1 /*************** -*- Mode: MACSYMA; Package: MAXIMA -*- ******************/
2 /***************************************************************************
4 *** Copyright (c) 1984 by William Schelter,University of Texas *****
5 *** All rights reserved *****
6 ***************************************************************************/
9 block([],kill(all),%rnum:0);
15 realroots(x^5-x-1,5.0e-6);
18 x = 1.1673030853271484$
20 -7.396496210176906e-6;
22 /* This failed when a gcl bug set rootsepsilon to 0.0, 2013-10-01 */
23 realroots(x^3+2*x^2-2*x-1);
24 [x = -87846643/33554432,x = -12816653/33554432,x = 1];
26 (2*x+1)^3 = 13.5*(x^5+1);
27 (2*x+1)^3 = 13.5*(x^5+1)$
29 [x = -1.0157555438281209,x = 0.82967499021293611,x = 1.0,
30 x = -0.96596251521963683*%i-0.40695972319240747,
31 x = 0.96596251521963683*%i-0.40695972319240747];
33 /* SF bug [ 1951128 ] curious warning from allroots(x=0) */
41 allroots (19*x^4 = 0);
42 [x = 0.0, x = 0.0, x = 0.0, x = 0.0];
44 allroots (x^3 * (x^4 - 1) = 0);
45 [x = 0.0, x = 0.0, x = 0.0,
46 x = 1.0, x = - 1.0, x = 1.0*%i, x = - 1.0*%i];
48 allroots (%i*x^5 = 0); /* this one goes through CPOLY-SL */
49 [x = 0.0, x = 0.0, x = 0.0, x = 0.0, x = 0.0];
51 /* additional tests for allroots */
59 allroots (u^2 - 2*u = 35);
62 (complex_float_approx_equal (a, b) :=
63 if listp (a) and listp (b)
64 then apply ("and", map (complex_float_approx_equal, a, b))
65 elseif equationp (a) and equationp (b)
66 then is (lhs (a) = lhs (b))
67 and complex_float_approx_equal (rhs (a), rhs (b))
69 my_float_approx_equal (realpart (a), realpart (b))
70 and my_float_approx_equal (imagpart (a), imagpart (b)),
72 equationp (e) := not atom (e) and op (e) = "=",
74 my_float_approx_equal (x, y) :=
76 then is (abs (x) <= float_approx_equal_tolerance)
77 else float_approx_equal (x, y),
79 float_approx_equal_tolerance : 1e-12,
84 /* (u - 5/4)*(u - 7/4)*(u + 1/4)*(u^2 - 2*u + 5/4) which has roots
85 * 5/4, 7/4, -1/4, and 1 + %i/2, 1 - %i/2.
87 complex_float_approx_equal
88 (allroots (u^5 + 131*u^3/16 + 45*u/64 + 175/256 = 19*u^4/4 + 369*u^2/64),
89 [u = -0.25, u = 0.5*%i + 1, u = 1 - 0.5*%i, u = 1.25, u = 1.75]);
92 /* (v - 5/4)*(v - 7/4*%i)*(v + 1/4*%i)*(v^2 - 2*v + 5/4) which has roots
93 * 5/4, 7/4*%i, -1/4*%i, and 1 + %i/2, 1 - %i/2.
