Fix bug #3926: Various limits give UND where they should give IND
[maxima.git] / src / matrix.lisp
blob6d2a5a5714a7ba7a0eae1ef31d6041c2c7b6306d
1 ;;; -*- Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- ;;;;
2 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3 ;;; The data in this file contains enhancments. ;;;;;
4 ;;; ;;;;;
5 ;;; Copyright (c) 1984,1987 by William Schelter,University of Texas ;;;;;
6 ;;; All rights reserved ;;;;;
7 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
8 ;;; (c) Copyright 1982 Massachusetts Institute of Technology ;;;
9 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
11 (in-package :maxima)
13 (macsyma-module matrix)
15 (declare-top (special *ech* *tri* *inv*
16 mdl $detout vlist mul* top* *det* genvar $ratfac
17 varlist header $scalarmatrixp $sparse
18 $algebraic *rank* *mat*))
20 (defmvar $detout nil)
21 (defmvar top* nil)
22 (defmvar $ratmx nil)
23 (defmvar $matrix_element_mult "*") ;;; Else, most useful when "."
24 (defmvar $matrix_element_add "+")
25 (defmvar $matrix_element_transpose nil)
27 (defvar *mat*)
29 ;;I believe that all the code now stores arrays in the value cell
30 (defun get-array-pointer (symbol)
31 "There may be nesting of functions and we may well need to apply
32 this twice in a row"
33 (if (arrayp symbol) symbol (symbol-value symbol)))
35 (defun mxc (x)
36 (mapcar #'(lambda (y) (cons '(mlist) y)) x)) ; Matrix to MACSYMA conversion
38 (defun mcx (x)
39 (mapcar #'cdr x)) ; MACSYMA to Matrix conversion
41 ;; Transpose a list of lists ll. Example: ((1 2) (3 4)) --> ((1 3) (2 4)).
43 (defun transpose (ll)
44 (let ((acc nil))
45 (while (car ll)
46 (push (mapcar #'car ll) acc)
47 (setq ll (mapcar #'cdr ll)))
48 (nreverse acc)))
50 (defun nthcol (x nn)
51 (if (or (null x) (> nn (length (car x))))
52 nil
53 (nthcol1 x nn)))
55 (defun nthcol1 (x nn)
56 (if (or (null x) (= nn 0))
57 nil
58 (cons (ith (car x) nn) (nthcol1 (cdr x) nn))))
60 ;; MAYBE THIS FUNCTION SHOULD HAVE AN ARGUMENT TO INDICATE WHO CALLED IT (TO SMASH INTO ERROR MESSAGES)
61 (defun check (x)
62 (cond ((atom x) (merror (intl:gettext "not a matrix: ~M") x))
63 ((eq (caar x) '$matrix) x)
64 ((eq (caar x) 'mlist) (list '($matrix) x))
65 (t (merror (intl:gettext "not a matrix: ~M") x))))
67 (defun check1 (x)
68 (cond ((atom x) nil)
69 ((eq (caar x) '$matrix) x)
70 ((eq (caar x) 'mlist) (list '($matrix) x))))
72 (defmfun $matrixp (x)
73 (and (not (atom x)) (eq (caar x) '$matrix)))
75 (defmfun $charpoly (mat var)
76 (setq mat (check mat))
77 (unless (= (length mat) (length (cadr mat)))
78 (merror (intl:gettext "charpoly: matrix must be square; found ~M rows, ~M columns.") (length mat) (length (cadr mat))))
79 (cond ((not $ratmx)
80 (det1 (addmatrix1
81 (setq mat (mcx (cdr mat)))
82 (diagmatrix (length mat) (list '(mtimes) -1 var) '$charpoly))))
83 (t (newvar var) (newvarmat1 mat)
