[0.5,1,0],1.8540746773014b0],
231      [[%i-1,%i,0],0.79612586584234b0-%i*(1.2138566698365b0)],
232      [[2,3,4],0.58408284167715b0],
233      [[%i,-%i,2],1.0441445654064b0],
234      [[%i-1,%i,1-%i],0.93912050218619b0-%i*(0.53296252018635b0)]],
235 done);
236 done;
238 test_table('carlson_rf, mrf, 1.5b-13);
241 (mrc:[[[0,1/4],bfloat(%pi)],
242       [[9/4,2],log(2b0)],
243       [[0,%i],(1-%i)*(1.1107207345396b0)],
244       [[-%i,%i],1.2260849569072b0-%i*(0.34471136988768b0)],
245       [[1/4,-2],log(2b0)/3],
246       [[%i,-1],0.77778596920447b0+%i*(0.19832484993429b0)],
247       [[0,1/4],%pi],
248       [[9/4,2],log(2)],
249       [[2,1],-log(sqrt(2)-1)],
250       [[-%i,%i],-log(sqrt(2)-1)/2+ %pi/4-%i*(log(sqrt(2)-1)/2+%pi/4)],
251       [[1/4,-2],log(2)/3],
252       [[%i,-1],sqrt(sqrt(2)/4-1/4)*atan(sqrt(sqrt(2)-1))-
253                sqrt(sqrt(2)/16+1/16)*log(-sqrt(2*sqrt(2)+2)+sqrt(2)+1)+
254                %i*(sqrt(sqrt(2)/4+1/4)*atan(sqrt(sqrt(2)-1))+sqrt(sqrt(2)/16-
255                1/16)*log(-sqrt(2*sqrt(2)+2)+sqrt(2)+1))],
256       [[0,1],%pi/2],
257       [[%i,%i+1],%pi/4+%i*log(sqrt(2)-1)/2]],
258 done);
259 done;
261 test_table('carlson_rc, mrc, 2.5b-14);
264 (mrj:[[[0,1,2,3],0.77688623778582b0],
265       [[2,3,4,5],0.14297579667157b0],
266       [[2,3,4,-1+%i],0.13613945827771b0-%i*(0.38207561624427b0)],
267       [[%i,-%i,0,2],1.6490011662711b0],
268       [[-1+%i,-1-%i,1,2],0.9414835884122b0],
269       [[%i,-%i,0,1-%i],1.8260115229009b0+%i*(1.2290661908643b0)],
270       [[-1+%i,-1-%i,1,-3+%i],-0.61127970812028b0-%i*(1.0684038390007b0)],
271       [[-1+%i,-2-%i,-%i,-1+%i],1.8249027393704b0-%i*(1.2218475784827b0)],
272       [[2,3,4,-0.5],0.24723819703052b0],
273       [[2,3,4,-5],-0.12711230042964b0]],
274 done);
275 done;
277 test_table('carlson_rj, mrj, 1b-13);
280 (mrd:[[[0,2,1],1.7972103521034b0],
281       [[2,3,4],0.16510527294261b0],
282       [[%i,-%i,2],0.6593385415422b0],
283       [[0,%i,-%i],1.270819627191b0+%i*(2.7811120159521b0)],
284       [[0,%i-1,%i],-1.8577235439239b0-%i*(0.96193450888839b0)],
285       [[-2-%i,-%i,-1+%i],1.8249027393704b0-%i*(1.2218475784827b0)]],
286 done);
287 done;
289 test_table('carlson_rd, mrd, 6e-14);
292 /* Some tests of the Jacobian elliptic functions.  
293  * Just some tests at random points, to verify that we are accurate.
294  * The reference values were obtained from Mathematica, but we could 
295  * also just compute the values using a much larger fpprec.
