Add ability to dump command line options in texi format
[maxima.git] / src / ratout.lisp
blobcc263d591a4793cd9ed29066f4ddc48371199def
1 ;;; -*- Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- ;;;;
2 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3 ;;; The data in this file contains enhancements. ;;;;;
4 ;;; ;;;;;
5 ;;; Copyright (c) 1984,1987 by William Schelter,University of Texas ;;;;;
6 ;;; All rights reserved ;;;;;
7 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
8 ;;; (c) Copyright 1982 Massachusetts Institute of Technology ;;;
9 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
11 (in-package :maxima)
13 (macsyma-module ratout)
15 ;; THIS IS THE OUT-OF-CORE SEGMENT OF THE RATIONAL FUNCTION PACKAGE.
17 (declare-top (special *y*))
19 ;; NEWGCD (X,Y) RETURNS A LIST OF THREE ITEMS,
20 ;; (GCD, X/GCD, Y/GCD)
22 (defun newgcd (ratout-x ratout-y modulus)
23 (set-modulus modulus)
24 (let ((a (cond ((pcoefp ratout-x)
25 (cond ((zerop ratout-x)
26 ratout-y)
27 ((pcoefp ratout-y)
28 (cgcd ratout-x ratout-y))
30 (pcontent1 (cdr ratout-y) ratout-x))))
31 ((pcoefp ratout-y)
32 (cond ((zerop ratout-y)
33 ratout-x)
35 (pcontent1 (cdr ratout-x) ratout-y))))
36 ((pointergp (p-var ratout-x) (p-var ratout-y))
37 (oldcontent1 (cdr ratout-x) ratout-y))
38 ((pointergp (p-var ratout-y) (p-var ratout-x))
39 (oldcontent1 (cdr ratout-y) ratout-x))
40 (t nil))))
41 (cond (a
42 (list a (pquotient ratout-x a) (pquotient ratout-y a)))
43 (modulus
44 (pgcdp ratout-x ratout-y modulus))
46 (pgcdm ratout-x ratout-y)))))
48 (defun pgathercoef (p ratout-*chk ratout-*res)
49 (if (not (eq (car p) ratout-*chk))
51 (labels
52 ((pgath2 (p vmax)
53 (prog (v2)
54 (cond ((null p)
55 (return ratout-*res))
56 ((pcoefp (cadr p))
57 nil)
58 ((vgreat (setq v2 (pdegreer (cadr p))) vmax)
59 (setq ratout-*res (psimp ratout-*chk
60 (list (car p) (leadcoefficient (cadr p)))))
61 (setq vmax v2))
62 ((equal vmax v2)
63 (setq ratout-*res
64 (pplus ratout-*res
65 (psimp ratout-*chk
66 (list (car p) (leadcoefficient (cadr p))))))))
67 (return (pgath2 (cddr p) vmax)))))
68 (pgath2 (cdr p) nil))))
70 (defun pgath1 (p ratout-*max ratout-*var)
71 (prog nil
72 (cond ((null p)
73 (return ratout-*max))
74 ((pcoefp (cadr p))
75 nil)
76 ((eq (caadr p) ratout-*var)
77 (setq ratout-*max (max ratout-*max (cadadr p)))))
78 (return (pgath1 (cddr p) ratout-*max ratout-*var))))
80 (defun pnext (ratout-x ratout-*l)
81 (labels
82 ((pnext1 (ratout-x)
83 (prog nil
84 (cond ((null ratout-x)
85 (return ratout-*l))
86 ((or (pcoefp (cadr ratout-x))
87 (member (caadr ratout-x) ratout-*l :test #'eq))
88 nil)
90 (setq ratout-*l (cons (caadr ratout-x) ratout-*l))))
91 (return (pnext1 (cddr ratout-x))))))
92 (pnext1 ratout-x)
93 (cond ((null ratout-*l)
94 nil)
96 (car (sort ratout-*l #'pointergp))))))
98 (defun vgreat (ratout-x ratout-y)
99 (cond ((null ratout-x)
100 nil)
101 ((null ratout-y)
103 ((pointergp (car ratout-x) (car ratout-y))
105 ((not (eq (car ratout-x) (car ratout-y)))
106 nil)
107 ((> (cadr ratout-x) (cadr ratout-y))
109 ((equal (cadr ratout-x) (cadr ratout-y))
110 (vgreat (cddr ratout-x) (cddr ratout-y)))
112 nil)))
114 (defun pdegreer (ratout-x)
115 (if (pcoefp ratout-x)
117 (cons (car ratout-x)
