Fix bug #3926: Various limits give UND where they should give IND
[maxima.git] / src / rat3c.lisp
blob585f1c4e4793d0529c43556e52411bfccd4b6a18
1 ;;; -*- Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- ;;;;
2 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3 ;;; The data in this file contains enhancments. ;;;;;
4 ;;; ;;;;;
5 ;;; Copyright (c) 1984,1987 by William Schelter,University of Texas ;;;;;
6 ;;; All rights reserved ;;;;;
7 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
8 ;;; (c) Copyright 1981 Massachusetts Institute of Technology ;;;
9 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
11 (in-package :maxima)
13 (macsyma-module rat3c)
15 ;; THIS IS THE NEW RATIONAL FUNCTION PACKAGE PART 3.
16 ;; IT INCLUDES THE GCD ROUTINES AND THEIR SUPPORTING FUNCTIONS
18 (declare-top (special $keepfloat $algebraic $ratfac genvar))
20 ;; List of GCD algorithms. Default one is first.
21 (defmvar *gcdl* '($spmod $subres $ez $red $mod $algebraic))
23 (defmvar $gcd (car *gcdl*)) ;Sparse Modular
25 (defun cgcd (a b)
26 (cond (modulus 1)
27 ((and $keepfloat (or (floatp a) (floatp b))) 1)
28 (t (gcd a b))))
30 (defun pquotientchk (a b)
31 (if (equal b 1) a (pquotient a b)))
33 ;; divides polynomial x by polynomial y
34 ;; avoids error "quotient by polynomial of higher degree"
35 ;; (returns nil in this case)
36 (defun pquotientchk-safe (x y)
37 (ignore-rat-err (pquotientchk x y)))
39 (defun ptimeschk (a b)
40 (cond ((equal a 1) b)
41 ((equal b 1) a)
42 (t (ptimes a b))))
44 (defun pfloatp (x)
45 (catch 'float (if (pcoefp x) (floatp x) (pfloatp1 x))))
47 (defun pfloatp1 (x)
48 (mapc #'(lambda (q) (cond ((pcoefp q) (when (floatp q) (throw 'float t)))
49 ((pfloatp1 q))))
50 (cdr x))
51 nil)
53 (defun pgcd (x y)
54 (setq x (car (pgcda x y nil)))
55 (cond ((pminusp x) (pminus x))
56 (modulus (monize x))
57 (t x)))
59 (defun plcm (x y)
60 (setq x (pgcdcofacts x y))
61 (ptimes (car x) (ptimes (cadr x) (caddr x))))
63 (defun plcmcofacts (x y)
64 (setq x (pgcdcofacts x y))
65 (list (ptimes (car x) (ptimes (cadr x) (caddr x)))
66 (caddr x) (cadr x)))
68 ; returns list (gcd xx yy alg)
69 ; where x * y = gcd^2 * xx * yy / alg^2
70 ; and alg is non-nil only when $algebraic is true
71 (defun pgcdcofacts (x y)
72 (let ((a (pgcda x y t)))
73 (cond ((cdr a) a)
74 ((equal (setq a (car a)) 1) (list 1 x y))
75 ((and $algebraic (not (pcoefp a)))
76 (cons a (prog2 (setq x (rquotient x a)
77 y (rquotient y a)
78 a (pgcdcofacts (cdr x) (cdr y)))
79 (list (ptimes (car x) (caddr a))
80 (ptimes (car y) (cadr a))
81 (ptimes (cadr a) (cdr y))))))
82 ((eq a x) (list x 1 (pquotient y x)))
83 ((eq a y) (list a (pquotient x y) 1))
84 (t (list a (pquotient x a) (pquotient y a))))))
86 (defun pgcda (x y cofac? &aux a c)
87 (cond ((not $gcd) (list 1 x y))
88 ((and $keepfloat (or (pfloatp x) (pfloatp y)))
89 (cond ((or (pcoefp x) (pcoefp y)
90 (pcoefp (setq a (car (ptermcont x))))
91 (pcoefp (setq a (pgcd a (car (ptermcont y))))))
92 (list 1 x y))
93 (t (list a))))
94 ((pcoefp x)
95 (cond ((pcoefp y)
96 (cons (setq a (cgcd x y))
97 (and cofac?
