1 ;;; -*- Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- ;;;;
2 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3 ;;; The data in this file contains enhancements. ;;;;;
5 ;;; Copyright (c) 1984,1987 by William Schelter, University of Texas ;;;;;
6 ;;; All rights reserved ;;;;;
7 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
8 ;;; (c) Copyright 1982 Massachusetts Institute of Technology ;;;
9 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
13 (macsyma-module trigi
)
15 (load-macsyma-macros mrgmac
)
17 ;;; Arithmetic utilities.
20 (power (sub 1 (power x
2)) 1//2))
23 (power (add 1 (power x
2)) 1//2))
26 (power (add (power x
2) -
1) 1//2))
29 (power (add (power x
2) (power y
2)) 1//2))
32 (member func
'(%sin %cos %tan %csc %sec %cot %sinh %cosh %tanh %csch %sech %coth
)
36 (member func
'(%asin %acos %atan %acsc %asec %acot %asinh %acosh %atanh %acsch %asech %acoth
)
39 ;;; The trigonometric functions distribute of lists, matrices and equations.
41 (dolist (x '(%sin %cos %tan %cot %csc %sec
42 %sinh %cosh %tanh %coth %csch %sech
43 %asin %acos %atan %acot %acsc %asec
44 %asinh %acosh %atanh %acoth %acsch %asech
))
45 (setf (get x
'distribute_over
) '(mlist $matrix mequal
)))
47 (defun domain-error (x f
)
48 (merror (intl:gettext
"~A: argument ~:M isn't in the domain of ~A.") f
(complexify x
) f
))
50 ;; Some Lisp implementations goof up branch cuts for ASIN, ACOS, and/or ATANH.
51 ;; Here are definitions which have the right branch cuts
52 ;; (assuming LOG, PHASE, and SQRT have the right branch cuts).
53 ;; Don't bother trying to sort out which implementations get it right or wrong;
54 ;; we'll make all implementations use these functions.
56 ;; Apply formula from CLHS if X falls on a branch cut.
57 ;; Otherwise punt to CL:ASIN.
58 (defun maxima-branch-asin (x)
59 ;; Test for (IMAGPART X) is EQUAL because signed zero is EQUAL to zero.
60 (if (and (> (abs (realpart x
)) 1.0) (equal (imagpart x
) 0.0))
61 ;; The formula from CLHS is asin(x) = -%i*log(%i*x+sqrt(1-x^2)).
62 ;; This has problems with overflow for large x.
64 ;; Let's rewrite it, where abs(x)>1
66 ;; asin(x) = -%i*log(%i*x+abs(x)*sqrt(1-1/x^2))
67 ;; = -%i*log(%i*x*(1+abs(x)/x*sqrt(1-1/x^2)))
68 ;; = -%i*[log(abs(x)*abs(1+abs(x)/x*sqrt(1-1/x^2)))
69 ;; + %i*arg(%i*x*(1+abs(x)/x*sqrt(1-1/x^2)))]
70 ;; = -%i*[log(abs(x)*(1+abs(x)/x*sqrt(1-1/x^2)))
71 ;; + %i*%pi/2*sign(x)]
72 ;; = %pi/2*sign(x) - %i*[log(abs(x)*(1+abs(x)/x*sqrt(1-1/x^2))]
74 ;; Now, look at log part. If x > 0, we have
76 ;; log(x*(1+sqrt(1-1/x^2)))
78 ;; which is just fine. For x < 0, we have
80 ;; log(abs(x)*(1-sqrt(1-1/x^2))).
83 ;; 1-sqrt(1-1/x^2) = (1-sqrt(1-1/x^2))*(1+sqrt(1-1/x^2))/(1+sqrt(1-1/x^2))
84 ;; = (1-(1-1/x^2))/(1+sqrt(1-1/x^2))
85 ;; = 1/x^2/(1+sqrt(1-1/x^2))
89 ;; log(abs(x)*(1-sqrt(1-1/x^2)))
90 ;; = log(abs(x)/x^2/(1+sqrt(1-1/x^2)))
91 ;; = -log(x^2/abs(x)*(1+sqrt(1-1/x^2))
92 ;; = -log(abs(x)*(1+sqrt(1-1/x^2)))
96 ;; asin(x) = -%pi/2+%i*log(abs(x)*(1+sqrt(1-1/x^2)))
99 ;; If we had an accurate f(x) = log(1+x) function, we should
100 ;; probably evaluate log(1+sqrt(1-1/x^2)) via f(x) instead of
101 ;; log. One other accuracy change is to evaluate sqrt(1-1/x^2)
102 ;; as sqrt(1-1/x)*sqrt(1+1/x), because 1/x^2 won't underflow as
104 (let* ((absx (abs x
))
106 (result (complex (/ #.
(float pi
) 2)
108 (1+ (* (sqrt (+ 1 recip
))
109 (sqrt (- 1 recip
))))))))))
115 ;; Apply formula from CLHS if X falls on a branch cut.
116 ;; Otherwise punt to CL:ACOS.
117 (defun maxima-branch-acos (x)
118 ; Test for (IMAGPART X) is EQUAL because signed zero is EQUAL to zero.
119 (if (and (> (abs (realpart x
)) 1.0) (equal (imagpart x
) 0.0))
120 (- #.
(/ (float pi
) 2) (maxima-branch-asin x
))
123 (defun maxima-branch-acot (x)
124 ;; Allow 0.0 in domain of acot, otherwise use atan(1/x)
125 (if (and (equal (realpart x
) 0.0) (equal (imagpart x
) 0.0))
129 ;; Apply formula from CLHS if X falls on a branch cut.
130 ;; Otherwise punt to CL:ATANH.