296  */
298 test_table('jacobi_sn,
299            [[[1b0+%i*1b0, .7b0], 1.134045971912365274954b0 + 0.352252346922494477621b0*%i],
300             [[1b0+%i*1b0, 2b0], 0.98613318109123804740b0 + 0.09521910819727230780b0*%i],
301             [[1b0+%i*1b0, 2b0+3b0*%i], 0.94467077879445294981b0 - 0.19586410083100945528b0* %i],
302             [[1.785063352082689082581887b0 *%i + 8.890858759528509578661528b-1,
303               9.434463451695984398149033b-1 - 1.476052973708684178844821b-1 * %i],
304              1.345233534539675700312281b0 - 7.599023926615176284214056b-2 * %i]],
305            1b-15);
308 test_table('jacobi_cn,
309            [[[1b0+%i*1b0, .7b0], 0.571496591371764254029b0 - 0.698989917271916772991b0*%i ],
310             [[1b0+%i*1b0, 2b0], 0.33759463268642431412b0 - 0.27814044708010806377b0*%i],
311             [[1b0+%i*1b0, 2b0+3b0*%i], -0.52142079485827170824b0 - 0.35485177134179601850b0*%i],
312             [[100b0, .7b0], 0.93004753815774770476196b0]], 
313            6b-14);
316 test_table('jacobi_dn,
317            [[[1b0+%i*1b0, .7b0], 0.62297154372331777630564880787568b0 - 0.448863598031509643267241389621738b0 *%i ],
318             [[1b0+%i*1b0, 2b0], 0.1913322443206041462495606602242b0 - 0.9815253294150083432282549919753b0 * %i],
319             [[1b0+%i*1b0, 2b0+3b0*%i], 0.6147387452173944656984656771134b0 - 1.4819401302071697495918834416787b0 * %i],
320             [[100b0, .7b0], 0.95157337933724324055428565654872978b0],
321             [[1.785063352082689082581887b0 *%i + 8.890858759528509578661528b-1,
322               9.434463451695984398149033b-1 - 1.476052973708684178844821b-1 * %i],
323              -8.617730683333292717095686b-1 *%i - 2.663978258141280808361839b-1]], 
324            2b-15);
327 /* These routines for cn and dn work well for small (<= 1?) values of
328  * u and m.  They have known issues for large real values of u.
329  */
330 (ascending_transform(u,m) :=
331   block([root_m : expand(rectform(sqrt(m))), mu, root_mu1, v],
332     mu : expand(rectform(4*root_m/(1+root_m)^2)),
333     root_mu1 : expand(rectform((1-root_m)/(1+root_m))),
334     v : expand(rectform(u/(1+root_mu1))),
335     [v, mu, root_mu1]),
336  elliptic_dn_ascending(u,m) :=
337   if is(abs(m-1) < 4*10^(-fpprec)) then sech(u)
338   else
339     block([v, mu, root_mu1, new],
340       [v, mu, root_mu1] : ascending_transform(u,m),
341       new : elliptic_dn_ascending(v, mu),
342       expand(rectform((1-root_mu1)/mu*(new^2 + root_mu1)/new))),
343  elliptic_cn_ascending(u,m) :=
344   if is(abs(m-1) < 4*10^(-fpprec)) then sech(u)
345   else
346     block([v, mu, root_mu1, new],
347       [v, mu, root_mu1] : ascending_transform(u,m),
348       new : elliptic_dn_ascending(v, mu),
349       expand(rectform((1+root_mu1)/mu*(new^2-root_mu1)/new))),
350  done);
351 done;
