4 (load("inteqn"), 'done);
7 (ieqn0([l]):=block([ieqnprint: false], ?meval(apply(ieqn, l))), 'done);
11 e: p(x) - 1 - x + cos(x) + 'integrate(cos(x - u)*p(u), u, 0, x),
12 ieqn0(e, p(x), 'transform));
16 e: 2*'integrate(p(x*sin(u)), u, 0, %pi/2) - a*x - b,
17 ieqn0(e, p(x), 'firstkindseries));
18 [[2*a*x+%pi*b,firstkindseries,1,approximate]]$
21 e: p(x) - x - 'integrate( p(u) * sum( (x*u)^j/j!, j, 0, 5), u, 0, 1),
22 factor(ieqn0(e, p(x), 'flfrnk2nd)));
23 [[-(6*(408248418456648*x^5+2437700856066210*x^4+12113963764280280*x^3
24 +48070571667498660*x^2-39215192809051280*x
26 /1091504046228192893,flfrnk2nd]]$
28 /* Stoutemyer, D. R. (1977). Analytically solving integral equations
29 by using computer algebra. ACM Transactions on Mathematical Software
30 (TOMS), 3(2), 128-146. */