118 (cons (cadr ratout-x)
119 (pdegreer (caddr ratout-x))))))
121 ;;*** PGCDP CORRESPONDS TO BROWN'S ALGORITHM P
123 (defun pgcdp (ratout-bigf1 ratout-bigf2 modulus)
124 (labels
125 ((pmodcontent (p ratout-xv)
126 ;;*** PMODCONTENT COMPUTES CONTENT OF
127 ;; P IN
128 ;; Z [X ] [X , X , ..., X ]
129 ;; P V 1 2 V-1
131 ;; PMODCONTENT OF 3*A*X IS A, IF MAINVAR IS X (=X )
132 ;; V
133 (prog (ratout-*var ratout-*chk ratout-*res ratout-*max ratout-gcd)
134 (setq ratout-*chk (car p))
135 (setq ratout-*max 0)
136 (setq ratout-*var (pnext (cdr p) nil))
137 (cond ((pointergp ratout-xv ratout-*chk)
138 (go ret1))
139 ((null ratout-*var)
140 (return (list p 1))))
141 (pgath1 (cdr p) ratout-*max ratout-*var)
143 (setq ratout-*res 0)
144 (labels
145 ((pgath3 (p ratout-*chk ratout-*max)
146 (prog (zz)
147 (cond ((null p)
148 (return ratout-*res))
149 ((pcoefp (cadr p))
150 (cond ((equal ratout-*max 0)
151 (setq zz (cadr p))
152 (go add))
154 (go ret))))
155 ((eq (caadr p) ratout-*var)
156 (setq zz (ptterm (cdadr p) ratout-*max))
157 (go add)))
158 (cond ((equal ratout-*max 0)
159 (setq zz (cadr p)))
161 (go ret)))
163 (cond ((equal zz 0)
164 (go ret)))
165 (setq ratout-*res (pplus ratout-*res (psimp ratout-*chk (list (car p) zz))))
167 (return (pgath3 (cddr p) ratout-*chk ratout-*max)))))
168 (pgath3 (cdr p) ratout-*chk ratout-*max))
170 (cond ((pcoefp ratout-*res)
171 (cond ((pzerop ratout-*res)
172 nil)
174 (go ret1))))
175 ((not (eq (car ratout-*res) ratout-*chk))
176 (go ret1))
177 ((not (univar (cdr ratout-*res)))
178 (setq ratout-*res (car (pmodcontent ratout-*res ratout-xv)))
179 (go a2))
180 (ratout-gcd
181 (setq ratout-gcd (pgcdu ratout-gcd ratout-*res)))
183 (setq ratout-gcd ratout-*res)))
184 (cond ((pcoefp ratout-gcd)
185 (go ret1))
186 ((minusp (setq ratout-*max (1- ratout-*max)))
187 (return (list ratout-gcd (pquotient p ratout-gcd)))))
188 (go a)
189 ret1
190 (return (list 1 p)))))
191 (prog (c c1 c2 ratout-n q
192 h1tilde h2tilde gstar h1star
193 h2star ratout-xv e b
194 gbar nubar nu1bar nu2bar
195 gtilde f1tilde f2tilde biggtilde
196 degree f1 f1f2)
197 (set-modulus modulus)
198 (cond ((and (univar (cdr ratout-bigf1))
199 (univar (cdr ratout-bigf2)))
200 (setq q (pgcdu ratout-bigf1 ratout-bigf2))
201 (return (list q (pquotient ratout-bigf1 q) (pquotient ratout-bigf2 q)))))
202 (setq ratout-xv (car ratout-bigf1))
203 (setq ratout-bigf1 (pmodcontent ratout-bigf1 ratout-xv))
204 (setq ratout-bigf2 (pmodcontent ratout-bigf2 ratout-xv))
205 (setq c (pgcdu (setq c1 (car ratout-bigf1)) (setq c2 (car ratout-bigf2))))
206 (setq ratout-bigf1 (cadr ratout-bigf1))
207 (setq ratout-bigf2 (cadr ratout-bigf2))
208 (setq ratout-n 0)
209 (setq e (pdegreer ratout-bigf2))
210 (setq degree (pdegreer ratout-bigf1))
211 (cond ((vgreat e degree)
212 (setq e degree)))
213 (setq b (ash modulus -1))
214 (setq gbar
215 (pgcdu (setq f1 (pgathercoef ratout-bigf1 ratout-xv 0))
216 (setq f1f2
217 (pgathercoef ratout-bigf2 ratout-xv 0))))
218 (cond ((equal 0 f1f2)
219 (go step15a)))
220 (setq nubar (pdegree gbar ratout-xv))
221 (setq nu1bar (+ nubar (pdegree ratout-bigf1 ratout-xv)))
222 (setq nu2bar (+ nubar (pdegree ratout-bigf2 ratout-xv)))
223 (setq f1f2 (ptimes f1 f1f2))