353 /* Test with random values for the argument and parameter. */
354 (test_random(n, eps, testf, truef) :=
355   block([badpoints : [], maxerr : -1],
356     for k : 1 thru n do
357       block([z : bfloat(1-2*random(1d0) + %i * (1-2*random(1d0))),
358              m : bfloat(1-2*random(1d0) + %i * (1-2*random(1d0))),
359              ans, expected, abserr],
360         ans : testf(z, m),
361         expected : truef(z, m),
362         abserr : abs(ans-expected),
363         maxerr : max(maxerr, abserr),
364         if abserr > eps then
365           badpoints : cons([[z,m], ans, expected, abserr], badpoints)),
366     if badpoints # [] then
367       cons(maxerr, badpoints)
368     else
369       badpoints),
370  done);
371 done;
373 test_random(50, 2b-15, 'jacobi_dn, 'elliptic_dn_ascending);
376 test_random(50, 2b-15, 'jacobi_cn, 'elliptic_cn_ascending);
379 /* Test elliptic_f by using the fact that
381 inverse_jacobi_sn(x,m) = elliptic_f(asin(x), m)
384 (test_ef(x,m) := jacobi_sn(elliptic_f(asin(x),m), m), id(x,m):=x, done);
385 done;
387 test_random(100, 6b-13, 'test_ef, 'id);
390 /* Test elliptic_kc These values are from 
392  * http://functions.wolfram.com/EllipticIntegrals/EllipticK/03/01/
393  */
395 block([oldfpprec : fpprec, fpprec:100],
396   test_table('elliptic_kc,
397              [[[1/2], 8*%pi^(3/2)/gamma(-1/4)^2],
398               [[17-12*sqrt(2)], 2*(2+sqrt(2))*%pi^(3/2)/gamma(-1/4)^2],
399               [[-1], gamma(1/4)^2/4/sqrt(2*%pi)]],
400              2b-100));
403 /* Some tests for specific values */
404 inverse_jacobi_sn(1,m);
405 elliptic_kc(m);
407 inverse_jacobi_sn(x,0);
408 asin(x);
410 inverse_jacobi_sn(x,1);
411 log(tan(asin(x)/2 + %pi/4));
413 inverse_jacobi_sd(1/sqrt(1-m),m);
414 elliptic_kc(m);
416 inverse_jacobi_ds(sqrt(1-m),m);
417 elliptic_kc(m);
419 /* elliptic_kc(1) is undefined */
420 errcatch(elliptic_kc(1));
422 errcatch(elliptic_kc(1.0));
424 errcatch(elliptic_kc(1.0b0));
427 /* Test noun/verb results from elliptic functions */
428 diff(inverse_jacobi_sn(x,0),x);
429 1/sqrt(1-x^2);
431 diff(elliptic_pi(4/3,phi,0),phi);
432 sec(phi)^2/(1-tan(phi)^2/3);
434 diff(elliptic_pi(3/4,phi,0),phi);
435 sec(phi)^2/(1+tan(phi)^2/4);
437 diff(elliptic_pi(1,phi,0),phi);
438 sec(phi)^2;
440 /* signbfloat:false provokes "Is 0 positive, negative, or zero?" */
441 (signbfloat:false, 
442  diff(elliptic_pi(1,phi,0),phi));
443 sec(phi)^2;
445 (reset (signbfloat), 0);
448 /* Special values */
449 elliptic_ec(1);
452 elliptic_ec(0);
453 %pi/2;
455 elliptic_ec(1/2);
456 gamma(3/4)^2/(2*sqrt(%pi))+%pi^(3/2)/(4*gamma(3/4)^2);
458 elliptic_ec(-1);
459 sqrt(2)*elliptic_ec(1/2);
461 /* Test periodicity of elliptic_e */
462 elliptic_e(x, 1);
463 2*round(x/%pi)+sin(x);
465 elliptic_e(3,1/3);
466 elliptic_e(3-%pi,1/3)+2*elliptic_ec(1/3);
468 /* Bug #2629: elliptic_kc(3.0) not accurate */