131 (defun maxima-branch-atanh (x)
132 ; Test for (IMAGPART X) is EQUAL because signed zero is EQUAL to zero.
133 (if (and (> (abs (realpart x
)) 1.0) (equal (imagpart x
) 0.0))
134 (/ (- (cl:log
(+ 1 x
)) (cl:log
(- 1 x
))) 2)
137 ;; Fill the hash table.
138 (macrolet ((frob (mfun dfun
) `(setf (gethash ',mfun
*flonum-op
*) ,dfun
)))
148 (frob %sec
#'(lambda (x)
149 (let ((y (ignore-errors (/ 1 (cl:cos x
)))))
150 (if y y
(domain-error x
'sec
)))))
152 (frob %csc
#'(lambda (x)
153 (let ((y (ignore-errors (/ 1 (cl:sin x
)))))
154 (if y y
(domain-error x
'csc
)))))
156 (frob %cot
#'(lambda (x)
157 (let ((y (ignore-errors (/ 1 (cl:tan x
)))))
158 (if y y
(domain-error x
'cot
)))))
160 (frob %acos
#'maxima-branch-acos
)
161 (frob %asin
#'maxima-branch-asin
)
163 (frob %atan
#'cl
:atan
)
165 (frob %asec
#'(lambda (x)
166 (let ((y (ignore-errors (maxima-branch-acos (/ 1 x
)))))
167 (if y y
(domain-error x
'asec
)))))
169 (frob %acsc
#'(lambda (x)
170 (let ((y (ignore-errors (maxima-branch-asin (/ 1 x
)))))
171 (if y y
(domain-error x
'acsc
)))))
173 (frob %acot
#'(lambda (x)
174 (let ((y (ignore-errors (maxima-branch-acot x
))))
175 (if y y
(domain-error x
'acot
)))))
177 (frob %cosh
#'cl
:cosh
)
178 (frob %sinh
#'cl
:sinh
)
179 (frob %tanh
#'cl
:tanh
)
181 (frob %sech
#'(lambda (x)
183 ;; For large x > 0, cosh(x) ~= exp(x)/2.
184 ;; Hence, sech(x) ~= 2*exp(-x). And since
185 ;; cosh(x) is even, we only need to deal
186 ;; with |x|. Note also that if |x| >=
187 ;; sqrt(most-positive-double-float),
188 ;; exp(-x) is basically zero, so we can use
189 ;; a threshold of sqrt(most-positive).
191 ;; Several Lisp's can not compute acosh()
192 ;; for very large values, e.g.
193 ;; (acosh most-positive-double-float)
194 ;; Therefore use the numerical value
195 ;; 710.4758600739439d0 = (acosh most-positive-double-float)
196 ;; instead of computing the value.
197 ;; The most-positive-double-float is standardized (IEEE 754).
199 (>= (abs x
) 710.4758600739439d0
))
200 (* 2 (exp (- (abs x
))))
202 (let ((y (ignore-errors (sech x
))))
203 (if y y
(domain-error x
'sech
))))))
205 (frob %csch
#'(lambda (x)
207 ;; For large x > 0, sinh(x) ~= exp(x)/2.
208 ;; Hence csch(x) = 2*exp(-x). Since
209 ;; sinh(x) is odd, we also have csch(x) =
210 ;; -2*exp(x) when x < 0 and |x| is large.
212 ;; Several Lisp's can not compute asinh()
213 ;; for very large values, e.g.
214 ;; (asinh most-positive-double-float)
215 ;; Therefore use the numerical value
216 ;; 710.4758600739439d0 = (asinh most-positive-double-float)
217 ;; instead of computing the value.
218 ;; The most-positive-double-float is standardized (IEEE 754).
220 (>= (abs x
) 710.4758600739439d0
))
221 (float-sign x
(* 2 (exp (- (abs x
)))))
223 (let ((y (ignore-errors (csch x
))))
224 (if y y
(domain-error x
'csch
))))))
226 (frob %coth
#'(lambda (x)
227 (let ((y (ignore-errors (/ 1 (cl:tanh x
)))))
228 (if y y
(domain-error x
'coth
)))))
230 (frob %acosh
#'cl
:acosh
)
231 (frob %asinh
#'cl
:asinh
)
233 (frob %atanh
#'maxima-branch-atanh
)
235 (frob %asech
#'(lambda (x)
236 (let ((y (ignore-errors (cl:acosh
(/ 1 x
)))))
237 (if y y
(domain-error x
'asech
)))))
242 ;; logarc(acsch(x)) = log(1/x+sqrt(1/x^2+1)).
243 ;; Assume x > 0. Then we can rewrite this as
244 ;; log((1+sqrt(1+x^2))/x). If we choose x such
245 ;; that 1+x^2 = 1, then this simplifies to
246 ;; log(2/x). However for very small x, 2/x can
247 ;; overflow, so use log(2)-log(x).
249 ;; 1+x^2 = 1 when x^2 = double-float-epsilon. So
250 ;; x = sqrt(double-float-epsilon). We'd really
252 ;; least-positive-normalized-double-float, but
253 ;; some lisps like clisp don't have denormals.
254 ;; In that case, use sqrt(double-float-epsilon).