98 (list (cquotient x a) ;(CQUOTIENT 0 0) = 0
99 (cquotient y a)))))
100 ((zerop x) (list y x 1))
101 (t (list (pcontent1 (cdr y) x)))))
102 ((pcoefp y) (cond ((zerop y) (list x 1 y))
103 (t (list (pcontent1 (cdr x) y)))))
104 ((equal x y) (list x 1 1))
105 ($ratfac (multiple-value-list (fpgcdco x y)))
106 ((not (eq (p-var x) (p-var y)))
107 (list (if (pointergp (p-var x) (p-var y))
108 (oldcontent1 (p-terms x) y)
109 (oldcontent1 (p-terms y) x))))
110 ((progn (desetq (a x) (ptermcont x))
111 (desetq (c y) (ptermcont y))
112 (not (and (equal a 1) (equal c 1))))
113 (mapcar #'ptimes (monomgcdco a c cofac?) (pgcda x y cofac?)))
114 ((and (not $algebraic) (not modulus)
115 (desetq (a . c) (lin-var-find (nreverse (pdegreevector x))
116 (nreverse (pdegreevector y))
117 (reverse genvar))))
118 (cond ((= a 1) (linhack x y (car c) (cadr c) cofac?))
119 (t (setq a (linhack y x a (cadr c) cofac?))
120 (if (cdr a) (rplacd a (nreverse (cdr a))))
121 a)))
122 ((eq $gcd '$spmod) (list (zgcd x y)))
123 ((eq $gcd '$subres) (list (oldgcd x y)))
124 ((eq $gcd '$algebraic)
125 (if (or (palgp x) (palgp y))
126 (let (($gcd '$subres)) (list (oldgcd x y)))
127 (let (($gcd '$spmod)) (list (zgcd x y)))))
128 ((eq $gcd '$ez) (ezgcd2 x y))
129 ((eq $gcd '$red) (list (oldgcd x y)))
130 ((eq $gcd '$mod) (newgcd x y modulus))
131 ((not (member $gcd *gcdl* :test #'eq))
132 (merror (intl:gettext "gcd: 'gcd' variable must be one of ~M; found: ~M") *gcdl* $gcd))
133 (t (list 1 x y))))
135 (defun monomgcdco (p q cofac?)
136 (let ((gcd (monomgcd p q)))
137 (cons gcd (if cofac? (list (pquotient p gcd) (pquotient q gcd)) ()))))
139 (defun monomgcd (p q)
140 (cond ((or (pcoefp p) (pcoefp q)) 1)
141 ((eq (p-var p) (p-var q))
142 (make-poly (p-var p) (min (p-le p) (p-le q))
143 (monomgcd (p-lc p) (p-lc q))))
144 ((pointergp (car p) (car q)) (monomgcd (p-lc p) q))
145 (t (monomgcd p (p-lc q)))))
147 (defun linhack (pol1 pol2 nonlindeg var cofac?)