84 (setq mat (mcx (cdr mat)))
85 (determinant1 (addmatrix mat (diagmatrix (length mat)
86 (list '(mtimes) -1 var)
87 '$charpoly))))))
89 (defun disreplist1 (a)
90 (setq header (list 'mrat 'simp varlist genvar))
91 (mapcar #'disreplist a))
93 (defun disreplist (a)
94 (mapcar #'(lambda (e) (cons header e)) a))
96 (defun replist1 (a)
97 (mapcar #'replist a))
99 (defun replist (a)
100 (mapcar #'(lambda (e) (cdr (ratrep* e))) a))
102 (defun timex (mat1 mat2)
103 (cond ((equal mat1 1) mat2)
104 ((and ($matrixp mat1) ($matrixp mat2) (null (cdr mat1)))
105 (ncons '($matrix simp)))
106 (t (newvarmat mat1 mat2)
107 (let (($scalarmatrixp
108 (if (and ($listp mat1) ($listp mat2)) t $scalarmatrixp)))
109 (simplifya (timex0 mat1 mat2) nil)))))
111 (defun lnewvar (a)
112 (let ((vlist nil))
113 (lnewvar1 a)
114 (setq varlist (nconc (sortgreat vlist) varlist))))
116 (defun lnewvar1 (a)
117 (cond ((atom a) (newvar1 a))
118 ((mbagp a) (mapc #'lnewvar1 (cdr a)))
119 (t (newvar1 a))))
121 (defun newvarmat (mat1 mat2)
122 (when $ratmx
123 (let ((vlist nil))
124 (lnewvar1 mat1) (lnewvar1 mat2)
125 (setq varlist (nconc (sortgreat vlist) varlist)))))
127 (defun newvarmat1 (a)
128 (cond ($ratmx (lnewvar a))))
130 (defun addmatrix (x y)
131 (setq x (replist1 x) y (replist1 y))
132 (disreplist1 (addmatrix1 x y)))
134 (defun addmatrix1 (b c)
135 (unless (and (= (length b) (length c))
136 (= (length (car b)) (length (car c))))
137 (merror (intl:gettext "ADDMATRIX1: attempt to add nonconformable matrices.")))
138 (mapcar #'addrows b c))
140 (defun addrows (a b)
141 (if (not $ratmx)
142 (mapcar #'(lambda (i j) (simplus (list '(mplus) i j) 1 nil)) a b)
143 (mapcar #'ratplus a b)))
145 (defmfun $determinant (mat)
146 (cond ((not (or (mbagp mat) ($matrixp mat)))
147 (if ($scalarp mat) mat (list '(%determinant) mat)))
148 (t (setq mat (check mat))
149 (unless (= (length mat) (length (cadr mat)))
150 (merror
151 (intl:gettext
152 "determinant: matrix must be square; found ~M rows, ~M columns.")
153 (length (cdr mat))
154 (length (cdadr mat))))
155 (cond ((not $ratmx) (det1 (mcx (cdr mat))))
156 (t (newvarmat1 mat) (determinant1 (mcx (cdr mat))))))))
158 (defun det (m)
159 (if (= (length m) 1)
160 (caar m)
161 (let (*det* mul*)
162 (mtoa '*mat* (setq *det* (length m)) *det* m)
163 (setq *det* (tfgeli0 '*mat* *det* *det*))
164 (ratreduce *det* mul*))))
166 (defun determinant1 (x)
167 (catch 'dz (rdis (det (replist1 x)))))
169 (defun treedet (mat)
170 (prog (row mdl lindex tuplel n id md lt)
171 (setq mat (reverse mat))
172 (setq n (length mat) md (car mat))
173 (setq mat (cdr mat)) (setq lindex (nreverse (index* n)) tuplel (mapcar #'list lindex))
174 loop1 (when (null mat) (return (car md)))
175 (setq mdl nil)
176 (mapcar #'(lambda(a b) (setq mdl (nconc mdl (list a b)))) tuplel md)
177 (setq md nil)
178 (setq row (car mat)
179 mat (cdr mat))
