1 ;;; -*- Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- ;;;;
2 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3 ;;; The data in this file contains enhancments. ;;;;;
5 ;;; Copyright (c) 1984,1987 by William Schelter,University of Texas ;;;;;
6 ;;; All rights reserved ;;;;;
7 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
8 ;;; (c) Copyright 1980 Massachusetts Institute of Technology ;;;
9 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
13 (macsyma-module opers
)
15 ;; This file is the run-time half of the OPERS package, an interface to the
16 ;; Macsyma general representation simplifier. When new expressions are being
17 ;; created, the functions in this file or the macros in MOPERS should be called
18 ;; rather than the entrypoints in SIMP such as SIMPLIFYA or SIMPLUS. Many of
19 ;; the functions in this file will do a pre-simplification to prevent
20 ;; unnecessary consing. [Of course, this is really the "wrong" thing, since
21 ;; knowledge about 0 being the additive identity of the reals is now
22 ;; kept in two different places.]
24 ;; The basic functions in the virtual interface are ADD, SUB, MUL, DIV, POWER,
25 ;; NCMUL, NCPOWER, NEG, INV. Each of these functions assume that their
26 ;; arguments are simplified. Some functions will have a "*" adjoined to the
27 ;; end of the name (as in ADD*). These do not assume that their arguments are
28 ;; simplified. In addition, there are a few entrypoints such as ADDN, MULN
29 ;; which take a list of terms as a first argument, and a simplification flag as
30 ;; the second argument. The above functions are the only entrypoints to this
33 ;; The functions ADD2, ADD2*, MUL2, MUL2*, and MUL3 are for use internal to
34 ;; this package and should not be called externally. Note that MOPERS is
35 ;; needed to compile this file.
37 ;; Addition primitives.
41 (cond ((numberp y
) (+ x y
))
43 (t (simplifya `((mplus) ,x
,y
) t
))))
45 (t (simplifya `((mplus) ,x
,y
) t
))))
49 ((and (numberp x
) (numberp y
)) (+ x y
))
50 ((=0 x
) (simplifya y nil
))
51 ((=0 y
) (simplifya x nil
))
52 (t (simplifya `((mplus) ,x
,y
) nil
))))
54 ;; The first two cases in this cond shouldn't be needed, but exist
55 ;; for compatibility with the old OPERS package. The old ADDLIS
56 ;; deleted zeros ahead of time. Is this worth it?
58 (defun addn (terms simp-flag
)
59 (cond ((null terms
) 0)
60 (t (simplifya `((mplus) .
,terms
) simp-flag
))))
62 (declare-top (special $negdistrib
))
65 (cond ((numberp x
) (- x
))
66 (t (let (($negdistrib t
))
67 (simplifya `((mtimes) -
1 ,x
) t
)))))
71 ((and (numberp x
) (numberp y
)) (- x y
))
78 ((and (numberp x
) (numberp y
)) (- x y
))
82 (add (simplifya x nil
) (mul -
1 (simplifya y nil
))))))
84 ;; Multiplication primitives -- is it worthwhile to handle the 3-arg
85 ;; case specially? Don't simplify x*0 --> 0 since x could be non-scalar.
89 ((and (numberp x
) (numberp y
)) (* x y
))
92 (t (simplifya `((mtimes) ,x
,y
) t
))))
96 ((and (numberp x
) (numberp y
)) (* x y
))
97 ((=1 x
) (simplifya y nil
))
98 ((=1 y
) (simplifya x nil
))
99 (t (simplifya `((mtimes) ,x
,y
) nil
))))
102 (cond ((=1 x
) (mul2 y z
))
105 (t (simplifya `((mtimes) ,x
,y
,z
) t
))))
107 ;; The first two cases in this cond shouldn't be needed, but exist
108 ;; for compatibility with the old OPERS package. The old MULSLIS
109 ;; deleted ones ahead of time. Is this worth it?
111 (defun muln (factors simp-flag
)
112 (cond ((null factors
) 1)
113 ((atom factors
) factors
)
114 (t (simplifya `((mtimes) .
,factors
) simp-flag
))))
120 ((and (floatp x
) (floatp y
))
122 ((and ($bfloatp x
) ($bfloatp y
))
123 ;; Call BIGFLOATP to ensure that arguments have same precision.
124 ;; Otherwise FPQUOTIENT could return a spurious value.
125 (bcons (fpquotient (cdr (bigfloatp x
)) (cdr (bigfloatp y
)))))
133 ((and (floatp x
) (floatp y
))
135 ((and ($bfloatp x
) ($bfloatp y
))
136 ;; Call BIGFLOATP to ensure that arguments have same precision.
137 ;; Otherwise FPQUOTIENT could return a spurious value.
138 (bcons (fpquotient (cdr (bigfloatp x
)) (cdr (bigfloatp y
)))))
140 (mul (simplifya x nil
) (inv* y
))))))
143 (simplifya `((mnctimes) ,x
,y
) t
))
145 (defun ncmuln (factors flag
)
146 (simplifya `((mnctimes) .
,factors
) flag
))
150 ;; Don't use BASE as a parameter name since it is special in MacLisp.
152 (defun power (*base power
)
153 (cond ((=1 power
) *base
)
154 (t (simplifya `((mexpt) ,*base
,power
) t
))))
156 (defun power* (*base power
)
157 (cond ((=1 power
) (simplifya *base nil
))
158 (t (simplifya `((mexpt) ,*base
,power
) nil
))))
160 (defun ncpower (x y
) (simplifya `((mncexpt) ,x
,y
) t
))
162 ;; [Add something for constructing equations here at some point.]
164 ;; (ROOT X N) takes the Nth root of X.
165 ;; Warning! Simplifier may give a complex expression back, starting from a
166 ;; positive (evidently) real expression, viz. sqrt[(sinh-sin) / (sin-sinh)] or
172 (t (simplifya `((mexpt) ,x
((rat simp
) 1 ,n
)) t
))))
174 ;; (Porm flag expr) is +expr if flag is true, and -expr
175 ;; otherwise. Morp is the opposite. Names stand for "plus or minus"
178 (defun porm (s x
) (if s x
(neg x
)))
179 (defun morp (s x
) (if s
(neg x
) x
))