148 (prog (coeff11 coeff12 gcdab rpol1 rpol2 gcdcd gcdcoef)
149 (desetq (coeff11 . coeff12) (bothprodcoef (make-poly var) pol1))
150 (setq gcdab (if (pzerop coeff12) coeff11
151 (pgcd coeff11 coeff12)))
152 (cond ((equal gcdab 1)
153 (cond ((setq coeff11 (testdivide pol2 pol1))
154 (return (list pol1 1 coeff11)))
155 (t (return (list 1 pol1 pol2))))))
156 (setq rpol1 (pquotient pol1 gcdab))
157 (desetq (gcdcd rpol2) (linhackcontent var pol2 nonlindeg))
158 (cond ((equal gcdcd 1)
159 (cond ((setq coeff12 (testdivide rpol2 rpol1))
160 (return (list rpol1 gcdab coeff12)))
161 (t (return (list 1 pol1 pol2))))))
162 (cond (cofac? (desetq (gcdcoef coeff11 coeff12)
163 (pgcdcofacts gcdab gcdcd))
164 (cond ((setq gcdcd (testdivide* rpol2 rpol1))
165 (return (list (ptimes gcdcoef rpol1)
166 coeff11
167 (ptimes coeff12 gcdcd))))
168 (t (return (list gcdcoef
169 (ptimes coeff11 rpol1)
170 (ptimes coeff12 rpol2))))))
171 (t (setq gcdcoef (pgcd gcdcd gcdab))
172 (cond ((testdivide* rpol2 rpol1)
173 (return (list (ptimes gcdcoef rpol1))))
174 (t (return (list gcdcoef))))))))
176 (defun lin-var-find (a b c)
177 (do ((varl c (cdr varl))
178 (degl1 a (cdr degl1))
179 (degl2 b (cdr degl2)))
180 ((or (null degl1) (null degl2)) nil)
181 (if (equal (min (car degl1) (car degl2)) 1)
182 (return (list (car degl1) (car degl2) (car varl))))))
184 (defun linhackcontent (var pol nonlindeg &aux (npol pol) coef gcd)
185 (do ((i nonlindeg (1- i)))
186 ((= i 0) (list (setq gcd (pgcd gcd npol)) (pquotient pol gcd)))
187 (desetq (coef . npol) (bothprodcoef (make-poly var i 1) npol))
188 (unless (pzerop coef)
189 (setq gcd (if (null gcd) coef (pgcd coef gcd)))
190 (if (equal gcd 1) (return (list 1 pol))))))
192 ;;*** THIS IS THE REDUCED POLYNOMIAL REMAINDER SEQUENCE GCD (COLLINS')
194 (defun oldgcd (x y &aux u v s egcd) ;only called from pgcda
195 (desetq (x u) (oldcontent x))
196 (desetq (y v) (oldcontent y))
197 (setq egcd (gcd (pgcdexpon u) (pgcdexpon v)))
198 (if (> egcd 1)
199 (setq u (pexpon*// u egcd nil)
200 v (pexpon*// v egcd nil)))
201 (if (> (p-le v) (p-le u)) (rotatef u v))
202 (setq s (case $gcd
203 ($red (redgcd u v))
204 ($subres (subresgcd u v))
205 (t (merror "OLDGCD: found gcd = ~M; how did that happen?" $gcd))))
206 ;; Check for gcd that simplifies to 0. SourceForge bugs 831445 and 1313987
207 (unless (ignore-rat-err (rainv s))
208 (setq s 1))
209 (unless (equal s 1)
210 (setq s (pexpon*// (primpart
211 (if $algebraic s
212 (pquotient s (pquotient (p-lc s)
213 (pgcd (p-lc u) (p-lc v))))))
214 egcd t)))
215 (setq s (ptimeschk s (pgcd x y)))
216 (and $algebraic (not (pcoefp (setq u (leadalgcoef s))))
217 (not (equal u s)) (setq s (algnormal s)))
218 (cond (modulus (monize s))
219 ((pminusp s) (pminus s))
220 (t s)))
222 (defun pgcdexpon (p)
223 (if (pcoefp p) 0
224 (do ((d (cadr p) (gcd d (car l)))
225 (l (cdddr p) (cddr l)))
226 ((or (null l) (= d 1)) d))))
228 (defun pexpon*// (p n *?)
