Rename *ll* and *ul* to ll and ul in easy-subs
[maxima.git] / share / simplex / minimize_sx.mac
blobce5a2fcbd8afc96347f53d95c2078f6b29267e00
1 /*****************************************************************************
2  *                                                                           *
3  * ************************************************************************* *
4  * ***                                                                   *** *
5  * ***                         ~*~ SIMPLEX ~*~                           *** *
6  * ***                                                                   *** *
7  * ***               A simple implementation of the simplex              *** *
8  * ***             algorithm for Linear Programming for Maxima.          *** *
9  * ***                                                                   *** *
10  * ***   This file provides functions minimize_lp and maximize_lp. This  *** *
11  * ***   file is part of the simplex package for Maxima.                 *** *
12  * ***                                                                   *** *
13  * ***                                                                   *** *
14  * ***   Copyright:  Andrej Vodopivec <andrejv@users.sourceforge.net>    *** *
15  * ***   Version:    1.01                                                *** *
16  * ***   License:    GPL                                                 *** *
17  * ***                                                                   *** *
18  * ************************************************************************* *
19  *                                                                           *
20  * Demo                                                                      *
21  * =====                                                                     *
22  *                                                                           *
23  * 1) We want to minimize x with constraints y>=x-1, y>=-x-1, y<=x+1, y<=1-x *
24  *    and y=x/2                                                              *
25  *                                                                           *
26  * Solution:                                                                 *
27  *                                                                           *
28  * load("simplex");                                                          *
29  * minimize_lp(x, [y>=x-1, y>=-x-1, y<=x+1, y<=1-x, y=x/2]);                 *
30  * => [-2/3, [x=-2/3, y=-1/3]]                                               *
31  *                                                                           *
32  *                                                                           *
33  * 2) If any variable is known to be positive, you should add an optional    *
34  *    argument to minimize_lp/maximize_lp.                                   *
35  *    We want to maximize x+y subject to x>=0, y>=0, y<=-x/2+3, y<=-x+4.     *
36  *                                                                           *
37  * Solution:                                                                 *
38  *                                                                           *
39  * maximize_lp(x+y, [y<=-x/2+3, y<=-x+4], [x, y])                            *
40  * => [4, [x = 2, y = 2]]                                                    *
41  *                                                                           *
42  *****************************************************************************/
44 define_variable(nonnegative_lp,   false, boolean,
45                "Assume all variables are non-negative!")$
46 alias(nonegative_lp, nonnegative_lp)$
47 define_variable(return_input_lp, false, boolean,
48                "Return the input to linear program, not solution!")$
50 /*****************************************************************************
51  *                                                                           *
52  * The minimize_lp function.                                                 *
53  *                                                                           *
54  *****************************************************************************/
56 minimize_lp(target, constraints, [pozitive]) := block(
57   [var : [], A, b, c, inequalities:0, count, eq, t:expand(target), sol, s,
58    nonpozitive : 0, j, tmpvar, keepfloat:true],
60 /*******************************************************************
61  * Get the list of variables                                       *
62  *******************************************************************/
64   for e in constraints do (
65     tmpvar : listofvars(e),
66     for v in tmpvar do
67       if not(member(v, var)) then var : cons(v, var),
68     if op(e)#"=" then inequalities : inequalities+1
69   ),
71   if length(pozitive)>0 then (
72     if listp(pozitive[1]) then pozitive : pozitive[1]
73     else if pozitive[1]='all then pozitive : copylist(var)
74   )
75   else if nonnegative_lp=true then
76     pozitive : copylist(var),
78   for v in var do
79     if not(member(v,pozitive)) then nonpozitive : nonpozitive+1,
81 /*******************************************************************
82  * Setup A and b for linear program                                *
83  *******************************************************************/
85   b : makelist(0, i, 1, length(constraints)),
86   A : zeromatrix(length(constraints), length(var)+nonpozitive+inequalities),
87   count : 0,
88   for i:1 thru length(constraints) do (