180 (setq lt (setq tuplel (nextlevel tuplel lindex)))
181 loop2 (when (null lt)
182 (setq md (nreverse md))
183 (go loop1))
184 (setq id (car lt) lt (cdr lt))
185 (setq md (cons (compumd id row) md))
186 (go loop2)))
188 (defun assoo (e l)
189 (prog ()
190 loop (cond ((null l) (return nil))
191 ((equal e (car l)) (return (cadr l))))
192 (setq l (cddr l))
193 (go loop)))
195 (defun compumd (id row)
196 (prog (e minor i d sign ans)
197 (setq ans 0 sign -1 i id)
198 loop (when (null i) (return ans))
199 (setq d (car i) i (cdr i) sign (* -1 sign))
200 (cond ((equal (setq e (ith row d)) 0)
201 (go loop))
202 ((equal (setq minor (assoo (delete d (copy-tree id) :test #'equal) mdl)) 0)
203 (go loop)))
204 (setq ans
205 (if (and (equal $matrix_element_mult "*")
206 (equal $matrix_element_add "+"))
207 (add ans (mul sign e minor)) ;fast common case
208 (mapply $matrix_element_add
209 (list ans
210 (mapply $matrix_element_mult
211 (list sign e minor)
212 $matrix_element_mult))
213 $matrix_element_add)))
214 (go loop)))
216 (defun apdl (l1 l2)
217 (mapcar #'(lambda (j) (append l1 (list j))) l2))
219 (defun nextlevel (tuplel lindex)
220 (prog (ans l li)
221 loop (when (null tuplel) (return ans))
222 (setq l (car tuplel)
223 tuplel (cdr tuplel)
224 li (cdr (nthcdr (1- (car (last l))) lindex)))
225 (when (null li) (go loop))
226 (setq ans (nconc ans (apdl l li)))
227 (go loop)))
229 (defun det1 (x)
230 (cond ($sparse (mtoa '*mat* (length x) (length x)
231 (mapcar #'(lambda (x) (mapcar #'(lambda (y) (ncons y)) x))x))
232 (sprdet '*mat* (length x)))
233 (t (treedet x))))
235 (defmfun $ident (n)
236 (cons '($matrix) (mxc (diagmatrix n 1 '$ident))))
238 (defmfun $diagmatrix (n var)
239 (cons '($matrix) (mxc (diagmatrix n var '$diagmatrix))))
241 (defun diagmatrix (n var fn)
242 (prog (i ans)
243 (when (or (not (fixnump n)) (minusp n))
244 (improper-arg-err n fn))
245 (setq i n)
246 loop (if (zerop i) (return ans))
247 (setq ans (cons (onen i n var 0) ans) i (1- i))
248 (go loop)))
250 ;; ATOMAT GENERATES A MATRIX FROM A MXN ARRAY BY TAKING COLUMNS S TO N
252 (defun atomat (name m n s)
253 (setq name (get-array-pointer name))
254 (prog (j d row mat)
255 (incf m)
256 (incf n)
257 loop1 (when (= m 1) (return mat))
258 (decf m)
259 (setq j n)
260 loop2 (when (= j s)
261 (push row mat)
262 (setq row nil)
263 (go loop1))
264 (decf j)
265 (setq d (if top*
266 (meval (list (list name 'array) m j))
267 (aref name m j)))
268 (push (or d '(0 . 1)) row)
269 (go loop2)))
271 (defmfun $invert_by_gausselim (k)
272 (let ((*inv* t) *det* top* mul* ($ratmx t) (ratmx $ratmx) $ratfac $sparse)
273 (cond ((atom k) ($nounify '$inverx) (list '(%inverx) k))
274 (t (newvarmat1 (setq k (check k)))
275 (setq k (invert1 (replist1 (mcx (cdr k)))))
276 (setq k (cond ($detout `((mtimes)
277 ((mexpt) ,(rdis (or *det* '(1 . 1))) -1)
278 (($matrix) ,@(mxc (disreplist1 k)))))