255 (let ((absx (abs x
)))
256 (cond ((and (floatp x
)
259 least-positive-normalized-double-float
261 (sqrt double-float-epsilon
)))
262 (float-sign x
(- (log 2d0
) (log (abs x
)))))
264 (cl:asinh
(/ x
)))))))
265 (let ((y (ignore-errors (acsch x
))))
266 (if y y
(domain-error x
'acsch
))))))
268 (frob %acoth
#'(lambda (x)
269 (let ((y (ignore-errors (maxima-branch-atanh (/ 1 x
)))))
270 (if y y
(domain-error x
'acoth
)))))
274 (frob mexpt
#'cl
:expt
)
275 (frob %sqrt
#'cl
:sqrt
)
276 (frob %log
#'(lambda (x)
277 (let ((y (ignore-errors (cl:log x
))))
278 (if y y
(domain-error x
'log
)))))
280 (frob %plog
#'(lambda (x)
281 (let ((y (ignore-errors (cl:log x
))))
282 (if y y
(domain-error x
'log
)))))
284 (frob $conjugate
#'cl
:conjugate
)
285 (frob $floor
#'cl
:ffloor
)
286 (frob $ceiling
#'cl
:fceiling
)
287 (frob $realpart
#'cl
:realpart
)
288 (frob $imagpart
#'cl
:imagpart
)
291 (frob %signum
#'cl
:signum
)
292 (frob %atan2
#'cl
:atan
))
294 (macrolet ((frob (mfun dfun
) `(setf (gethash ',mfun
*big-float-op
*) ,dfun
)))
295 ;; All big-float implementation functions MUST support a required x
296 ;; arg and an optional y arg for the real and imaginary parts. The
297 ;; imaginary part does not have to be given.
298 (frob %asin
#'big-float-asin
)
299 (frob %sinh
#'big-float-sinh
)
300 (frob %asinh
#'big-float-asinh
)
301 (frob %tanh
#'big-float-tanh
)
302 (frob %atanh
#'big-float-atanh
)
303 (frob %acos
'big-float-acos
)
304 (frob %log
'big-float-log
)
305 (frob %sqrt
'big-float-sqrt
))
307 ;; Here is a general scheme for defining and applying reflection rules. A
308 ;; reflection rule is something like f(-x) --> f(x), or f(-x) --> %pi - f(x).
310 ;; We define functions for the two most common reflection rules; these
311 ;; are the odd function rule (f(-x) --> -f(x)) and the even function rule
312 ;; (f(-x) --> f(x)). A reflection rule takes two arguments (the operator and
315 (defun odd-function-reflect (op x
)
316 (neg (take (list op
) (neg x
))))
318 (defun even-function-reflect (op x
)
319 (take (list op
) (neg x
)))
321 ;; Put the reflection rule on the property list of the exponential-like
324 (setf (get '%cos
'reflection-rule
) 'even-function-reflect
)
325 (setf (get '%sin
'reflection-rule
) 'odd-function-reflect
)
326 (setf (get '%tan
'reflection-rule
) 'odd-function-reflect
)
327 (setf (get '%sec
'reflection-rule
) 'even-function-reflect
)
328 (setf (get '%csc
'reflection-rule
) 'odd-function-reflect
)
329 (setf (get '%cot
'reflection-rule
) 'odd-function-reflect
)
331 ;; See A&S 4.4.14--4.4.19
333 (setf (get '%acos
'reflection-rule
) #'(lambda (op x
) (sub '$%pi
(take (list op
) (neg x
)))))
334 (setf (get '%asin
'reflection-rule
) 'odd-function-reflect
)
335 (setf (get '%atan
'reflection-rule
) 'odd-function-reflect
)
336 (setf (get '%asec
'reflection-rule
) #'(lambda (op x
) (sub '$%pi
(take (list op
) (neg x
)))))
337 (setf (get '%acsc
'reflection-rule
) 'odd-function-reflect
)
338 (setf (get '%acot
'reflection-rule
) 'odd-function-reflect
)
340 (setf (get '%cosh
'reflection-rule
) 'even-function-reflect
)
341 (setf (get '%sinh
'reflection-rule
) 'odd-function-reflect
)
342 (setf (get '%tanh
'reflection-rule
) 'odd-function-reflect
)
343 (setf (get '%sech
'reflection-rule
) 'even-function-reflect
)
344 (setf (get '%csch
'reflection-rule
) 'odd-function-reflect
)
345 (setf (get '%coth
'reflection-rule
) 'odd-function-reflect
)
347 (setf (get '%asinh
'reflection-rule
) 'odd-function-reflect
)
348 (setf (get '%atanh
'reflection-rule
) 'odd-function-reflect
)
349 (setf (get '%asech
'reflection-rule
) 'even-function-reflect
)
350 (setf (get '%acsch
'reflection-rule
) 'odd-function-reflect
)
351 (setf (get '%acoth
'reflection-rule
) 'odd-function-reflect
)
353 ;; When b is nil, do not apply the reflection rule. For trigonometric like
354 ;; functions, b is $trigsign. This function uses 'great' to decide when to
355 ;; apply the rule. Another possibility is to apply the rule when (mminusp* x)
356 ;; evaluates to true. Maxima <= 5.9.3 uses this scheme; with this method, we have
357 ;; assume(z < 0), cos(z) --> cos(-z). I (Barton Willis) think this goofy.
359 ;; The function 'great' is non-transitive. I don't think this bug will cause
360 ;; trouble for this function. If there is an expression such that both
361 ;; (great (neg x) x) and (great x (neg x)) evaluate to true, this function
362 ;; could cause an infinite loop. I could protect against this possibility with
363 ;; (and b f (great (neg x) x) (not (great x (neg x))).