89     eq : lhs(part(constraints,i))-rhs(part(constraints,i)),
90     j : 1,
91     for v in var do (
92       A[i,j] : ratcoeff(eq, v),
93       if not(constantp(A[i,j])) then
94         error("Error: constraint not linear (1).",A[i,j]),
95       eq : subst(v=0,eq),
96       j : j+1,
97       if not(member(v,pozitive)) then (
98         A[i,j] : -A[i,j-1],
99         j : j+1
100       )
101     ),
102     if op(constraints[i])="<=" or op(constraints[i])="<" then (
103       count : count+1,
104       A[i, length(var)+nonpozitive+count] : 1
105     )
106     else if op(constraints[i])=">=" or op(constraints[i])=">" then (
107       count : count+1,
108       A[i, length(var)+nonpozitive+count] : -1
109     )
110     else if op(constraints[i])#"=" then
111       error("Error: not a proper constraint:", constraints[i]),
112     b[i] : -eq,
113     if not(constantp(b[i])) then
114       error("Error: constraint not linear (2).",b[i])
115   ),
116   
117 /*******************************************************************
118  * Setup c for linear program                                      *
119  *******************************************************************/
121   c : makelist(0, i, 1, length(var)+nonpozitive+count),
122   j : 1,
123   for v in var do (
124     c[j] : ratcoeff(t, v),
125     if not(constantp(c[j])) then
126       error("Error: cost function not linear."),
127     t : subst(v=0,t),
128     j : j+1,
129     if not(member(v,pozitive)) then (
130       c[j] : -c[j-1],
131       j : j+1
132     )
133   ),
135   if not(constantp(t)) then
136     error("Error: cost function not linear in constrained variables."),
138   if return_input_lp then return([A, b, c]),
140 /*******************************************************************
141  * Solve the linear program                                        *
142  *******************************************************************/
144   sol : linear_program(A, b, c),
145   
146   if not(listp(sol)) then sol
147   else (
148     if sol[2]=-inf then [-inf, []]
149     else (
150       s : [],
151       j : 1,
152       for v in var do (
153         if member(v,pozitive) then (
154           s : append(s, [v=sol[1][j]]),
155           j : j+1
156         )
157         else (
158           s : append(s, [v=sol[1][j]-sol[1][j+1]]),
159           j : j+2
160         )
161       ),
162       [sol[2]+t, s]
163     )
164   )
167 maximize_lp(target, constraints, [pozitive]) := block(
168   [sol : apply(minimize_lp, append([-target], [constraints], pozitive))],
169   if not(listp(sol)) then sol
170   else [-sol[1], sol[2]]
174 /*****************************************************************************
175 *                                                                           *
176 * %functions are for debugging purposes.                                    *
177 *                                                                           *
178 *****************************************************************************/
180 %prepare_standard_form_lp(target,constraints,pozitive) := block([listconstvars : false,
181   vars, slack_vars, nonpozitive_vars, nonpozitive_vars0, nonpozitive_subs, slack_vars0, nonpozitive_subs0, vars0],
182   vars : listofvars(append([target],constraints)),
183   slack_vars : map(lambda([e],gensym()), constraints),
184   nonpozitive_vars : sublist(vars,lambda([e], not(member(e,pozitive)))),
185   nonpozitive_subs : block([mgensym : lambda([x], gensym(printf(false,"~a_",x)))],
186     map(lambda([x], x=mgensym(x)-mgensym(x)), nonpozitive_vars)),
187   constraints : block([ltoreq : lambda([l,r], -l >= -r)],
188     subst(["<"=ltoreq, "<="=ltoreq], constraints)),
189   constraints : map(lambda([e,s], if op(e)="=" then e else lhs(e)-s-rhs(e)),constraints,slack_vars),
190   slack_vars0 : block([cv:listofvars(constraints)],
191     sublist(slack_vars, lambda([x],member(x,cv)))),
192   nonpozitive_vars0 : listofvars(map('rhs,nonpozitive_subs)),
193   vars0 : block([vars:vars,nonpozitive_subs1:map('lhs,nonpozitive_subs)],
194     for v in nonpozitive_subs1 do vars:delete(v,vars), vars),
195   [target, constraints] : subst("="="-", subst(nonpozitive_subs, [target,constraints])),
196   [target, constraints, vars0, nonpozitive_subs, nonpozitive_vars0, slack_vars0]
197   )$
198 %minimize_lp(target, constraints, [pozitive]) := block([A, b, c, vars0, vars, tgt, vals, lp,
199   nonpozitive_subs, nonpozitive_vars0, slack_vars0, mcoefmatrix],
200   local(mcoefmatrix),
201   mcoefmatrix(l,v) := apply('matrix,outermap(coeff,l,v)),
202   pozitive : if pozitive=[] then [] else if listp(part(pozitive,1)) then part(pozitive,1) else if part(pozitive,1)='all or nonnegative_lp then copylist(block([listconstvars:false], listofvars(constraints))) else error("Unrecognized input."),
203   [target, constraints, vars0, nonpozitive_subs, nonpozitive_vars0, slack_vars0] : %prepare_standard_form_lp(target, constraints, pozitive),
204   vars : append(vars0, nonpozitive_vars0, slack_vars0),
205   lp : linear_program(mcoefmatrix(constraints,vars), -subst(map(lambda([x],x=0),vars), constraints), first(args(mcoefmatrix([target],vars)))),
206   if atom(lp) then lp else ([vals,tgt] : lp,
207     block([maperror:false, mapprint:false],
208       [tgt, append(map("=",vars0,vals),subst(map("=",nonpozitive_vars0,rest(vals,length(vars0))),nonpozitive_subs))])));
209 %maximize_lp(target, constraints, [pozitive]) := block([tgt, vals, lp],
210   lp : %minimize_lp(-target, constraints,first(pozitive)),
211   if atom(lp) then lp else ([tgt,vals] : lp,
212     [-tgt, vals]))$