469 test_table('elliptic_kc, [[[3.0], elliptic_kc(3b0)]], 1b-15);
472 /* Bug #2630: inverse_jacobi_cn(-2.0, 3.0) generates an error */
473 test_table('inverse_jacobi_cn, [[[-2.0, 3.0], 2.002154760912212-3.202503914656527*%i]],
474   1b-15);
477 /* Bug #2615: Numeric evaluation of inverse Jacobi elliptic functions is wrong for some inputs 
479 is(abs(jacobi_dn(inverse_jacobi_dn(-2.0,3.0), 3.0) + 2) < 1d-14);
480 true;
482 /* elliptical functions handling of non-rectangular complex numbers
483  * mailing list 2016-07-14 "Jacobi elliptic functions, maxima 5.38.1"
484  * mailing list 2020-05-28 "Unexpected result from ev"
485  */
487 /* list of functions here is everything that has a SIMP-[$%](ELLIPTIC|JACOBI)_FOO in sr/ellipt.lisp */
489 elliptic_fcns :
490   [ elliptic_e, elliptic_ec, elliptic_eu, elliptic_f, elliptic_kc, elliptic_pi,
491     inverse_jacobi_cd, inverse_jacobi_cn, inverse_jacobi_cs, inverse_jacobi_dc,
492     inverse_jacobi_dn, inverse_jacobi_ds, inverse_jacobi_nc, inverse_jacobi_nd,
493     inverse_jacobi_ns, inverse_jacobi_sc, inverse_jacobi_sd, inverse_jacobi_sn,
494     jacobi_am,
495     jacobi_cd, jacobi_cn, jacobi_cs, jacobi_dc, jacobi_dn, jacobi_ds,
496     jacobi_nc, jacobi_nd, jacobi_ns, jacobi_sc, jacobi_sd, jacobi_sn ];
497  */
499 /* code to generate test cases below
501 elliptic_fcns_1 : sublist (elliptic_fcns, lambda ([f], errcatch(f('a)) # []));
502 elliptic_fcns_2 : sublist (elliptic_fcns, lambda ([f], errcatch(f('a, 'b)) # []));
503 elliptic_fcns_3 : sublist (elliptic_fcns, lambda ([f], errcatch(f('a, 'b, 'c)) # []));
505 kill (u1, k1, n1);
507 with_stdout ("/tmp/foo.mac",
509   for f in elliptic_fcns_1
510     do block ([a : f('rectform(u1))],
511         print ('complex_floatp(a), ";"),
512         print (true, ";"),
513         print ("")),
514   
515   for f in elliptic_fcns_2
516     do block ([a : f('rectform(u1), k1)],
517         print ('complex_floatp(a), ";"),
518         print (true, ";"),
519         print ("")),
520   
521   for f in elliptic_fcns_3
522     do block ([a : f(n1, 'rectform(u1), k1)],
523         print ('complex_floatp(a), ";"),
524         print (true, ";"),
525         print ("")));
526  */
528 (u1 : 0.5*(1.0 - 0.25*%i)^2,
529  k1 : 0.775,
530  n1 : -1.375,
531  complex_floatp(e) := floatnump(realpart(e)) and floatnump(imagpart(e)),
532  0);
535 complex_floatp(elliptic_ec(rectform(u1))) ; 
536 true ; 
538 complex_floatp(elliptic_kc(rectform(u1))) ; 
539 true ; 
541 complex_floatp(elliptic_e(rectform(u1), k1)) ; 
542 true ; 
544 complex_floatp(elliptic_eu(rectform(u1), k1)) ; 
545 true ; 
547 complex_floatp(elliptic_f(rectform(u1), k1)) ; 
548 true ; 
550 complex_floatp(inverse_jacobi_cd(rectform(u1), k1)) ; 
551 true ; 
553 complex_floatp(inverse_jacobi_cn(rectform(u1), k1)) ; 
554 true ; 
556 complex_floatp(inverse_jacobi_cs(rectform(u1), k1)) ; 