279 (t (cons '($matrix) (mxc (disreplist1 k))))))
280 (cond ((and ratmx (not $detout))
281 (fmapl1 #'(lambda (x) x) k))
282 ((not ratmx) ($totaldisrep k))
283 (t k))))))
285 (defun diaginv (ax m)
286 (setq ax (get-array-pointer ax))
287 (cond ($detout (setq *det* 1)
288 (do ((i 1 (1+ i)))
289 ((> i m))
290 (setq *det* (plcm *det* (car (aref ax i i)))))
291 (setq *det* (cons *det* 1))))
292 (do ((i 1 (1+ i))
293 (elm))
294 ((> i m))
295 (setq elm (aref ax i i))
296 (setf (aref ax i (+ m i))
297 (cond ($detout (cons (ptimes (cdr elm)
298 (pquotient (car *det*) (car elm))) 1))
299 (t (ratinvert elm))))))
301 (defun invert1 (k)
302 (prog (l r g i m n)
303 (setq l (length k) i 1)
304 (cond ((= l (length (car k))) nil)
305 (t(merror (intl:gettext "invert: matrix must be square; found ~M rows, ~M columns.") l (length (car k)))))
306 loop (cond ((null k) (go l1)))
307 (setq r (car k))
308 (setq g (nconc g (list (nconc r (onen i l '(1 . 1) '(0 . 1))))))
309 (setq k (cdr k) i (1+ i))
310 (go loop)
311 l1 (setq k g)
312 (mtoa '*mat* (setq m (length k)) (setq n (length (car k))) k)
313 (setq k nil)
314 (cond ((diagp '*mat* m) (diaginv '*mat* m)) (t (tfgeli0 '*mat* m n)))
315 (setq k (atomat '*mat* m n (1+ m)))
316 (return k)))
318 (defun diagp (ax m)
319 (declare (fixnum m))
320 (prog ((i 0) (j 0))
321 (declare (fixnum i j))
322 (setq ax (get-array-pointer ax))
323 loop1 (setq i (1+ i) j 0)
324 (cond ((> i m) (return t)))
325 loop2 (incf j)
326 (cond ((> j m) (go loop1))
327 ((and (not (= i j)) (equal (aref ax i j) '(0 . 1))) nil)
328 ((and (= i j) (not (equal (aref ax i j) '(0 . 1)))) nil)
329 (t (return nil)))
330 (go loop2)))
332 (defun tfgeli0 (x m n)
333 (cond ((or $sparse *det*) (tfgeli x m n))
334 (t (tfgeli x m n) (diaglize1 x m n))))
336 ;; TWO-STEP FRACTION-FREE GAUSSIAN ELIMINATION ROUTINE
338 (defun ritediv (x m n a)
339 (declare (fixnum m n))
340 (setq x (get-array-pointer x))
341 (prog ((j 0) (i 0) d)
342 (declare (fixnum i j))
343 (setq i m)
344 loop1 (when (zerop i) (return nil))
345 (setf (aref x i i) nil)
346 (setq j m)
347 loop (cond ((= j n) (decf i) (go loop1)))
348 (incf j)
349 (cond ((equal a 1)
350 (setf (aref x i j) (cons (aref x i j) 1))
351 (go loop)))
352 (setq d (ignore-rat-err (pquotient (aref x i j) a)))
353 (setq d (cond (d (cons d 1))
354 (t (ratreduce (aref x i j) a))))
355 (setf (aref x i j) d)
356 (go loop)))
358 (defun diaglize1 (x m n)
359 (setq x (get-array-pointer x))
360 (prog nil
361 (cond (*det* (return (ptimes *det* (aref x m m)))))
362 (setq *det* (cons (aref x m m) 1))
363 (cond ((not $detout) (return (ritediv x m n (aref x m m))))
364 (t (return (ritediv x m n 1))))))
366 ;; Takes an M by N matrix and creates an array containing the elements
367 ;; of the matrix. The array is associated "functionally" with the
368 ;; symbol NAME.
369 ;; For CL we have put it in the value cell-WFS. Things still work.