365 (defun apply-reflection-simp (op x
&optional
(b t
))
366 (let ((f (get op
'reflection-rule
)))
367 (if (and b f
(great (neg x
) x
)) (funcall f op x
) nil
)))
369 (defun taylorize (op x
)
371 (mfuncall '$apply
'$taylor
`((mlist) ((,op
) ,($ratdisrep x
)) ,@(cdr ($taylorinfo x
)))) nil
))
373 (defun float-or-rational-p (x)
374 (or (floatp x
) ($ratnump x
)))
376 (defun bigfloat-or-number-p (x)
377 (or ($bfloatp x
) (numberp x
) ($ratnump x
)))
379 ;; When z is a Maxima complex float or when 'numer' is true and z is a
380 ;; Maxima complex number, evaluate (op z) by applying the mapping from
381 ;; the Maxima operator 'op' to the operator in the hash table
382 ;; '*flonum-op*'. When z isn't a Maxima complex number, return
385 (defun flonum-eval (op z
)
386 (let ((op (gethash op
*flonum-op
*)))
388 (multiple-value-bind (bool R I
)
389 (complex-number-p z
#'float-or-rational-p
)
390 (when (and bool
(or $numer
(floatp R
) (floatp I
)))
393 (complexify (funcall op
(if (zerop I
) R
(complex R I
)))))))))
395 ;; For now, big float evaluation of trig-like functions for complex
396 ;; big floats uses rectform. I suspect that for some functions (not
397 ;; all of them) rectform generates expressions that are poorly suited
398 ;; for numerical evaluation. For better accuracy, these functions
399 ;; (maybe acosh, for one) may need to be special cased. If they are
400 ;; special-cased, the *big-float-op* hash table contains the special
403 (defun big-float-eval (op z
)
404 (when (complex-number-p z
'bigfloat-or-number-p
)
405 (let ((x ($realpart z
))
407 (bop (gethash op
*big-float-op
*)))
408 ;; If bop is non-NIL, we want to try that first. If bop
409 ;; declines (by returning NIL), we silently give up and use the
411 (cond ((and ($bfloatp x
) (like 0 y
))
412 (or (and bop
(funcall bop x
))
413 ($bfloat
`((,op simp
) ,x
))))
414 ((or ($bfloatp x
) ($bfloatp y
))
415 (or (and bop
(funcall bop
($bfloat x
) ($bfloat y
)))
416 (let ((z (add ($bfloat x
) (mul '$%i
($bfloat y
)))))
417 (setq z
($rectform
`((,op simp
) ,z
)))
420 ;; For complex big float evaluation, it's important to check the
421 ;; simp flag -- otherwise Maxima can get stuck in an infinite loop:
422 ;; asin(1.23b0 + %i * 4.56b0) ---> (simp-%asin ((%asin) ...) -->
423 ;; (big-float-eval ((%asin) ...) --> (risplit ((%asin simp) ...) -->
424 ;; (simp-%asin ((%asin simp) ...). If the simp flag is ignored, we've
427 (def-simplifier sin
(y)
429 (cond ((flonum-eval (mop form
) y
))
430 ((and (not (member 'simp
(car form
))) (big-float-eval (mop form
) y
)))
431 ((taylorize (mop form
) (second form
)))
432 ((and $%piargs
(cond ((zerop1 y
) 0)
433 ((has-const-or-int-term y
'$%pi
) (%piargs-sin
/cos y
)))))
434 ((and $%iargs
(multiplep y
'$%i
)) (mul '$%i
(ftake* '%sinh
(coeff y
'$%i
1))))
435 ((and $triginverses
(not (atom y
))
436 (cond ((eq '%asin
(setq z
(caar y
))) (cadr y
))
437 ((eq '%acos z
) (sqrt1-x^
2 (cadr y
)))
438 ((eq '%atan z
) (div (cadr y
) (sqrt1+x^
2 (cadr y
))))
439 ((eq '%acot z
) (div 1 (sqrt1+x^
2 (cadr y
))))
440 ((eq '%asec z
) (div (sqrtx^
2-
1 (cadr y
)) (cadr y
)))
441 ((eq '%acsc z
) (div 1 (cadr y
)))
442 ((eq '%atan2 z
) (div (cadr y
) (sq-sumsq (cadr y
) (caddr y
)))))))
443 ((and $trigexpand
(trigexpand '%sin y
)))
444 ($exponentialize
(exponentialize '%sin y
))
445 ((and $halfangles
(halfangle '%sin y
)))
446 ((apply-reflection-simp (mop form
) y $trigsign
))
447 ;((and $trigsign (mminusp* y)) (neg (ftake* '%sin (neg y))))
450 (def-simplifier cos
(y)
452 (cond ((flonum-eval (mop form
) y
))
453 ((and (not (member 'simp
(car form
))) (big-float-eval (mop form
) y
)))
454 ((taylorize (mop form
) (second form
)))
455 ((and $%piargs
(cond ((zerop1 y
) 1)
456 ((has-const-or-int-term y
'$%pi
)
457 (%piargs-sin
/cos
(add %pi
//2 y
))))))
458 ((and $%iargs
(multiplep y
'$%i
)) (ftake* '%cosh
(coeff y
'$%i
1)))
459 ((and $triginverses
(not (atom y
))
460 (cond ((eq '%acos
(setq z
(caar y
))) (cadr y
))
461 ((eq '%asin z
) (sqrt1-x^
2 (cadr y
)))
462 ((eq '%atan z
) (div 1 (sqrt1+x^
2 (cadr y
))))
463 ((eq '%acot z
) (div (cadr y
) (sqrt1+x^
2 (cadr y
))))
464 ((eq '%asec z
) (div 1 (cadr y
)))
465 ((eq '%acsc z
) (div (sqrtx^
2-
1 (cadr y
)) (cadr y
)))
466 ((eq '%atan2 z
) (div (caddr y
) (sq-sumsq (cadr y
) (caddr y
)))))))
467 ((and $trigexpand
(trigexpand '%cos y
)))
468 ($exponentialize
(exponentialize '%cos y
))
469 ((and $halfangles
(halfangle '%cos y
)))
470 ((apply-reflection-simp (mop form
) y $trigsign
))
471 ;((and $trigsign (mminusp* y)) (ftake* '%cos (neg y)))
474 (defun %piargs-sin
/cos
(x)
475 (let ($float coeff ratcoeff zl-rem
)
476 (setq ratcoeff
(get-const-or-int-terms x
'$%pi
)
477 coeff
(linearize ratcoeff
)
478 zl-rem
(get-not-const-or-int-terms x
'$%pi
))
479 (cond ((zerop1 zl-rem
) (%piargs coeff ratcoeff
))
480 ((not (mevenp (car coeff
))) nil
)
481 ((equal 0 (setq x
(mmod (cdr coeff
) 2))) (ftake* '%sin zl-rem
))
482 ((equal 1 x
) (neg (ftake* '%sin zl-rem
)))
483 ((alike1 1//2 x
) (ftake* '%cos zl-rem
))
484 ((alike1 '((rat) 3 2) x
) (neg (ftake* '%cos zl-rem
))))))
487 (defun filter-sum (pred form simp-flag
)
488 "Takes form to be a sum and a sum of the summands for which pred is
489 true. Passes simp-flag through to addn if there is more than one
494 (when (funcall pred term
) (list term
))) (cdr form
))
496 (if (funcall pred form
) form
0)))
498 ;; collect terms of form A*var where A is a constant or integer.