229 (if (or (pcoefp p) (= n 1)) p
230 (do ((ans (list (car p))
231 (cons (cadr l)
232 (cons (if *? (* (car l) n)
233 (truncate (car l) n))
234 ans)))
235 (l (cdr p) (cddr l)))
236 ((null l) (nreverse ans)))))
238 ;;polynomial gcd using reduced prs
240 (defun redgcd (p q &aux (d 0))
241 (loop until (zerop (pdegree q (p-var p)))
242 do (psetq p q
243 q (pquotientchk-safe (prem p q) (pexpt (p-lc p) d))
244 d (+ (p-le p) 1 (- (p-le q))))
245 (if (< d 1) (return 1))
246 finally (return (if (pzerop q) p 1))))
248 ;;computes gcd's using subresultant prs
249 ;;ACM Transactions On Mathematical Software Sept. 1978
251 (defun subresgcd (p q)
252 (loop for g = 1 then (p-lc p)
253 for h = 1 then (pquotientchk-safe (pexpt g d) h^1-d)
254 for d = (- (p-le p) (p-le q))
255 for h^1-d = 1 then (if (< d 1)
256 (return 1)
257 (pexpt h (1- d)))
258 do (psetq p q
259 q (pquotientchk-safe (prem p q) (ptimes g (ptimes h h^1-d))))
260 if (zerop (pdegree q (p-var p))) return (if (pzerop q) p 1)))
262 ;;*** THIS COMPUTES PSEUDO REMAINDERS
264 (defun psquorem1 (u v quop)
265 (prog (k (m 0) lcu lcv quo lc)
266 (declare (special lcu lcv))
267 (setq lcv (pt-lc v))
268 (setq k (- (pt-le u) (pt-le v)))
269 (cond ((minusp k) (return (list 1 '(0 0) u))))
270 (if quop (setq lc (pexpt (pt-lc v) (1+ k))))
271 a (setq lcu (pminus (pt-lc u)))
272 (if quop (setq quo (cons (ptimes (pt-lc u) (pexpt (pt-lc v) k))
273 (cons k quo))))
274 (cond ((null (setq u (pgcd2 (pt-red u) (pt-red v) k)))
275 (return (list lc (nreverse quo) '(0 0))))
276 ((minusp (setq m (- (pt-le u) (pt-le v))))
277 (setq u (cond ((zerop k) u)
278 (t (pctimes1 (pexpt lcv k) u))))
279 (return (list lc (nreverse quo) u)))
280 ((> (1- k) m)
281 (setq u (pctimes1 (pexpt lcv (- (1- k) m)) u))))
282 (setq k m)
283 (go a)))
285 (defun prem (p q)
286 (cond ((pcoefp p)
287 (if (pcoefp q)
288 (if (or modulus (floatp p) (floatp q))
290 (rem p q))
292 ((pcoefp q) (pzero))
293 (t (psimp (p-var p) (pgcd1 (p-terms p) (p-terms q))))))
295 (defun pgcd1 (u v) (caddr (psquorem1 u v nil)))
297 (defun pgcd2 (u v k &aux (i 0))
298 (declare (special lcu lcv) (fixnum i))
299 (cond ((null u) (pcetimes1 v k lcu))
300 ((null v) (pctimes1 lcv u))
301 ((zerop (setq i (+ (pt-le u) (- k) (- (car v)))))
302 (pcoefadd (pt-le u) (pplus (ptimes lcv (pt-lc u))
303 (ptimes lcu (pt-lc v)))
304 (pgcd2 (pt-red u) (pt-red v) k)))
305 ((minusp i)
306 (list* (+ (pt-le v) k) (ptimes lcu (pt-lc v)) (pgcd2 u (pt-red v) k)))
307 (t (list* (pt-le u) (ptimes lcv (pt-lc u)) (pgcd2 (pt-red u) v k)))))
309 ;;;*** OLDCONTENT REMOVES ALL BUT MAIN VARIABLE AND PUTS THAT IN CONTENT
310 ;;;*** OLDCONTENT OF 3*A*X IS 3*A (WITH MAINVAR=X)
312 (defun rcontent (p) ;RETURNS RAT-FORMS
313 (let ((q (oldcontenta p)))
314 (list (cons q 1) (cond ($algebraic (rquotient p q))
