Fix bug #608: taylor(x^a,[x],0,1) unsimplified
[maxima.git] / tests / rtest10.mac
blobc0822aec1f529bc94a7a222e0bd658ab9f917615
1 /*************** -*- Mode: MACSYMA; Package: MAXIMA -*-  ******************/
2 /***************************************************************************
3 ***                                                                    *****
4 ***     Copyright (c) 1984 by William Schelter,University of Texas     *****
5 ***     All rights reserved                                            *****
6 ***************************************************************************/
7 kill(all);
8 done$
9 n!/(n+1)!;
10 n!/(n+1)!$
11 minfactorial(%);
12 1/(n+1)$
13 (n+1)^2*n!^2;
14 (n+1)^2*n!^2$
15 factcomb(%);
16 (n+1)!^2$
17 qunit(17);
18 sqrt(17)+4$
19 expand(%*(sqrt(17)-4));
21 cf([1,2,-3]+[1,-2,1]);
22 [1,1,1,2]$
23 cfdisrep(%);
24 ''(cfdisrep(cf(8/5)))$
25 cflength:4;
27 cf(sqrt(3));
28 [1,1,2,1,2,1,2,1,2]$
29 cfexpand(%);
30 matrix([265,97],[153,56])$
31 ev(%[1,2]/%[2,2],numer);
32 1.7321428571428572$
33 cf([1,2,-3]+[1,-2,1]);
34 [1,1,1,2]$
35 cfdisrep(%);
36 ''(cfdisrep(cf(8/5)))$
37 cflength:4;
39 cf(sqrt(3));
40 [1,1,2,1,2,1,2,1,2]$
41 cfexpand(%);
42 matrix([265,97],[153,56])$
43 ev(%[1,2]/%[2,2],numer);
44 1.7321428571428572$
46 (foop1(L1, L2) := length(L1) <= length(L2) and L1 = makelist (L2[i], i, 1, length(L1)),
47  foop(L1, L2) := foop1(L1, L2) or last(L1) # 1 and foop1 (reverse (append ([1, last(L1) - 1], rest (reverse (L1)))), L2), 
48  ratepsilon : 1b-16,
49  0);
52 (expr: 2^(1/3),
53  cf(expr),
54  foop (%%, cf(rat(bfloat(expr)))));
55 true;
57 (expr: 8^(1/4),
58  cf(expr),
59  foop (%%, cf(rat(bfloat(expr)))));
60 true;
62 (expr: 12^(1/5),
63  cf(expr),
64  foop (%%, cf(rat(bfloat(expr)))));
65 true;
67 (expr : 2^(1/3) + 3^(1/4) + 4^(1/5),
68  cf(expr),
69  foop (%%, cf(rat(bfloat(expr)))));
70 true;
72 (expr : sqrt(2) + 2^(2/3) + sqrt(17) - 11^(7/5),
73  cf(expr),
74  foop (%%, cf(rat(bfloat(expr)))));
75 true;
77 cflength:1;
79 cf(sqrt(8));
80 [2, 1, 4]$
81 cflength:3;
83 cf(sqrt(8));
84 [2, 1, 4, 1, 4, 1, 4]$
86 (reset (ratepsilon), 0);
89 declare(j,even);
90 done$
91 featurep(j,integer);
92 true$
93 map(f,x+a*y+b*z);
94 f(b*z)+f(a*y)+f(x)$
95 map(lambda([u],partfrac(u,x)),x+1/(x^3+4*x^2+5*x+2));
96 1/(x+2)-1/(x+1)+1/(x+1)^2+x$
97 map(ratsimp,x/(x^2+x)+(y^2+y)/y);
98 y+1/(x+1)+1$
99 map("=",[a,b],[-0.5,3]);
100 [a = -0.5,b = 3]$
101 fullmap(g,a+b*c);
102 g(b)*g(c)+g(a)$
103 map(g,a+b*c);
104 g(b*c)+g(a)$
105 fullmapl("+",[3,[4,5]],[[a,1],[0,-1.5]]);
106 [[a+3,4],[4,3.5]]$
107 exp1:(a^2+2*a+1)*y+x^2;
108 (a^2+2*a+1)*y+x^2$
109 scanmap(factor,%);
110 (a+1)^2*y+x^2$
111 u*v^(a*x+b)+c;
112 u*v^(a*x+b)+c$
113 scanmap('f,%);
114 f(f(f(u)*f(f(v)^f(f(f(a)*f(x))+f(b))))+f(c))$
115 append([y+x,0,-3.2],[2.5e+20,x]);
116 [y+x,0,-3.2,2.5e+20,x]$
117 my_union(x,y):=if x = [] then y
118        else (if member(t:first(x),y) then my_union(rest(x),y)
119                  else cons(t,my_union(rest(x),y)));
120 my_union(x,y):=if x = [] then y
121        else (if member(t:first(x),y) then my_union(rest(x),y)
122                  else cons(t,my_union(rest(x),y)))$
123 my_union([a,b,1,1/2,x^2],[-x^2,a,y,1/2]);
124 [b,1,x^2,-x^2,a,y,1/2]$
125 bernpoly(x,5);
126 x^5-5*x^4/2+5*x^3/3-x/6$
127 maplist(numfactor,%);
128 [1,-5/2,5/3,-1/6]$
129 apply(min,%);
130 -5/2$
131 factcomb(3*x/(2*3^x*x!));
132 3^(1-x)/(2*(x-1)!)$
134 /* mailing list 2015-11-10: "Problem integrating subbscripted and diff'ed function" */
136 (kill (x, t, a, b, foo), foo : diff (x[1](t), t));
137 'diff(x[1](t), t);
139 integrate (foo, t, a, b);
140 x[1](b) - x[1](a);
142 integrate (foo, t);
143 x[1](t);
145 (kill (k, l, u), foo : diff (x[k, l](t, u), u));
146 'diff (x[k, l](t, u), u);
148 integrate (foo, u, a, b);
149 x[k, l](t, b) - x[k, l](t, a);
151 integrate (foo, u);
152 x[k, l](t, u);
154 foo : diff ((x[1](t))^3, t);
155 3*(x[1](t))^2*'diff(x[1](t), t);
157 expand (integrate (foo, t, a, b));
158 (x[1](b))^3 - (x[1](a))^3;
160 integrate (foo, t);
161 (x[1](t))^3;
163 foo : diff (sin(x[1](t)), t);
164 cos(x[1](t))*'diff(x[1](t), t);
166 integrate (foo, t, a, b);
167 sin(x[1](b)) - sin(x[1](a));
169 integrate (foo, t);
170 sin(x[1](t));
172 /* SF bug #3921: "Expanded subtracted from unexpanded with e^ix does not integrate to zero" */
174 (f:%e^-(3*%i*x)*(sin(3*x)+x)-%e^-(3*%i*x)*sin(3*x)-x*%e^-(3*%i*x),
175  expand (f));
178 /* examples from the bug report */
180 integrate(f,x,0,2*%pi);
183 integrate(f,x,0,2);        
186 integrate(f,x,0,1);
189 integrate(f,x,0,2*%pi);
192 integrate(f,x,0,-%pi);
195 integrate(f,x,0,3*%pi);
198 integrate(f,x,-%pi,%pi);
201 integrate(f,x,-%pi,2*%pi);
204 integrate(f,x,-1,1);
207 /* additional examples for #3921 */
209 (kill(a, b),
210  integrate(f, x, a, b));
213 (integrate(f, x),
214  ratsimp (demoivre (%%)));