557 true ; 
559 complex_floatp(inverse_jacobi_dc(rectform(u1), k1)) ; 
560 true ; 
562 complex_floatp(inverse_jacobi_dn(rectform(u1), k1)) ; 
563 true ; 
565 complex_floatp(inverse_jacobi_ds(rectform(u1), k1)) ; 
566 true ; 
568 complex_floatp(inverse_jacobi_nc(rectform(u1), k1)) ; 
569 true ; 
571 complex_floatp(inverse_jacobi_nd(rectform(u1), k1)) ; 
572 true ; 
574 complex_floatp(inverse_jacobi_ns(rectform(u1), k1)) ; 
575 true ; 
577 complex_floatp(inverse_jacobi_sc(rectform(u1), k1)) ; 
578 true ; 
580 complex_floatp(inverse_jacobi_sd(rectform(u1), k1)) ; 
581 true ; 
583 complex_floatp(inverse_jacobi_sn(rectform(u1), k1)) ; 
584 true ; 
586 complex_floatp(jacobi_am(rectform(u1), k1)) ; 
587 true ; 
589 complex_floatp(jacobi_cd(rectform(u1), k1)) ; 
590 true ; 
592 complex_floatp(jacobi_cn(rectform(u1), k1)) ; 
593 true ; 
595 complex_floatp(jacobi_cs(rectform(u1), k1)) ; 
596 true ; 
598 complex_floatp(jacobi_dc(rectform(u1), k1)) ; 
599 true ; 
601 complex_floatp(jacobi_dn(rectform(u1), k1)) ; 
602 true ; 
604 complex_floatp(jacobi_ds(rectform(u1), k1)) ; 
605 true ; 
607 complex_floatp(jacobi_nc(rectform(u1), k1)) ; 
608 true ; 
610 complex_floatp(jacobi_nd(rectform(u1), k1)) ; 
611 true ; 
613 complex_floatp(jacobi_ns(rectform(u1), k1)) ; 
614 true ; 
616 complex_floatp(jacobi_sc(rectform(u1), k1)) ; 
617 true ; 
619 complex_floatp(jacobi_sd(rectform(u1), k1)) ; 
620 true ; 
622 complex_floatp(jacobi_sn(rectform(u1), k1)) ; 
623 true ; 
625 complex_floatp(elliptic_pi(n1, rectform(u1), k1)) ; 
626 true ; 
629 with_stdout ("/tmp/bar.mac",
631   for f in elliptic_fcns_1
632     do block ([a : f('rectform(u1))],
633         print ('complex_bfloatp(a), ";"),
634         print (true, ";"),
635         print ("")),
637   for f in elliptic_fcns_2
638     do block ([a : f('rectform(u1), k1)],
639         print ('complex_bfloatp(a), ";"),
640         print (true, ";"),
641         print ("")),
643   for f in elliptic_fcns_3
644     do block ([a : f(n1, 'rectform(u1), k1)],
645         print ('complex_bfloatp(a), ";"),
646         print (true, ";"),
647         print ("")));
648  */
650 (u1 : 0.5b0*(1.0b0 - 0.25b0*%i)^2,
651  k1 : 0.775b0,
652  n1 : -1.375b0,
653  complex_bfloatp(e) := bfloatp(realpart(e)) and bfloatp(imagpart(e)),
654  0);
657 complex_bfloatp(elliptic_ec(rectform(u1))) ; 
658 true ; 
660 complex_bfloatp(elliptic_kc(rectform(u1))) ; 
661 true ; 
663 complex_bfloatp(elliptic_e(rectform(u1), k1)) ; 
664 true ; 
666 complex_bfloatp(elliptic_eu(rectform(u1), k1)) ; 
667 true ; 
669 complex_bfloatp(elliptic_f(rectform(u1), k1)) ; 
670 true ; 
672 complex_bfloatp(inverse_jacobi_cd(rectform(u1), k1)) ; 
673 true ; 
675 complex_bfloatp(inverse_jacobi_cn(rectform(u1), k1)) ; 
676 true ; 
678 complex_bfloatp(inverse_jacobi_cs(rectform(u1), k1)) ; 
679 true ; 
681 complex_bfloatp(inverse_jacobi_dc(rectform(u1), k1)) ; 