315 (t (cons (pquotient p q) 1))))))
317 (defun oldcontenta (x)
318 (cond ((pcoefp x) x)
319 (t (setq x (contsort (cdr x)))
320 (oldcontent2 (cdr x) (car x)))))
322 (defun oldcontent (x)
323 (cond ((pcoefp x) (list x 1))
324 ((null (p-red x))
325 (list (p-lc x) (make-poly (p-var x) (p-le x) 1)))
326 (t (let ((u (contsort (cdr x))) v)
327 (setq u (oldcontent2 (cdr u) (car u))
328 v (cond ($algebraic (car (rquotient x u)))
329 (t (pcquotient x u))))
330 (cond ((pminusp v) (list (pminus u) (pminus v)))
331 (t (list u v)))))))
333 (defun oldcontent1 (x gcd)
334 (cond ((equal gcd 1) 1)
335 ((null x) gcd)
336 (t (oldcontent2 (contsort x) gcd))))
338 (defun oldcontent2 (x gcd)
339 (do ((x x (cdr x))
340 (gcd gcd (pgcd (car x) gcd)))
341 ((or (null x) (equal gcd 1)) gcd)))
343 (defun contsort (x)
344 (setq x (coefl x))
345 (cond ((member 1 x) '(1))
346 ((null (cdr x)) x)
347 (t (sort x #'contodr))))
349 (defun coefl (x)
350 (do ((x x (cddr x))
351 (ans nil (cons (cadr x) ans)))
352 ((null x) ans)))
354 (defun contodr (a b)
355 (cond ((pcoefp a) t)
356 ((pcoefp b) nil)
357 ((eq (car a) (car b)) (not (> (cadr a) (cadr b))))
358 (t (pointergp (car b)(car a)))))
360 ;;;*** PCONTENT COMPUTES INTEGER CONTENT
361 ;;;*** PCONTENT OF 3*A*X IS 3 IF MODULUS = NIL 1 OTHERWISE
363 (defun pcontent (x)
364 (cond ((pcoefp x) (list x 1))
365 (t (let ((u (pcontentz x)))
366 (if (equal u 1) (list 1 x)
367 (list u (pcquotient x u)))))))
369 (defun pcontent1 (x gcd)
370 (do ((x x (cddr x))
371 (gcd gcd (cgcd gcd (pcontentz (cadr x)))))
372 ((or (null x) (equal gcd 1)) gcd)))
374 (defun pcontentz (p)
375 (cond ((pcoefp p) p)
376 (t (pcontent1 (p-red p) (pcontentz (p-lc p))))))
378 (defun ucontent (p) ;CONTENT OF UNIV. POLY
379 (cond ((pcoefp p) (abs p))
380 (t (setq p (mapcar #'abs (coefl (cdr p))))
381 (let ((m (reduce #'min p)))
382 (oldcontent2 (delete m p :test #'equal) m)))))
384 ;;*** PGCDU CORRESPONDS TO BROWN'S ALGORITHM U
386 ;;;PGCDU IS NOT NOW IN RAT;UFACT >
388 (defun pgcdu (p q)
389 (do () ((pzerop q) (monize p))
390 (psetq p q q (pmodrem p q))))
392 (defun pmodrem (x y)
393 (cond ((null modulus)
394 (merror "PMODREM: null modulus; how did that happen?"))
395 ((pacoefp y) (if (pzerop y) x 0))
396 ((pacoefp x) x)
397 ((eq (p-var x) (p-var y))
398 (psimp (car x) (pgcdu1 (p-terms x) (p-terms y) nil)))
399 (t (merror "PMODREM: I can't handle this; x = ~M, y = ~M" x y))))
401 (defun pmodquo (u v &aux quo)
402 (declare (special quo))
403 (cond ((null modulus)
404 (merror "PMODQUO: null modulus; how did that happen?"))
405 ((pcoefp v) (cons (ptimes (crecip v) u) 0))
406 ((alg v) (cons (ptimes (painvmod v) u) 0))
407 ((pacoefp u) (cons 0 u))
408 ((not (eq (p-var u) (p-var v)))
409 (merror "PMODQUO: arguments have different variables; how did that happen?"))