499 ;; returns sum of all such A.
500 ;; does not expand form, so does not find constant term in (x+1)*var.
501 ;; thus we cannot simplify sin(2*%pi*(1+x)) => sin(2*%pi*x) unless
502 ;; the user calls expand. this could be extended to look a little
503 ;; more deeply into the expression, but we don't want to call expand
504 ;; in the core simplifier for reasons of speed and predictability.
505 (defun get-const-or-int-terms (form var
)
507 (filter-sum (lambda (term)
508 (let ((coeff (coeff term var
1)))
509 (and (not (zerop1 coeff
))
510 (or ($constantp coeff
)
511 (maxima-integerp coeff
)))))
516 ;; collect terms skipped by get-const-or-int-terms
517 (defun get-not-const-or-int-terms (form var
)
518 (filter-sum (lambda (term)
519 (let ((coeff (coeff term var
1)))
520 (not (and (not (zerop1 coeff
))
521 (or ($constantp coeff
)
522 (maxima-integerp coeff
))))))
526 (defun has-const-or-int-term (form var
)
527 "Tests whether form has at least some term of the form a*var where a
528 is constant or integer"
529 (not (zerop1 (get-const-or-int-terms form var
))))
531 (def-simplifier tan
(y)
533 (cond ((flonum-eval (mop form
) y
))
534 ((and (not (member 'simp
(car form
))) (big-float-eval (mop form
) y
)))
535 ((taylorize (mop form
) (second form
)))
536 ((and $%piargs
(cond ((zerop1 y
) 0)
537 ((has-const-or-int-term y
'$%pi
) (%piargs-tan
/cot y
)))))
538 ((and $%iargs
(multiplep y
'$%i
)) (mul '$%i
(ftake* '%tanh
(coeff y
'$%i
1))))
539 ((and $triginverses
(not (atom y
))
540 (cond ((eq '%atan
(setq z
(caar y
))) (cadr y
))
541 ((eq '%asin z
) (div (cadr y
) (sqrt1-x^
2 (cadr y
))))
542 ((eq '%acos z
) (div (sqrt1-x^
2 (cadr y
)) (cadr y
)))
543 ((eq '%acot z
) (div 1 (cadr y
)))
544 ((eq '%asec z
) (sqrtx^
2-
1 (cadr y
)))
545 ((eq '%acsc z
) (div 1 (sqrtx^
2-
1 (cadr y
))))
546 ((eq '%atan2 z
) (div (cadr y
) (caddr y
))))))
547 ((and $trigexpand
(trigexpand '%tan y
)))
548 ($exponentialize
(exponentialize '%tan y
))
549 ((and $halfangles
(halfangle '%tan y
)))
550 ((apply-reflection-simp (mop form
) y $trigsign
))
551 ;((and $trigsign (mminusp* y)) (neg (ftake* '%tan (neg y))))
554 (def-simplifier cot
(y)
556 (cond ((flonum-eval (mop form
) y
))
557 ((and (not (member 'simp
(car form
))) (big-float-eval (mop form
) y
)))
558 ((taylorize (mop form
) (second form
)))
559 ((and $%piargs
(cond ((zerop1 y
) (domain-error y
'cot
))
560 ((and (has-const-or-int-term y
'$%pi
)
561 (setq z
(%piargs-tan
/cot
(add %pi
//2 y
))))
563 ((and $%iargs
(multiplep y
'$%i
)) (mul -
1 '$%i
(ftake* '%coth
(coeff y
'$%i
1))))
564 ((and $triginverses
(not (atom y
))
565 (cond ((eq '%acot
(setq z
(caar y
))) (cadr y
))
566 ((eq '%asin z
) (div (sqrt1-x^
2 (cadr y
)) (cadr y
)))
567 ((eq '%acos z
) (div (cadr y
) (sqrt1-x^
2 (cadr y
))))
568 ((eq '%atan z
) (div 1 (cadr y
)))
569 ((eq '%asec z
) (div 1 (sqrtx^
2-
1 (cadr y
))))
570 ((eq '%acsc z
) (sqrtx^
2-
1 (cadr y
)))
571 ((eq '%atan2 z
) (div (caddr y
) (cadr y
))))))
572 ((and $trigexpand
(trigexpand '%cot y
)))
573 ($exponentialize
(exponentialize '%cot y
))
574 ((and $halfangles
(halfangle '%cot y
)))
575 ((apply-reflection-simp (mop form
) y $trigsign
))
576 ;((and $trigsign (mminusp* y)) (neg (ftake* '%cot (neg y))))
579 (defun %piargs-tan
/cot
(x)
580 "If x is of the form tan(u) where u has a nonzero constant linear
581 term in %pi, then %piargs-tan/cot returns a simplified version of x
582 without this constant term."