682 true ; 
684 complex_bfloatp(inverse_jacobi_dn(rectform(u1), k1)) ; 
685 true ; 
687 complex_bfloatp(inverse_jacobi_ds(rectform(u1), k1)) ; 
688 true ; 
690 complex_bfloatp(inverse_jacobi_nc(rectform(u1), k1)) ; 
691 true ; 
693 complex_bfloatp(inverse_jacobi_nd(rectform(u1), k1)) ; 
694 true ; 
696 complex_bfloatp(inverse_jacobi_ns(rectform(u1), k1)) ; 
697 true ; 
699 complex_bfloatp(inverse_jacobi_sc(rectform(u1), k1)) ; 
700 true ; 
702 complex_bfloatp(inverse_jacobi_sd(rectform(u1), k1)) ; 
703 true ; 
705 complex_bfloatp(inverse_jacobi_sn(rectform(u1), k1)) ; 
706 true ; 
708 complex_bfloatp(jacobi_am(rectform(u1), k1)) ; 
709 true ; 
711 complex_bfloatp(jacobi_cd(rectform(u1), k1)) ; 
712 true ; 
714 complex_bfloatp(jacobi_cn(rectform(u1), k1)) ; 
715 true ; 
717 complex_bfloatp(jacobi_cs(rectform(u1), k1)) ; 
718 true ; 
720 complex_bfloatp(jacobi_dc(rectform(u1), k1)) ; 
721 true ; 
723 complex_bfloatp(jacobi_dn(rectform(u1), k1)) ; 
724 true ; 
726 complex_bfloatp(jacobi_ds(rectform(u1), k1)) ; 
727 true ; 
729 complex_bfloatp(jacobi_nc(rectform(u1), k1)) ; 
730 true ; 
732 complex_bfloatp(jacobi_nd(rectform(u1), k1)) ; 
733 true ; 
735 complex_bfloatp(jacobi_ns(rectform(u1), k1)) ; 
736 true ; 
738 complex_bfloatp(jacobi_sc(rectform(u1), k1)) ; 
739 true ; 
741 complex_bfloatp(jacobi_sd(rectform(u1), k1)) ; 
742 true ; 
744 complex_bfloatp(jacobi_sn(rectform(u1), k1)) ; 
745 true ; 
747 complex_bfloatp(elliptic_pi(n1, rectform(u1), k1)) ; 
748 true ; 
750 /* Test derivatives at a few random points using numerical differentiation
751    
752    func  - a function
753    df - deriviative of func wrt p-th argument
754    p - derivative wrt p-th argument 
755    vars - variables in expression deriv
756    table - table of points to evaluate
757    eps - report errors > eps
758    delta - offset for numerical derivative
760 (test_deriv(func,df,vars,p,table,eps,delta) :=
761 block([badpoints : [],
762        abserr    : 0,
763        maxerr    : -1],
764   for %z in table do
765     block([%z0, %z1, deriv, nderiv],
766       %z1:makelist(if i=p then %z[i]+delta else %z[i],i,1,length(%z)),
767       %z0:makelist(if i=p then %z[i]-delta else %z[i],i,1,length(%z)),
768       nderiv: float((apply(func,%z1)-apply(func,%z0))/(2*delta)),
769       deriv : float(subst(maplist("=",vars,%z),df)),
770       abserr : abs(nderiv-deriv),
771       maxerr : max(maxerr,abserr),
772       if abserr > eps then
773         badpoints : cons ([%z,deriv,nderiv,abserr],badpoints)
774     ),
775   if badpoints # [] then
776     cons(maxerr,badpoints)
777   else
778     badpoints
779     ),done);
780 done;
782 /* test points for two-arg functions */
783 (l2: [[0.2, 0.3], [0.2, 0.5], [1.5, 0.7], [0.5, 0.99], [1.5, 0.8],
784     [1.57, 0.8], [1.5707, 0.8], [-1.0, 0.8], [2.0, 0.8]],done);