410 (t (xcons (psimp (car u) (pgcdu1 (cdr u) (cdr v) t))
411 (psimp (car u) quo)))))
414 (defun pgcdu1 (u v pquo*)
415 (let ((invv (painvmod (pt-lc v))) (k 0) q*)
416 (declare (special k quo q*))
417 (loop until (minusp (setq k (- (pt-le u) (pt-le v))))
418 do (setq q* (ptimes invv (pt-lc u)))
419 if pquo* do (setq quo (nconc quo (list k q*)))
420 when (ptzerop (setq u (ptpt-subtract-powered-product
421 (pt-red u) (pt-red v) q* k)))
422 return (ptzero)
423 finally (return u))))
425 ;; it is convenient to have the *bigprimes* be actually less than
426 ;; half the size of the most positive fixnum, so that arithmetic is easier
428 (defvar *bigprimes* (loop with p = (ash most-positive-fixnum -1) repeat 20 do
429 (setq p (next-prime (1- p) -1))
430 collect p))
432 (defmvar *alpha (car *bigprimes*))
434 (defun newprime (p)
435 (do ((pl *bigprimes* (cdr pl)))
436 ((null pl)
437 (setq p (next-prime (1- p) -1))
438 (setq *bigprimes* (nconc *bigprimes* (list p)))
440 (when (< (car pl) p)
441 (return (car pl)))))
443 (defun leadcoefficient (p)
444 (if (pcoefp p) p (leadcoefficient (caddr p))))
446 (defun maxcoefficient (p)
447 (if (pcoefp p) (abs p) (maxcoef1 (cdr p))))
449 (defun maxcoef1 (p)
450 (if (null p) 0 (max (maxcoefficient (cadr p)) (maxcoef1 (cddr p)))))
452 (defun maxnorm (poly)
453 (if (null poly) 0 (max (norm (cadr poly)) (maxnorm (cddr poly)))))
455 (defun norm (poly)
456 (cond ((null poly) 0)
457 ((pcoefp poly) (abs poly))
458 (t (+ (norm (caddr poly)) (norm1 (cdddr poly)) )) ))
460 (defun norm1 (poly)
461 (if (null poly) 0 (+ (norm (cadr poly)) (norm1 (cddr poly)) )) )
463 (defun pdegree (p var)
464 (cond ((pcoefp p) 0)
465 ((eq var (p-var p)) (p-le p))
466 ((pointergp var (p-var p)) 0)
467 (t (do ((l (p-red p) (pt-red l))
468 (e (pdegree (p-lc p) var) (max e (pdegree (pt-lc l) var))))
469 ((null l) e)))))
471 (defun poly-in-var (p v)
472 (cond ((or (pcoefp p) (pointergp v (p-var p))) (list 0 p))
473 ((eq (p-var p) v) (p-terms p))
474 ((loop with ans
475 for (exp coef) on (p-terms p) by #'cddr
476 do (setq ans (ptptplus ans
477 (everysubst2 (poly-in-var coef v)
478 (list (p-var p) exp 1))))
479 finally (return ans)))))
481 (defun univar (x)
482 (or (null x) (and (pcoefp (pt-lc x)) (univar (pt-red x)))))
484 ;;**THE CHINESE REMAINDER ALGORITHM IS A SPECIAL CASE OF LAGRANGE INTERPOLATION
486 (defun lagrange3 (u uk p qk)
487 (set-modulus p)
488 (setq uk (pdifference uk (pmod u)))
489 (cond ((pzerop uk) (setq modulus nil) u)
490 (t (setq uk (pctimes (crecip (cmod qk)) uk))
491 (setq modulus nil)
492 (pplus u (pctimes qk uk)))))
495 (defun lagrange33 (u uk qk xk)
496 (declare (special xv))
497 (setq uk (pdifference uk (pcsubst u xk xv)))
498 (cond ((pzerop uk) u)
499 (t (pplus u (ptimes
500 (pctimes (crecip (pcsubst qk xk xv)) uk)
501 qk)))))
504 ;;;*************************************************************
506 ;; THIS IS THE END OF THE NEW RATIONAL FUNCTION PACKAGE PART 3.
507 ;; IT INCLUDES THE GCD ROUTINES AND THEIR SUPPORTING FUNCTIONS