583 ;; Set coeff to be the coefficient of $%pi collecting terms with no
584 ;; other atoms, so given %pi(x+1/2), coeff = 1/2. Let zl-rem be the
585 ;; remainder (TODO: computing zl-rem could probably be prettier.)
586 (let* ((nice-terms (get-const-or-int-terms x
'$%pi
))
587 (coeff (linearize nice-terms
))
588 (zl-rem (get-not-const-or-int-terms x
'$%pi
))
592 ;; sin-of-coeff-pi and cos-of-coeff-pi are only non-nil if they
593 ;; are constants that %piargs-offset could compute, and we just
594 ;; checked that cos-of-coeff-pi was nonzero. Thus we can just
595 ;; return their quotient.
596 ((and (zerop1 zl-rem
)
597 (setq sin-of-coeff-pi
598 (%piargs coeff nil
)))
599 (setq cos-of-coeff-pi
600 (%piargs
(cons (car coeff
)
601 (rplus 1//2 (cdr coeff
))) nil
))
602 (cond ((zerop1 sin-of-coeff-pi
)
603 0) ;; tan(integer*%pi)
604 ((zerop1 cos-of-coeff-pi
)
605 (merror (intl:gettext
"tan: ~M isn't in the domain of tan.") x
))
607 (div sin-of-coeff-pi cos-of-coeff-pi
))))
609 ;; This expression sets x to the coeff of %pi (mod 1) as a side
610 ;; effect and then, if this is zero, returns tan of the
611 ;; rest, because tan has periodicity %pi.
612 ((zerop1 (setq x
(mmod (cdr coeff
) 1)))
613 (ftake* '%tan zl-rem
))
615 ;; Similarly, if x = 1/2 then return -cot(x).
617 (neg (ftake* '%cot zl-rem
))))))
619 (def-simplifier csc
(y)
621 (cond ((flonum-eval (mop form
) y
))
622 ((and (not (member 'simp
(car form
))) (big-float-eval (mop form
) y
)))
623 ((taylorize (mop form
) (second form
)))
624 ((and $%piargs
(cond ((zerop1 y
) (domain-error y
'csc
))
625 ((has-const-or-int-term y
'$%pi
) (%piargs-csc
/sec y
)))))
626 ((and $%iargs
(multiplep y
'$%i
)) (mul -
1 '$%i
(ftake* '%csch
(coeff y
'$%i
1))))
627 ((and $triginverses
(not (atom y
))
628 (cond ((eq '%acsc
(setq z
(caar y
))) (cadr y
))
629 ((eq '%asin z
) (div 1 (cadr y
)))
630 ((eq '%acos z
) (div 1 (sqrt1-x^
2 (cadr y
))))
631 ((eq '%atan z
) (div (sqrt1+x^
2 (cadr y
)) (cadr y
)))
632 ((eq '%acot z
) (sqrt1+x^
2 (cadr y
)))
633 ((eq '%asec z
) (div (cadr y
) (sqrtx^
2-
1 (cadr y
))))
634 ((eq '%atan2 z
) (div (sq-sumsq (cadr y
) (caddr y
)) (cadr y
))))))
635 ((and $trigexpand
(trigexpand '%csc y
)))
636 ($exponentialize
(exponentialize '%csc y
))
637 ((and $halfangles
(halfangle '%csc y
)))
638 ((apply-reflection-simp (mop form
) y $trigsign
))
639 ;((and $trigsign (mminusp* y)) (neg (ftake* '%csc (neg y))))
643 (def-simplifier sec
(y)
645 (cond ((flonum-eval (mop form
) y
))
646 ((and (not (member 'simp
(car form
))) (big-float-eval (mop form
) y
)))
647 ((taylorize (mop form
) (second form
)))
648 ((and $%piargs
(cond ((zerop1 y
) 1)
649 ((has-const-or-int-term y
'$%pi
) (%piargs-csc
/sec
(add %pi
//2 y
))))))
650 ((and $%iargs
(multiplep y
'$%i
)) (ftake* '%sech
(coeff y
'$%i
1)))
651 ((and $triginverses
(not (atom y
))
652 (cond ((eq '%asec
(setq z
(caar y
))) (cadr y
))
653 ((eq '%asin z
) (div 1 (sqrt1-x^
2 (cadr y
))))
654 ((eq '%acos z
) (div 1 (cadr y
)))
655 ((eq '%atan z
) (sqrt1+x^
2 (cadr y
)))
656 ((eq '%acot z
) (div (sqrt1+x^
2 (cadr y
)) (cadr y
)))
657 ((eq '%acsc z
) (div (cadr y
) (sqrtx^
2-
1 (cadr y
))))
658 ((eq '%atan2 z
) (div (sq-sumsq (cadr y
) (caddr y
)) (caddr y
))))))
659 ((and $trigexpand
(trigexpand '%sec y
)))
660 ($exponentialize
(exponentialize '%sec y
))
661 ((and $halfangles
(halfangle '%sec y
)))
662 ((apply-reflection-simp (mop form
) y $trigsign
))
663 ;((and $trigsign (mminusp* y)) (ftake* '%sec (neg y)))
667 (defun %piargs-csc
/sec