224 (setq nubar (max nu1bar nu2bar))
225 step6
226 (setq b (cplus b 1))
227 (cond ((equal (pcsubst f1f2 b ratout-xv) 0)
228 (go step6)))
229 ;; Step 7
230 (setq gtilde (pcsubst gbar b ratout-xv))
231 (setq f1tilde (pcsubst ratout-bigf1 b ratout-xv))
232 (setq f2tilde (pcsubst ratout-bigf2 b ratout-xv))
233 (setq biggtilde
234 (ptimeschk gtilde
235 (car (setq h2tilde (newgcd f1tilde f2tilde modulus)))))
236 (cond ((pcoefp biggtilde)
237 (go step15a)))
238 (setq h1tilde (cadr h2tilde))
239 (setq h2tilde (caddr h2tilde))
240 (setq degree (pdegreer biggtilde))
241 (cond ((vgreat degree e)
242 (go step6))
243 ((vgreat e degree)
244 (setq ratout-n 0)
245 (setq e degree)))
246 (setq ratout-n (1+ ratout-n))
247 (cond ((equal ratout-n 1)
248 (setq q (list ratout-xv 1 1 0 (cminus b)))
249 (setq gstar biggtilde)
250 (setq h1star h1tilde)
251 (setq h2star h2tilde))
253 (setq gstar (lagrange33 gstar biggtilde q b))
254 (setq h1star (lagrange33 h1star h1tilde q b))
255 (setq h2star (lagrange33 h2star h2tilde q b))
256 (setq q (ptimes q (list ratout-xv 1 1 0 (cminus b))))))
257 ;; Step 12
258 (cond ((not (> ratout-n nubar))
259 (go step6)))
260 ;; Step 13
261 (cond ((or (not (= nu1bar (+ (setq degree (pdegree gstar ratout-xv))
262 (pdegree h1star ratout-xv))))
263 (not (= nu2bar (+ degree (pdegree h2star ratout-xv)))))
264 (setq ratout-n 0)
265 (go step6)))
266 (setq gstar (cadr (pmodcontent gstar ratout-xv)))
267 ;; Step 15
268 (setq q (pgathercoef gstar ratout-xv 0))
269 (return (monicgcd (ptimeschk c gstar)
270 (ptimeschk (pquotient c1 c) (pquotientchk h1star q))
271 (ptimeschk (pquotient c2 c) (pquotientchk h2star q))
272 (leadcoefficient gstar)))
273 step15a
274 (return (list c
275 (ptimeschk (pquotient c1 c) ratout-bigf1)
276 (ptimeschk (pquotient c2 c) ratout-bigf2))) )))
278 (defun monicgcd (ratout-gcd ratout-x ratout-y lcf)
279 (cond ((equal lcf 1)
280 (list ratout-gcd ratout-x ratout-y))
281 (t (list (ptimes (crecip lcf) ratout-gcd)
282 (ptimes lcf ratout-x)
283 (ptimes lcf ratout-y)))))
285 ;;*** PGCDM CORRESPONDS TO BROWN'S ALGORITHM M
288 (defun pgcdm (ratout-bigf1 ratout-bigf2)
289 (prog (c c1 c2 f1 f2 ratout-n
290 e degree mubar p
291 gtilde h1tilde h2tilde
292 modulus
293 biggtilde q h1star h2star
294 gstar gbar)
295 (setq p *alpha)
296 ;; Step 1
297 (setq f1 (pcontent ratout-bigf1))
298 (setq f2 (pcontent ratout-bigf2))
299 (setq c (cgcd (setq c1 (car f1)) (setq c2 (car f2))))
300 (setq ratout-bigf1 (cadr f1))
301 (setq ratout-bigf2 (cadr f2))
302 ;; Step 3
303 (setq f1 (leadcoefficient ratout-bigf1))
304 (setq f2 (leadcoefficient ratout-bigf2))
305 (setq gbar (cgcd f1 f2))
306 ;; Step 4
307 (setq ratout-n 0)
308 (setq degree (pdegreer ratout-bigf1))
309 (setq e (pdegreer ratout-bigf2))
310 (cond ((vgreat e degree)
311 (setq e degree)))
312 ;; Step 5
313 (setq mubar
314 (* 2 gbar (max (maxcoefficient ratout-bigf1)
315 (maxcoefficient ratout-bigf2))))
316 (go step6a)
317 step6
318 (setq p (newprime p))
319 step6a
320 (cond ((or (zerop (rem f1 p))
321 (zerop (rem f2 p)))
322 (go step6)))
323 (set-modulus p)
324 ;; Step 7
325 (setq gtilde (pmod gbar))
326 ;; Step 8
327 (setq biggtilde
328 (ptimeschk gtilde
329 (car (setq h2tilde