785 done;
787 /* test points for three-arg functions */
788 /* bug #3221 elliptic_pi() wrong for 2nd arg > float(%pi/2) */
789 (l3: [[0.1,0.2,0.3],[0.1,0.2,0.5],[0.2,1.5,0.7],[0.001,0.5,0.99],
790     [0.2,1.5,0.8],[0.2,1.57,0.8],[0.2,1.5707,0.8]],done);
791 done;
793 test_deriv('elliptic_f,diff(elliptic_f(z,m),z),[z,m],1,l2,2.0e-7,1.0e-8);
796 test_deriv('elliptic_f,diff(elliptic_f(z,m),m),[z,m],2,l2,2.0e-7,1.0e-8);
799 test_deriv('elliptic_e,diff(elliptic_e(z,m),z),[z,m],1,l2,2.0e-7,1.0e-8);
802 test_deriv('elliptic_e,diff(elliptic_e(z,m),m),[z,m],2,l2,2.0e-7,1.0e-8);
805 test_deriv('elliptic_pi,diff(elliptic_pi(n,z,m),n),[n,z,m],1,l3,2.0e-7,1.0e-8);
808 test_deriv('elliptic_pi,diff(elliptic_pi(n,z,m),z),[n,z,m],2,l3,2.0e-7,1.0e-8);
811 test_deriv('elliptic_pi,diff(elliptic_pi(n,z,m),m),[n,z,m],3,l3,2.0e-7,1.0e-8);
814 closeto(e,tol):=block([numer:true,abse],abse:abs(e),if(abse<tol) then true else abse);
815 closeto(e,tol):=block([numer:true,abse],abse:abs(e),if(abse<tol) then true else abse);
818  * Some additional tests for complex values. Use the fact that
819  * elliptic_pi(0, phi, m) = elliptic_f(phi,m);
820  */
821 closeto(elliptic_pi(0, 0.5, 0.25)- elliptic_f(0.5, 0.25), 1e-15);
822 true;
823 closeto(elliptic_pi(0, 0.5*%i, 0.25)- elliptic_f(0.5*%i, 0.25), 1e-15);
824 true;
826 closeto(elliptic_pi(0, 0.5b0, 0.25b0)- elliptic_f(0.5b0, 0.25b0), 1e-15);
827 true;
828 closeto(elliptic_pi(0, 0.5b0*%i, 0.25b0)- elliptic_f(0.5b0*%i, 0.25b0), 1e-15);
829 true;
831 /* Test for Bug 3221 */
833 closeto(elliptic_pi(0.2,1.57,0.8) - 2.5770799919605668, 1e-14);
834 true;
835 closeto(elliptic_pi(0.2,1.58,0.8) - 2.60502920656026151, 1e-14);
836 true;
837 closeto(elliptic_pi(0.20,2.00,0.80) - 3.6543835090829025, 7.47e-11);
838 true;
840 (oldfpprec:fpprec,fpprec:32);
842 closeto(elliptic_pi(0.2b0,1.57b0,0.8b0) - 2.5770799919605668058849721013196b0, 3.09b-32);
843 true;
844 closeto(elliptic_pi(0.2b0,1.58b0,0.8b0) - 2.6050292065602615145481924917132b0, 1.24b-32);
845 true;
846 closeto(elliptic_pi(0.2b0,2.0b0,0.8b0) - 3.6543835090082902501670624830938b0, 1b-32);
847 true;
849 /* Test for #3733 $gamma vs %gamma confusion */
850 elliptic_ec(1/2) - gamma(3/4)^2/(2*sqrt(%pi))- %pi^(3/2)/(4*gamma(3/4)^2);
853 /* #3745 Quoting either elliptic_f [or elliptic_e] inhibits simplification */
854 'elliptic_f(5,0);
857 'elliptic_e(5,0);
860 /* #3746 derivative of inverse_jacobi_sn is noun/verb confused. 
861    The same is true for inverse_jacobi_cn and inverse_jacobi_dn, but the 
862    remaining nine inverse Jacobi functions ns, nc, nd, sc, cs, sd, ds, cd, 
863    and dc don't have defined m derivatives.*/
864 subst(u=0, diff(inverse_jacobi_sn(u,m),m));
867 subst(u=1, diff(inverse_jacobi_cn(u,m),m));
870 subst(u=1, diff(inverse_jacobi_dn(u,m),m));
874 (fpprec:oldfpprec,kill(l2,l3,test_deriv,oldfpprec),done);
875 done;