(x)
668 (prog ($float coeff ratcoeff zl-rem
)
669 (setq ratcoeff
(get-const-or-int-terms x
'$%pi
)
670 coeff
(linearize ratcoeff
)
671 zl-rem
(get-not-const-or-int-terms x
'$%pi
))
672 (return (cond ((and (zerop1 zl-rem
) (setq zl-rem
(%piargs coeff nil
))) (div 1 zl-rem
))
673 ((not (mevenp (car coeff
))) nil
)
674 ((equal 0 (setq x
(mmod (cdr coeff
) 2))) (ftake* '%csc zl-rem
))
675 ((equal 1 x
) (neg (ftake* '%csc zl-rem
)))
676 ((alike1 1//2 x
) (ftake* '%sec zl-rem
))
677 ((alike1 '((rat) 3 2) x
) (neg (ftake* '%sec zl-rem
)))))))
679 (def-simplifier atan
(y)
680 (cond ((flonum-eval (mop form
) y
))
681 ((and (not (member 'simp
(car form
))) (big-float-eval (mop form
) y
)))
682 ((taylorize (mop form
) (second form
)))
683 ;; Simplification for special values
685 ((or (eq y
'$inf
) (alike1 y
'((mtimes) -
1 $minf
)))
687 ((or (eq y
'$minf
) (alike1 y
'((mtimes) -
1 $inf
)))
690 ;; Recognize more special values
691 (cond ((equal 1 y
) (div '$%pi
4))
692 ((equal -
1 y
) (div '$%pi -
4))
694 ((alike1 y
'((mexpt) 3 ((rat) 1 2)))
697 ((alike1 y
'((mtimes) -
1 ((mexpt) 3 ((rat) 1 2))))
700 ((alike1 y
'((mexpt) 3 ((rat) -
1 2)))
703 ((alike1 y
'((mtimes) -
1 ((mexpt) 3 ((rat) -
1 2))))
705 ((alike1 y
'((mplus) -
1 ((mexpt) 2 ((rat) 1 2))))
707 ((alike1 y
'((mplus) 1 ((mexpt) 2 ((rat) 1 2))))
708 (mul 3 (div '$%pi
8))))))
709 ((and $%iargs
(multiplep y
'$%i
))
710 ;; atan(%i*y) -> %i*atanh(y)
711 (mul '$%i
(take '(%atanh
) (coeff y
'$%i
1))))
712 ((and (not (atom y
)) (member (caar y
) '(%cot %tan
))
713 (if ($constantp
(cadr y
))
714 (let ((y-val (mfuncall '$mod
715 (if (eq (caar y
) '%tan
)
717 (sub %pi
//2 (cadr y
)))
719 (cond ((eq (mlsp y-val %pi
//2) t
) y-val
)
720 ((eq (mlsp y-val
'$%pi
) t
) (sub y-val
'$%pi
)))))))
721 ((and (eq $triginverses
'$all
) (not (atom y
))
722 (if (eq (caar y
) '%tan
) (cadr y
))))
723 ((and (eq $triginverses t
) (not (atom y
)) (eq (caar y
) '%tan
)
724 ;; Check if y in [-%pi/2, %pi/2]
725 (if (and (member (csign (sub (cadr y
) %pi
//2)) '($nz $neg
) :test
#'eq
)
726 (member (csign (add (cadr y
) %pi
//2)) '($pz $pos
) :test
#'eq
))
728 ($logarc
(logarc '%atan y
))
729 ((apply-reflection-simp (mop form
) y $trigsign
))
732 (defun %piargs
(x ratcoeff
)
734 (cond ((and (integerp (car x
)) (integerp (cdr x
))) 0)
735 ((not (mevenp (car x
)))
736 (cond ((null ratcoeff
) nil
)
737 ((and (integerp (car x
))
738 (setq offset-result
(%piargs-offset
(cdr x
))))
739 (mul (power -
1 (sub ratcoeff
(cdr x
)))
741 ((%piargs-offset
(mmod (cdr x
) 2))))))
743 ; simplifies sin(%pi * x) where x is between 0 and 1
744 ; returns nil if can't simplify
745 (defun %piargs-offset
(x)
746 (cond ((or (alike1 '((rat) 1 6) x
) (alike1 '((rat) 5 6) x
)) 1//2)
747 ((or (alike1 '((rat) 1 4) x
) (alike1 '((rat) 3 4) x
)) (div (power 2 1//2) 2))
748 ((or (alike1 '((rat) 1 3) x
) (alike1 '((rat) 2 3) x
)) (div (power 3 1//2) 2))
750 ((or (alike1 '((rat) 7 6) x
) (alike1 '((rat) 11 6) x
)) -
1//2)
751 ((or (alike1 '((rat) 4 3) x
) (alike1 '((rat) 5 3) x
)) (div (power 3 1//2) -
2))
752 ((or (alike1 '((rat) 5 4) x
) (alike1 '((rat) 7 4) x
)) (mul -
1//2 (power 2 1//2)))
753 ((alike1 '((rat) 3 2) x
) -
1)))
755 ;; identifies integer part of form
756 ;; returns (X . Y) if form can be written as X*some_integer + Y
757 ;; returns nil otherwise
758 (defun linearize (form)
759 (cond ((integerp form
) (cons 0 form
))
763 (cond ((setq dum
(evod form
))
764 (if (eq '$even dum
) '(2 .
0) '(2 .
1)))
765 ((maxima-integerp form
) '(1 .