330 (newgcd (pmod ratout-bigf1) (pmod ratout-bigf2)
331 modulus)))))
332 (cond ((pcoefp biggtilde)
333 (setq modulus nil)
334 (setq gstar 1)
335 (setq h1star ratout-bigf1)
336 (setq h2star ratout-bigf2)
337 (go step15)))
338 (cond ((null (cdr h2tilde))
339 (setq h1tilde (pquotient (pmod ratout-bigf1) (car h2tilde)))
340 (setq h2tilde (pquotient (pmod ratout-bigf2) (car h2tilde))))
342 (setq h1tilde (cadr h2tilde))
343 (setq h2tilde (caddr h2tilde))))
344 (setq degree (pdegreer biggtilde))
345 (cond ((vgreat degree e)
346 (go step6))
347 ((vgreat e degree)
348 (setq ratout-n 0)
349 (setq e degree)))
350 (setq ratout-n (1+ ratout-n))
351 ;; Step 11
352 (set-modulus nil)
353 (cond ((equal ratout-n 1)
354 (setq q p)
355 (setq gstar biggtilde)
356 (setq h1star h1tilde)
357 (setq h2star h2tilde))
359 (setq gstar (lagrange3 gstar biggtilde p q))
360 (setq h1star (lagrange3 h1star h1tilde p q))
361 (setq h2star (lagrange3 h2star h2tilde p q))
362 (setq q (* p q))))
363 ;; Step 12
364 (cond ((> mubar q)
365 (go step6)))
366 (cond ((> (* 2 (max (* (setq gtilde (norm gstar))
367 (maxcoefficient h1star))
368 (* gtilde (maxcoefficient h2star))))
370 (go step6)))
371 (set-modulus nil)
372 (setq gstar (cadr (pcontent gstar)))
373 step15
374 (setq q (leadcoefficient gstar))
375 (return (list (ptimeschk c gstar)
376 (ptimeschk (cquotient c1 c) (pquotientchk h1star q))
377 (ptimeschk (cquotient c2 c) (pquotientchk h2star q))))))
379 ;; THE FUNCTIONS ON THIS PAGE ARE USED BY KRONECKER FACTORING
381 (defun pkroneck (p)
382 (prog (maxexp i l ratout-*p factors factor ratout-*l)
383 (setq maxexp (quotient (cadr p) 2))
384 (setq i 1)
386 (when (> i maxexp)
387 (return (cons p factors)))
388 (setq l (p1 (reverse (let ((p p) (i i) ($factorflag t))
389 (pfactor2 p i)))))
391 (when (null l)
392 (go d))
393 (setq ratout-*l (car l))
394 (setq ratout-*p (car p))
395 (ignore-rat-err
396 (setq factor (errset (pinterpolate ratout-*l ratout-*p))))
397 (setq l (cdr l))
398 (if (atom factor)
399 (go b)
400 (setq factor (car factor)))
401 (when (or (pcoefp factor)
402 (not (equal (car p) (car factor)))
403 (not (pzerop (prem p factor))))
404 (go b))
405 (cond (modulus
406 (pmonicize (cdr factor)))
407 ((pminusp factor)
408 (setq factor (pminus factor))))
409 (setq p (pquotient p factor))
410 (setq maxexp (quotient (cadr p) 2))
411 (setq factors (cons factor factors))
412 (go a)
414 (incf i)
415 (go a)))
417 (defun pfactor2 (p i)
418 (cond ((< i 0) nil)
419 (t (cons (pfactor (pcsubst p i (car p)))
420 (pfactor2 p (1- i))))))
422 (defun rpowerset (ratout-x ratout-n)
423 (cond ((null ratout-x)
424 (quote (1 nil)))
425 ((equal ratout-x 1)
426 (quote (1)))
428 (cons 1 (ptts1 ratout-x ratout-n ratout-x)))))
431 (defun allprods (ratout-x ratout-y)
432 (cond ((null ratout-x)
433 nil)
434 ((null ratout-y)
435 nil)
437 (nconc (ap1 (car ratout-x) ratout-y)
438 (allprods (cdr ratout-x) ratout-y)))))
440 ;; NOTE: As best as I (rtoy) can tell, this function is never called
441 ;; from the testsuite (including the share testsuite). This function
442 ;; can be called from pkroneck which is called from pfactorany in
443 ;; rat3d.lisp. Probably best not to modify this until we have some
444 ;; test coverage of this function.