371 (defun mtoa (name m n mat)
372 (declare (fixnum m n))
373 (proclaim (list 'special name))
374 (setf (symbol-value name) (make-array (list (1+ m) (1+ n))))
375 (setq name (get-array-pointer name))
376 (do ((i 1 (1+ i))
377 (mat mat (cdr mat)))
378 ((> i m) nil)
379 (declare (fixnum i))
380 (do ((j 1 (1+ j))
381 (row (car mat) (cdr row)))
382 ((> j n))
383 (declare (fixnum j))
384 (setf (aref name i j) (car row)))))
387 (defmfun $echelon (x)
388 (let (($ratmx t))
389 (newvarmat1 (setq x (check x))))
390 (let ((*ech* t) ($algebraic $algebraic))
391 (and (not $algebraic) (some #'algp varlist) (setq $algebraic t))
392 (setq x (cons '($matrix) (mxc (disreplist1 (echelon1 (replist1 (mcx (cdr x)))))))))
393 (if $ratmx x ($totaldisrep x)))
395 (defun echelon1 (x)
396 (let ((m (length x))
397 (n (length (car x))))
398 (mtoa '*mat* m n x)
399 (setq x (catch 'rank (tfgeli '*mat* m n)))
400 (cond ((and *rank* x)
401 (throw 'rnk x))
402 (t (echelon2 '*mat* m n)))))
404 (defun echelon2 (name m n)
405 (declare (fixnum m n))
406 (setq name (symbol-value name))
407 (prog ((j 0) row mat a)
408 (declare (fixnum j))
409 (incf m)
410 loop1 (when (= m 1) (return mat))
411 (setq m (1- m) j 0 a nil)
412 loop2 (when (= j n)
413 (setq mat (cons row mat) row nil)
414 (go loop1))
415 (incf j)
416 (setq row (nconc row (ncons (cond ((or (> m j) (equal (aref name m j) 0))
417 '(0 . 1))
418 (a (ratreduce (aref name m j)a))
419 (t (setq a (aref name m j)) '(1 . 1))))))
420 (go loop2)))
422 (defun triang (x)
423 (let ((m (length x))
424 (n (length (car x)))
425 (*tri* t))
426 (mtoa '*mat* m n x)
427 (tfgeli '*mat* m n)
428 (triang2 '*mat* m n)))
430 (defun triang2 (nam m n)
431 (declare (fixnum m n))
432 (setq nam (get-array-pointer nam))
433 (prog ((j 0) row mat)
434 (declare (fixnum j))
435 (setf (aref nam 0 0) 1)
436 (incf m)
437 loop1 (when (= m 1) (return mat))
438 (decf m)
439 (setq j 0)
440 loop2 (when (= j n)
441 (setq mat (cons row mat) row nil)
442 (go loop1))
443 (incf j)
444 (setq row (nconc row (ncons (if (> m j) '(0 . 1) (cons (aref nam m j) 1)))))
445 (go loop2)))
447 (defun onen (n i var fill)
448 (prog (g)
449 loop (cond ((= i n) (setq g (cons var g)))
450 ((zerop i) (return g))
451 (t (setq g (cons fill g))))
452 (decf i)
453 (go loop)))
455 (defun timex0 (x y)
456 (let ((u (check1 x))
457 (v (check1 y)))
458 (cond ((and (null u) (null v)) (list '(mtimes) x y))
459 ((null u) (timex1 x (cons '($matrix) (mcx (cdr v)))))
460 ((null v) (timex1 y (cons '($matrix) (mcx (cdr u)))))
461 (t (cons '($matrix mult) (mxc (multiplymatrices (mcx (cdr u)) (mcx (cdr v)))))))))
463 (defun timex1 (x y)
464 (setq y (check y))
465 (cond ((not $ratmx) (setq y (cdr y)))
466 (t (setq x (cdr (ratf x)) y (replist1 (cdr y)))))
467 (ctimesx x y))
469 (defun ctimesx (x y)
470 (prog (c)
471 loop (cond ((null y)
472 (return (cons '($matrix mult)
473 (mxc (cond ((not $ratmx) c) (t (disreplist1 c))))))))
474 (setq c (nconc c (list (timesrow x (car y)))) y (cdr y))
475 (go loop)))
477 (defun multiplymatrices (x y)
478 (cond ((and (null (cdr y)) (null (cdr x)))
479 (and (cdar x) (setq y (transpose y))))
480 ((and (null (cdar x)) (null (cdar y)))
481 (and (cdr y) (setq x (transpose x)))))
482 (cond ((not (= (length (car x)) (length y)))
483 (cond ((and (null (cdr y)) (= (length (car x)) (length (car y))))
484 (setq y (transpose y)))
485 (t (merror (intl:gettext "MULTIPLYMATRICES: attempt to multiply nonconformable matrices."))))))
486 (cond ((not $ratmx) (multmat x y))
487 (t (setq x (replist1 x) y (replist1 y))
488 (disreplist1 (multmat x y)))))
490 (defun multmat (x y)
491 (prog (mat row yt rowx)
492 (setq yt (transpose y))
493 loop1 (when (null x) (return mat))
494 (setq rowx (car x) y yt)
495 loop2 (when (null y)
496 (setq mat (nconc mat (ncons row)) x (cdr x) row nil)
497 (go loop1))
498 (setq row (nconc row (ncons (multl rowx (car y)))) y (cdr y))
499 (go loop2)))
501 ;;; This actually takes the inner product of the two vectors.