0)))))
766 ((eq 'rat
(caar form
)) (cons 0 form
))
767 ((eq 'mplus
(caar form
)) (lin-mplus form
))
768 ((eq 'mtimes
(caar form
)) (lin-mtimes form
))
769 ((eq 'mexpt
(caar form
)) (lin-mexpt form
))))
771 (defun lin-mplus (form)
772 (do ((tl (cdr form
) (cdr tl
)) (dummy) (coeff 0) (zl-rem 0))
773 ((null tl
) (cons coeff
(mmod zl-rem coeff
)))
774 (setq dummy
(linearize (car tl
)))
775 (if (null dummy
) (return nil
)
776 (setq coeff
(rgcd (car dummy
) coeff
) zl-rem
(rplus (cdr dummy
) zl-rem
)))))
778 (defun lin-mtimes (form)
779 (do ((fl (cdr form
) (cdr fl
)) (dummy) (coeff 0) (zl-rem 1))
780 ((null fl
) (cons coeff
(mmod zl-rem coeff
)))
781 (setq dummy
(linearize (car fl
)))
782 (cond ((null dummy
) (return nil
))
783 (t (setq coeff
(rgcd (rtimes coeff
(car dummy
))
784 (rgcd (rtimes coeff
(cdr dummy
)) (rtimes zl-rem
(car dummy
))))
785 zl-rem
(rtimes (cdr dummy
) zl-rem
))))))
787 (defun lin-mexpt (form)
789 (cond ((and (integerp (caddr form
)) (not (minusp (caddr form
)))
790 (not (null (setq dummy
(linearize (cadr form
))))))
791 (return (cons (car dummy
) (mmod (cdr dummy
) (caddr form
))))))))
795 (cond ((integerp y
) (gcd x y
))
796 (t (list '(rat) (gcd x
(cadr y
)) (caddr y
)))))
797 ((integerp y
) (list '(rat) (gcd (cadr x
) y
) (caddr x
)))
798 (t (list '(rat) (gcd (cadr x
) (cadr y
)) (lcm (caddr x
) (caddr y
))))))
800 (defun maxima-reduce (x y
)
802 (setq gcd
(gcd x y
) x
(truncate x gcd
) y
(truncate y gcd
))
803 (if (minusp y
) (setq x
(- x
) y
(- y
)))
804 (return (if (eql y
1) x
(list '(rat simp
) x y
)))))
806 ;; The following four functions are generated in code by TRANSL. - JPG 2/1/81
808 (defun rplus (x y
) (addk x y
))
810 (defun rdifference (x y
) (addk x
(timesk -
1 y
)))
812 (defun rtimes (x y
) (timesk x y
))
814 (defun rremainder (x y
)
815 (cond ((equal 0 y
) (dbz-err))
817 (cond ((integerp y
) (maxima-reduce x y
))
818 (t (maxima-reduce (* x
(caddr y
)) (cadr y
)))))
819 ((integerp y
) (maxima-reduce (cadr x
) (* (caddr x
) y
)))
820 (t (maxima-reduce (* (cadr x
) (caddr y
)) (* (caddr x
) (cadr y
))))))
822 (defmfun $exponentialize
(exp)
824 (cond ((atom exp
) exp
)
826 (exponentialize (caar exp
) ($exponentialize
(cadr exp
))))
827 (t (recur-apply #'$exponentialize exp
)))))
829 (defun exponentialize (op arg
)
831 (div (sub (power '$%e
(mul '$%i arg
)) (power '$%e
(mul -
1 '$%i arg
)))
834 (div (add (power '$%e
(mul '$%i arg
)) (power '$%e
(mul -
1 '$%i arg
))) 2))
836 (div (sub (power '$%e
(mul '$%i arg
)) (power '$%e
(mul -
1 '$%i arg
)))
837 (mul '$%i
(add (power '$%e
(mul '$%i arg
))
838 (power '$%e
(mul -
1 '$%i arg
))))))
840 (div (mul '$%i
(add (power '$%e
(mul '$%i arg
))
841 (power '$%e
(mul -
1 '$%i arg
))))
842 (sub (power '$%e
(mul '$%i arg
)) (power '$%e
(mul -
1 '$%i arg
)))))
845 (sub (power '$%e
(mul '$%i arg
)) (power '$%e
(mul -
1 '$%i arg
)))))
847 (div 2 (add (power '$%e
(mul '$%i arg
)) (power '$%e
(mul -
1 '$%i arg
)))))
849 (div (sub (power '$%e arg
) (power '$%e
(neg arg
))) 2))
851 (div (add (power '$%e arg
) (power '$%e
(mul -
1 arg
))) 2))
853 (div (sub (power '$%e arg
) (power '$%e
(neg arg
)))
854 (add (power '$%e arg
) (power '$%e
(mul -
1 arg
)))))
856 (div (add (power '$%e arg
) (power '$%e
(mul -
1 arg
)))
857 (sub (power '$%e arg
) (power '$%e
(neg arg
)))))
859 (div 2 (sub (power '$%e arg
) (power '$%e
(neg arg
)))))
861 (div 2 (add (power '$%e arg
) (power '$%e
(mul -
1 arg
)))))))
863 (defun coefficient (exp var pow
)
867 (cond ((and (integerp x
) (integerp mod
))
868 (if (minusp (if (zerop mod
) x
(setq x
(- x
(* mod
(truncate x mod
))))))
871 ((and ($ratnump x
) ($ratnump mod
))
873 ((d (lcm ($denom x
) ($denom mod
))))
875 (setq mod
(mul* d mod
))
876 (div (mod x mod
) d
)))
879 (defun multiplep (exp var
)
880 (and (not (zerop1 exp
)) (zerop1 (sub exp
(mul var
(coeff exp var
1))))))
882 (defun linearp (exp var
)
883 (and (setq exp
(islinear exp var
)) (not (equal (car exp
) 0))))
890 (setq sign
(csign x
))
891 (or (member sign
'($neg $nz
) :test
#'eq
)
892 (and (mminusp x
) (not (member sign
'($pos $pz
) :test
#'eq
))))))
894 ;; This should give more information somehow.
897 (cond ((not errorsw
) (merror (intl:gettext
"Division by zero attempted.")))
898 (t (throw 'errorsw t
))))
900 (defun dbz-err1 (func)
901 (cond ((not errorsw
) (merror (intl:gettext
"~A: division by zero attempted.") func
))
902 (t (throw 'errorsw t
))))