445 (defun al1 (ratout-f r len)
446 (prog (ratout-ss)
447 (cond
448 ((equal len 1)
449 (return (mapcar #'(lambda (*y*)
450 (cons *y* nil))
451 ratout-f)))
452 ((null r)
453 (return nil))
455 (mapc #'(lambda (*y*)
456 (setq ratout-ss
457 (nconc ratout-ss
458 (mapcar #'(lambda (z) (cons z *y*))
459 ratout-f))))
460 (al1 (car r) (cdr r) (1- len)))
461 (return ratout-ss)))))
464 (defun ap1 (ratout-x l)
465 (cond ((null l)
466 nil)
468 (cons (ptimes ratout-x (car l))
469 (ap1 ratout-x (cdr l))))))
471 (defun ptts1 (ratout-x ratout-n ratout-y)
472 (cond ((equal ratout-n 1)
473 (list ratout-y))
475 (cons ratout-y (ptts1 ratout-x (1- ratout-n) (ptimes ratout-x ratout-y))))))
477 (defun p1 (l)
478 (prog (a)
479 (setq a (mapcar #'p11 l))
480 (return (cond ((null l)
481 nil)
483 (cdr (al1 (car a)
484 (cdr a)
485 (length a))))))))
487 (defun p11 (ele)
488 (cond ((null (cddr ele))
489 (rpowerset (car ele) (cadr ele)))
491 (allprods (rpowerset (car ele) (cadr ele))
492 (p11 (cddr ele))))))
494 (defun pinterpolate (l var)
495 (psimp var (pinterpolate1 (pinterpolate2 l 1)
496 (- (length l) 2))))
498 (defun pinterpolate1 (ratout-x ratout-n)
499 (pinterpolate4 (pinterpolate5 (reverse ratout-x) 1 ratout-n ratout-n)
500 (1+ ratout-n)))
502 (defun pinterpolate2 (ratout-x ratout-n)
503 (cond ((null (cdr ratout-x))
504 ratout-x)
506 (cons (car ratout-x)
507 (pinterpolate2 (pinterpolate3 ratout-x ratout-n) (1+ ratout-n))))))
509 (defun pinterpolate3 (ratout-x ratout-n)
510 (cond ((null (cdr ratout-x))
511 nil)
513 (cons (pquotient (pdifference (cadr ratout-x) (car ratout-x)) ratout-n)
514 (pinterpolate3 (cdr ratout-x) ratout-n)))))
516 (defun pinterpolate4 (ratout-x ratout-n)
517 (cond ((null ratout-x)
518 nil)
519 ((pzerop (car ratout-x))
520 (pinterpolate4 (cdr ratout-x) (1- ratout-n)))
522 (cons ratout-n (cons (car ratout-x)
523 (pinterpolate4 (cdr ratout-x) (1- ratout-n)))))))
525 (defun pinterpolate5 (ratout-x i j ratout-n)
526 (cond ((> i ratout-n)
527 ratout-x)
529 (pinterpolate5 (cons (car ratout-x) (pinterpolate6 ratout-x i j))
530 (1+ i)
531 (1- j)
532 ratout-n))))
534 (defun pinterpolate6 (ratout-x i j)
535 (cond ((zerop i)
536 (cdr ratout-x))
538 (cons (pdifference (cadr ratout-x) (pctimes j (car ratout-x)))
539 (pinterpolate6 (cdr ratout-x) (1- i) j)))))
541 ;; THE N**(1.585) MULTIPLICATION SCHEME
542 ;;FOLLOWS. IT SHOULD BE USED ONLY WHEN BOTH INPUTS ARE MULTIVARIATE,
543 ;;DENSE, AND OF NEARLY THE SAME SIZE. OR ABSOLUTELY TREMENDOUS.
544 ;;(THE CLASSICAL MULTIPLICATION SCHEME IS N**2 WHERE N IS SIZE OF
545 ;;POLYNOMIAL (OR N*M FOR DIFFERENT SIZES). FOR THIS
546 ;;CASE, N IS APPX. THE SIZE OF LARGER.
548 (defmfun $fasttimes (ratout-x ratout-y)
549 (cond ((and (not (atom ratout-x))
550 (not (atom ratout-y))
551 (equal (car ratout-x) (car ratout-y))
552 (equal (caar ratout-x) 'mrat)
553 (equal (cddr ratout-x) 1)
554 (equal (cddr ratout-y) 1))
555 (cons (car ratout-x)
556 (cons (fptimes (cadr ratout-x)(cadr ratout-y))
557 1)))
559 (merror (intl:gettext "fasttimes: arguments must be CRE polynomials with same variables.")))))
561 (defun fptimes (ratout-x ratout-y)
562 (cond ((or (pzerop ratout-x) (pzerop ratout-y))
563 (pzero))
564 ((pcoefp ratout-x)
565 (pctimes ratout-x ratout-y))
566 ((pcoefp ratout-y)
567 (pctimes ratout-y ratout-x))
568 ((eq (car ratout-x) (car ratout-y))
569 (cond ((or (univar(cdr ratout-x))
570 (univar(cdr ratout-y)))
571 (cons (car ratout-x)
572 (ptimes1 (cdr ratout-x) (cdr ratout-y))))
574 (cons (car ratout-x)
575 (fptimes1 (cdr ratout-x)(cdr ratout-y))))))
576 ((pointergp (car ratout-x) (car ratout-y))
577 (cons (car ratout-x)
578 (pctimes1 ratout-y (cdr ratout-x))))
580 (cons (car ratout-y)
581 (pctimes1 ratout-x (cdr ratout-y))))))
583 (defun fptimes1 (ratout-f g)
584 (prog (a b c d)
585 (cond ((or (null ratout-f) (null g))
586 (return nil))
587 ((null (cddr ratout-f))
588 (return (lsft (pctimes1 (cadr ratout-f) g) (car ratout-f))))
589 ((null (cddr g))
590 (return (lsft (pctimes1 (cadr g) ratout-f) (car g)))))
591 (setq d (ash (1+ (max (car ratout-f) (car g))) -1))
592 (setq ratout-f (halfsplit ratout-f d) g (halfsplit g d))
593 (setq a (fptimes1 (car ratout-f) (car g)))
594 (setq b
595 (fptimes1 (ptptplus (car ratout-f) (cdr ratout-f)) (ptptplus (car g) (cdr g))))
596 (setq c (fptimes1 (cdr ratout-f) (cdr g)))
597 (setq b (ptptdiffer (ptptdiffer b a) c))
598 (return (ptptplus (lsft a (ash d 1)) (ptptplus (lsft b d) c)))))
600 (defun halfsplit (p d)
601 (do ((a)
602 (p p (cddr p)))
603 ((or (null p) (< (car p) d))
604 (cons (nreverse a) p))
605 (setq a (cons (cadr p)
606 (cons (- (car p) d) a)))))
608 (defun lsft (p ratout-n)
609 (do ((q p (cddr (rplaca q (+ (car q) ratout-n)))))
610 ((null q)))
613 ;;; TO TRUNCATE ON E, DO RATWEIGHT(E,1);
614 ;;;THEN DO RATWTLVL:N. ALL POWERS >N GO TO 0.