502 ;;; I check for the most common cases for speed. "*" is a slight
503 ;;; violation of data abstraction here. The parser should turn "*" into
504 ;;; MTIMES, well, it may someday, which will break this code. Don't
505 ;;; hold your breath.
507 (defun multl (a b)
508 (cond ((equal $matrix_element_add "+")
509 (do ((ans (if (not $ratmx) 0 '(0 . 1))
510 (cond ((not $ratmx)
511 (cond ((equal $matrix_element_mult "*")
512 (add ans (mul (car a) (car b))))
513 ((equal $matrix_element_mult ".")
514 (add ans (ncmul (car a) (car b))))
516 (add ans
517 (meval `((,(getopr $matrix_element_mult))
518 ((mquote simp) ,(car a))
519 ((mquote simp) ,(car b))))))))
521 (ratplus ans (rattimes (car a) (car b) t)))))
522 (a a (cdr a))
523 (b b (cdr b)))
524 ((null a) ans)))
526 (mapply (getopr $matrix_element_add)
527 (mapcar #'(lambda (u v)
528 (meval `((,(getopr $matrix_element_mult))
529 ((mquote simp) ,u)
530 ((mquote simp) ,v))))
531 a b)
532 (getopr $matrix_element_add)))))
534 (defun bbsort (l fn)
535 (nreverse (sort (copy-list l) fn)))
537 (defun powerx (mat x)
538 (prog (n y)
539 (cond ((not (fixnump x))
540 (return (list '(mncexpt simp) mat x)))
541 ((= x 1) (return mat))
542 ((minusp x)
543 (setq x (- x) mat ($invert mat))
544 (cond ($detout
545 (return (let ((*inv* '$detout))
546 (mul2* (power* (cadr mat) x)
547 (fmapl1 #'(lambda (x) x)
548 (powerx (caddr mat) x)))))))))
549 (newvarmat1 (setq mat (check mat)))
550 (setq n 1 mat (mcx (cdr mat)) y mat)
551 loop (if (= n x)
552 (let (($scalarmatrixp (if (eq $scalarmatrixp '$all) '$all)))
553 (return (simplify (cons '($matrix mult) (mxc y))))))
554 (setq y (multiplymatrices y mat) n (1+ n))
555 (go loop)))
557 ;; The following $ALGEBRAIC code is so that
558 ;; RANK(MATRIX([1-SQRT(5),2],[-2,1+SQRT(5)])); will give 1.
559 ;; - JPG and BMT
561 (defmfun $rank (x)
562 (let ((*rank* t) ($ratmx t) ($algebraic $algebraic))
563 (newvarmat1 (setq x (check x)))
564 (and (not $algebraic) (some #'algp varlist) (setq $algebraic t))
565 (setq x (replist1 (mcx (cdr x))))
566 (mtoa '*mat* (length x) (length (car x)) x)
567 (tfgeli '*mat* (length x) (length (car x)))))
569 (defun replacerow (i y x)
570 (if (= i 1)
571 (cons y (cdr x))
572 (cons (car x) (replacerow (1- i) y (cdr x)))))
574 (defun timesrow (y row)
575 (prog (ans)
576 (when (and $ratmx (atom y) y)
577 (setq y (cdr (ratf y))))
578 loop (when (null row) (return ans))
579 (setq ans (nconc ans (list (if (not $ratmx)
580 (simptimes (list '(mtimes) y (car row)) 1 nil)
581 (rattimes y (car row) t)))))
582 (setq row (cdr row))
583 (go loop)))
585 (defmfun $triangularize (x)
586 (let (($ratmx t))
587 (newvarmat1 (setq x (check x))))
588 (let (($algebraic $algebraic))
589 (and (not $algebraic) (some #'algp varlist) (setq $algebraic t))
590 (setq x (cons '($matrix) (mxc (disreplist1 (triang (replist1 (mcx (cdr x)))))))))
591 (if $ratmx x ($totaldisrep x)))
593 (defmfun $col (mat n)
594 (cons '($matrix) (mxc (transpose (list (nthcol (mcx (cdr (check mat))) n))))))
596 (defun deletecol (n x)
597 (prog (m g)
598 (setq m x)
599 loop (when (null m) (return g))
600 (setq g (nconc g (ncons (deleterow n (car m)))) m (cdr m))
601 (go loop)))
603 (defun deleterow (i m)
604 (cond ((or (null m) (< i 0)) (merror (intl:gettext "DELETEROW: matrix is null, or index is negative.")))