616 (defmfun $ratweight (&rest args)
617 (when (oddp (length args))
618 (merror (intl:gettext "ratweight: number of arguments must be a multiple of 2.")))
619 (do ((l args (cddr l)))
620 ((null l))
621 (rplacd (or (assoc (first l) *ratweights :test #'equal)
622 (car (push (list (first l)) *ratweights)))
623 (second l)))
624 (setq $ratweights (cons '(mlist simp) (dot2l *ratweights)))
625 (if (null args)
626 $ratweights
627 (cons '(mlist) args)))
629 (defun pweight (ratout-x)
630 (or (get ratout-x '$ratweight) 0))
632 (defun wtptimes (ratout-x ratout-y ratout-wtsofar)
633 (cond ((or (pzerop ratout-x)
634 (pzerop ratout-y)
635 (> ratout-wtsofar $ratwtlvl))
636 (pzero))
637 ((pcoefp ratout-x)
638 (wtpctimes ratout-x ratout-y ratout-wtsofar))
639 ((pcoefp ratout-y)
640 (wtpctimes ratout-y ratout-x ratout-wtsofar))
641 ((eq (car ratout-x) (car ratout-y))
642 (palgsimp (car ratout-x)
643 (wtptimes1 (cdr ratout-x)
644 (cdr ratout-y)
645 (pweight (car ratout-x))
646 ratout-wtsofar)
647 (alg ratout-x)))
648 ((pointergp (car ratout-x) (car ratout-y))
649 (psimp (car ratout-x)
650 (wtpctimes1 ratout-y (cdr ratout-x) (pweight (car ratout-x)) ratout-wtsofar)))
652 (psimp (car ratout-y)
653 (wtpctimes1 ratout-x (cdr ratout-y) (pweight (car ratout-y)) ratout-wtsofar)))))
655 (defun wtptimes1 (ratout-x ratout-y ratout-xweight ratout-wtsofar)
656 (let (ratout-v ratout-u*)
657 (labels
658 ((wtptimes2 (ratout-y)
659 (if (null ratout-y)
661 (let ((ii (+ (* ratout-xweight (+ (car ratout-x) (car ratout-y)))
662 ratout-wtsofar)))
663 (if (> ii $ratwtlvl)
664 (wtptimes2 (cddr ratout-y))
665 (pcoefadd (+ (car ratout-x) (car ratout-y))
666 (wtptimes (cadr ratout-x) (cadr ratout-y) ii)
667 (wtptimes2 (cddr ratout-y)))))))
669 (wtptimes3 (ratout-y)
670 (prog ((e 0) u c)
672 (cond ((null ratout-y)
673 (return nil)))
674 (setq e (+ (car ratout-x) (car ratout-y)))
675 (setq c (wtptimes (cadr ratout-y)
676 (cadr ratout-x)
677 (+ ratout-wtsofar (* ratout-xweight e))))
678 (cond ((pzerop c)
679 (setq ratout-y (cddr ratout-y))
680 (go a1))
681 ((or (null ratout-v)
682 (> e (car ratout-v)))
683 (setq ratout-u* (setq ratout-v (ptptplus ratout-u* (list e c))))
684 (setq ratout-y (cddr ratout-y))
685 (go a1))
686 ((equal e (car ratout-v))
687 (setq c (pplus c (cadr ratout-v)))
688 (cond ((pzerop c)
689 (setq ratout-u*
690 (setq ratout-v (ptptdiffer ratout-u*
691 (list (car ratout-v)
692 (cadr ratout-v))))))
694 (rplaca (cdr ratout-v) c)))
695 (setq ratout-y (cddr ratout-y))
696 (go a1)))
698 (cond ((and (cddr ratout-v)
699 (> (caddr ratout-v) e))
700 (setq ratout-v (cddr ratout-v))
701 (go a)))
702 (setq u (cdr ratout-v))
704 (cond ((or (null (cdr u))
705 (< (cadr u) e))
706 (rplacd u (cons e (cons c (cdr u))))
707 (go e)))
708 (cond ((pzerop (setq c (pplus (caddr u) c)))
709 (rplacd u (cdddr u))
710 (go d))
712 (rplaca (cddr u) c)))
714 (setq u (cddr u))
716 (setq ratout-y (cddr ratout-y))
717 (cond ((null ratout-y)
718 (return nil))
719 ((pzerop
720 (setq c (wtptimes (cadr ratout-x) (cadr ratout-y)
721 (+ ratout-wtsofar (* ratout-xweight
722 (setq e (+ (car ratout-x) (car ratout-y))))))))
723 (go d)))
725 (cond ((and (cdr u)
726 (> (cadr u) e))
727 (setq u (cddr u))
728 (go c)))
729 (go b))))
730 (prog ()
731 (setq ratout-v (setq ratout-u* (wtptimes2 ratout-y)))
733 (setq ratout-x (cddr ratout-x))
734 (cond ((null ratout-x)
735 (return ratout-u*)))
736 (wtptimes3 ratout-y)
737 (go a)))))
739 (defun wtpctimes (c p ratout-wtsofar)
740 (cond ((pcoefp p)
741 (ctimes c p))
743 (psimp (car p) (wtpctimes1 c (cdr p) (pweight (car p)) ratout-wtsofar)))))
745 (defun wtpctimes1 (c ratout-x xwt ratout-wtsofar)
746 (prog (cc)
747 (return
748 (cond ((null ratout-x)
749 nil)
751 (setq cc (wtptimes c
752 (cadr ratout-x)
753 (+ ratout-wtsofar (* xwt (car ratout-x)))))
754 (cond ((pzerop cc)
755 (wtpctimes1 c (cddr ratout-x) xwt ratout-wtsofar))
757 (cons (car ratout-x)
758 (cons cc
759 (wtpctimes1 c
760 (cddr ratout-x)
762 ratout-wtsofar))))))))))
764 (defun wtpexpt (ratout-x ratout-n)
765 (cond ((= ratout-n 0)
767 ((= ratout-n 1)
768 ratout-x)
769 ((evenp ratout-n)
770 (let ((xn2 (wtpexpt ratout-x (/ ratout-n 2))))
771 (wtptimes xn2 xn2 0)))
773 (wtptimes ratout-x (wtpexpt ratout-x (1- ratout-n)) 0))))
775 (defmfun $horner (e &rest l)
776 (let (($ratfac nil)
777 (varlist (cdr $ratvars))
778 genvar
779 (ratout-x nil)
780 (arg1 (taychk2rat e)))
781 (cond ((mbagp arg1)
782 (cons (car arg1)
783 (mapcar #'(lambda (u) (apply '$horner (cons u l))) (cdr arg1))))
785 (setq ratout-x (apply #'$rat (cons arg1 l)))
786 (mapc #'(lambda (ratout-y z) (putprop ratout-y z 'disrep)) (cadddr (car ratout-x)) (caddar ratout-x))
787 (div* (hornrep (cadr ratout-x)) (hornrep (cddr ratout-x)))))))
789 (defun hornrep (p)
790 (if (pcoefp p)
792 (horn+ (cdr p) (get (car p) 'disrep))))
794 (defun horn+ (l var)
795 (prog (ans last)
796 (setq ans (hornrep (cadr l)))
798 (setq last (car l) l (cddr l))
799 (cond ((null l)
800 (return (cond ((equal last 0)
801 ans)
803 (list '(mtimes)
804 (list '(mexpt) var last) ans)))))
806 (setq ans (list '(mplus)
807 (hornrep (cadr l))
808 (list '(mtimes)
809 (list '(mexpt) var (- last (car l)))
810 ans)))))
811 (go a)))
813 (declare-top (special $factorflag
814 varlist))
816 (defmfun $partfrac (ratout-exp ratout-var)
817 (cond ((mbagp ratout-exp)
818 (cons (car ratout-exp)
819 (mapcar #'(lambda (u)
820 ($partfrac u ratout-var))
821 (cdr ratout-exp))))
822 ((and (atom ratout-var)
823 (not (among ratout-var ratout-exp)))
824 ratout-exp)
826 (let (($savefactors t) (*checkfactors* ()) (varlist (list ratout-var))
827 $ratfac $algebraic $keepfloat ratform genvar)
828 (desetq (ratform . ratout-exp) (taychk2rat ratout-exp))
829 (setq ratout-var (caadr (ratf ratout-var)))
830 (setq ratout-exp (partfrac ratout-exp ratout-var))
831 (setq ratout-exp (cons (car ratout-exp) ;FULL DECOMP?