605 ((= i 1) (cdr m))
606 (t (cons (car m) (deleterow (1- i) (cdr m))))))
608 (defmfun $minor (mat m n)
609 (cons '($matrix) (mxc (minor m n (mcx (cdr (check mat)))))))
611 (defun minor (i j m)
612 (deletecol j (deleterow i m)))
614 (defmfun $row (mat m)
615 (cons '($matrix) (mxc (list (ith (mcx (cdr (check mat))) m)))))
617 (defmfun $setelmx (elm m n mat)
618 (cond
619 ((not (and (integerp m) (integerp n)))
620 (merror (intl:gettext "setelmx: indices must be integers; found: ~M, ~M") m n))
621 ((not ($matrixp mat))
622 (merror (intl:gettext "setelmx: last argument must be a matrix; found: ~M") mat))
623 ((not (and (> m 0) (> n 0) (> (length mat) m) (> (length (cadr mat)) n)))
624 (merror (intl:gettext "setelmx: no such element [~M, ~M]") m n)))
625 (rplaca (nthcdr n (car (nthcdr m mat))) elm) mat)
627 ;;; Here the function transpose can actually do simplification of
628 ;;; its argument. TRANSPOSE(TRANSPOSE(FOO)) => FOO.
629 ;;; If you think this is a hack, well, realize that the hack is
630 ;;; actually the fact that TRANSPOSE can return a noun form.
634 (defmfun $transpose (mat)
635 (cond ((not (mxorlistp mat))
636 (cond ((and (not (atom mat)) (member (mop mat) '($transpose %transpose) :test #'eq))
637 (cadr mat))
638 (($scalarp mat) mat)
639 ((mplusp mat)
640 `((mplus) .,(mapcar #'$transpose (cdr mat))))
641 ((mtimesp mat)
642 `((mtimes) .,(mapcar #'$transpose (cdr mat))))
643 ((mnctimesp mat)
644 `((mnctimes) .,(nreverse (mapcar #'$transpose (cdr mat)))))
645 ((mncexptp mat)
646 (destructuring-let (((mat pow) (cdr mat)))
647 `((mncexpt) ,($transpose mat) ,pow)))
648 (t ($nounify '$transpose) (list '(%transpose) mat))))
650 (let ((ans (transpose (mcx (cdr (check mat))))))
651 (cond ($matrix_element_transpose
652 (setq ans (mapcar #'(lambda (u) (mapcar #'transpose-els u))
653 ans))))
654 `(($matrix) . ,(mxc ans))))))
656 ;;; THIS IS FOR TRANSPOSING THE ELEMENTS OF A MATRIX
657 ;;; A hack for Block matricies and tensors.
659 (defun transpose-els (elem)
660 (cond ((eq $matrix_element_transpose '$transpose)
661 ($transpose elem))
662 ((eq $matrix_element_transpose '$nonscalars)
663 (if ($nonscalarp elem)
664 ($transpose elem)
665 elem))
667 (meval `((,(getopr $matrix_element_transpose)) ((mquote simp) ,elem))))))
670 (defmfun $submatrix (&rest x)
671 (prog (r c)
672 l1 (when (numberp (car x))
673 (push (car x) r)
674 (setq x (cdr x))
675 (go l1))
676 (setq c (nreverse (bbsort (cdr x) #'>))
677 r (nreverse (bbsort r #'>)))
678 (setq x (mcx (cdar x)))
679 l2 (if (null r)
680 (go b)
681 (setq x (deleterow (car r) x)))
682 (setq r (cdr r))
683 (go l2)
684 b (when (null c) (return (cons '($matrix) (mxc x))))
685 (setq x (deletecol (car c) x) c (cdr c))
686 (go b)))
689 (defmfun $list_matrix_entries (m)
690 (unless ($matrixp m)
691 (merror (intl:gettext "list_matrix_entries: argument must be a matrix; found: ~M") m))
692 (cons (if (null (cdr m)) '(mlist) (caadr m))
693 (loop for row in (cdr m) append (cdr row))))