832 (mapcan #'partfraca (cdr ratout-exp))))
833 (add2* (disrep (car ratout-exp) ratform)
834 (cons '(mplus)
835 (mapcar #'(lambda (l)
836 (destructuring-let (((coef poly ratout-exp) l))
837 (list '(mtimes)
838 (disrep coef ratform)
839 (list '(mexpt)
840 (disrep poly ratform)
841 (- ratout-exp)))))
842 (cdr ratout-exp))))))))
844 (defun partfraca (llist)
845 (destructuring-let (((coef poly ratout-exp) llist))
846 (do ((nc (ratdivide coef poly) (ratdivide (car nc) poly))
847 (ratout-n ratout-exp (1- ratout-n))
848 (ans))
849 ((rzerop (car nc)) (cons (list (cdr nc) poly ratout-n) ans))
850 (push (list (cdr nc) poly ratout-n) ans))))
852 (defun partfrac (rat ratout-var)
853 (destructuring-let* (((ratout-wholepart frpart) (pdivide (car rat) (cdr rat)))
854 ((num . denom) (ratqu frpart (cdr rat))))
855 (cond
856 ((pzerop num)
857 (cons ratout-wholepart nil))
858 ((or (pcoefp denom)
859 (pointergp ratout-var (car denom)))
860 (cons rat nil))
862 (destructuring-let (((content bpart) (oldcontent denom)))
863 (let (apart ratout-y ratout-parnumer)
864 (loop
865 for (factor multiplicity)
866 on (pfactor bpart) by #'cddr
867 unless (zerop (pdegree factor ratout-var))
869 (setq apart (pexpt factor multiplicity)
870 bpart (pquotient bpart apart)
871 ratout-y (bprog apart bpart ratout-var)
872 frpart (cdr (ratdivide (ratti num (cdr ratout-y) t)
873 apart)))
874 (push (list (ratqu frpart content) factor multiplicity)
875 ratout-parnumer)
876 (desetq (num . content)
877 (cdr (ratdivide (ratqu (ratti num (car ratout-y) t)
878 content)
879 bpart))))
880 (cons ratout-wholepart ratout-parnumer)))))))
882 (declare-top (unspecial *y*))
884 ;; $RATDIFF TAKES DERIVATIVES FAST. IT ASSUMES THAT THE
885 ;; ONLY ENTITY WHICH DEPENDS ON X IS X ITSELF.
886 ;; THAT IS, DEPENDENCIES DECLARED EXPLICITLY OR IMPLICITLY ARE
887 ;; TOTALLY IGNORED. RATDIFF(F(X),X) IS 0. RATDIFF(Y,X) IS 0.
888 ;; ANY OTHER USAGE MUST GO THROUGH $DIFF.
889 ;; FURTHERMORE, X IS ASSUMED TO BE AN ATOM OR A SINGLE ITEM ON
890 ;; VARLIST. E.G. X MIGHT BE SIN(U), BUT NOT 2*SIN(U).
892 (defmfun $ratdiff (p ratout-x)
893 (if ($ratp p)
894 (setq p (minimize-varlist
895 (if (member 'trunc (cdar p) :test #'eq)
896 ($taytorat p)
897 p))))
898 (let ((formflag ($ratp p))
899 (varlist)
900 (genvar))
901 (newvar ratout-x)
902 (newvar p)
903 (or (every #'(lambda (exp)
904 (or (alike1 ratout-x exp) (free exp ratout-x)))
905 varlist)
906 (merror (intl:gettext "ratdiff: first argument must be a polynomial in ~M; found: ~M") ratout-x p))
907 (setq p (ratf p))
908 (setq ratout-x (caadr (ratf ratout-x)))
909 (setq p (cons (car p) (ratderivative (cdr p) ratout-x)))
910 (if formflag
912 ($ratdisrep p))))
915 (defmfun $pfet (m)
916 (labels
917 ((sssqfr (x)
918 (let ((dosimp t))
919 (simplify ($sqfr x))))
921 (pfet1 (m v)
922 (cond ((atom m) m)
923 ((eq (caar m) 'mplus)
924 (cons '(mplus)
925 (mapcar #'(lambda (s) ($partfrac s v))
926 (cdr m))))
928 ($partfrac m v)))))
929 (prog (listov $pfeformat varlist $factorflag)
930 (setq $pfeformat t)
931 (newvar m)
932 (setq listov varlist)
933 (mapc #'(lambda (r) (setq m (pfet1 m r)))
934 listov)
935 (setq m (simplify m))
936 (setq m (cond ((atom m) m)
937 ((eq (caar m) 'mplus)
938 (cons '(mplus)
939 (mapcar #'$ratexpand (cdr m))))
940 (t ($ratexpand m))))
941 (return (cond ((atom m) m)
942 ((eq (caar m) 'mplus)
943 (cons '(mplus)
944 (mapcar #'sssqfr (cdr m))))
945 (t (sssqfr m)))))))