95 complex_float_approx_equal
96 (allroots (expand ((v - 5/4)*(v - 7/4*%i)*(v + 1/4*%i)*(v^2 - 2*v + 5/4))),
104 reset (float_approx_equal_tolerance);
105 [float_approx_equal_tolerance];
113 ev(linsolve([exp,exp1,%],[x,y,z]),globalsolve);
114 [x = a+1,y = 2*a,z = a-1]$
116 /* see http://trac.sagemath.org/sage_trac/ticket/8731 and
117 https://sourceforge.net/p/maxima/bugs/1960 */
120 block([realonly:true],algsys([8*x=1],[x]))$
123 [[x = %i], [x = - %i]]$
124 block([realonly:true],algsys([x^2+1],[x]))$
126 /* see https://sourceforge.net/p/maxima/bugs/1657 */
128 [[x = (-1)^(1/4)],[x = -(-1)^(1/4)*%i],[x = -(-1)^(1/4)],[x = sqrt(-%i)]]$
129 block([realonly:true],algsys([x^4+1],[x]))$
132 [[x = 1],[x = -1],[x = %i],[x = -%i]]$
133 algsys([x^4-1],[x]),realonly=true $
137 [f1:2*x*(1-l1)-2*(x-1)*l2,
141 algsys([f1,f2,f3,f4],[x,y,l1,l2]))$
142 [[x = 0,y = %r1,l1 = 0,l2 = 0],[x = 1,y = 0,l1 = 1,l2 = 1]]$
146 algsys([f1,f2],[x,y]))$
147 [[x = -1/sqrt(3),y = 1/sqrt(3)],[x = 1/sqrt(3),y = -1/sqrt(3)],
148 [x = -1/3,y = -1/3],[x = 1,y = 1]]$
149 solve(asin(cos(3*x))*(f(x)-1),x);
150 [x = %pi/6,f(x) = 1]$
151 ev(solve(5^f(x) = 125,f(x)),solveradcan:true);
155 (float_approx_equal_tolerance : 1e-12, 0);
158 solve([4*x^2-y^2 = 12,x*y-x = 2], [x,y]);
160 [x = 0.5202594388652008*%i-0.1331240357358706,
161 y = 0.07678378523787777-3.608003221870287*%i],
162 [x = -0.5202594388652008*%i-0.1331240357358706,
163 y = 3.608003221870287*%i+0.07678378523787777],
164 [x = -1.733751846381093,y = -0.1535675710019696]]$
166 (reset (float_approx_equal_tolerance), 0);
169 (eq :1+a*x+x^3, sol : solve(eq,x), makelist(ratsimp(subst(s,eq)),s, sol));
172 (eq : x^3-1, sol : solve(eq,x), makelist(ratsimp(subst(s,eq)),s,sol));
176 [x = (sqrt(3)*%i+1)/2,x = (sqrt(3)*%i-1)/2,x = -1,x = -((sqrt(3)*%i+1)/2), x = -((sqrt(3)*%i-1)/2),x = 1]$
178 ratsimp(makelist(subst(s, x^6-1), s, sol));
181 (remvalue(eq, sol),0);
193 matrix([1,1/2,1/3],[1/2,1/3,1/4],[1/3,1/4,1/5])$
194 [2*x-(a-1)*y = 5*b,a*x+b*y+c = 0];
195 [2*x-(a-1)*y = 5*b,b*y+a*x+c = 0]$
196 augcoefmatrix(%,[x,y]);
197 matrix([2,1-a,-5*b],[a,b,c])$
198 matrix([2,1-a,-5*b],[a,b,c]);
199 matrix([2,1-a,-5*b],[a,b,c])$
202 matrix([1,-((a-1)/2),-(5*b/2)],[0,1,(2*c+5*a*b)/(2*b+a^2-a)])$
204 matrix([2,1-a,-5*b],[a,b,c]);
205 matrix([2,1-a,-5*b],[a,b,c])$
207 matrix([2,1-a,-5*b],[0,2*b+a^2-a,2*c+5*a*b])$
208 matrix([2,1-a,-5*b],[a,b,c]);
209 matrix([2,1-a,-5*b],[a,b,c])$
212 a:matrix([3,1],[2,4]);
214 expand(charpoly(a,lambda));
215 lambda^2-7*lambda+10$
216 exp:(programmode:true,solve(%));
217 [lambda = 5,lambda = 2]$
220 ev(a . %-lambda*%,exp[1]);
221 matrix([x2-2*x1],[2*x1-x2])$
226 solve([exp,%],[x1,x2]);
227 [[x1 = -1/sqrt(5),x2 = -2/sqrt(5)],[x1 = 1/sqrt(5),x2 = 2/sqrt(5)]]$
229 /* verify that find_root is happy with %e
230 * (problem reported on mailing list 2007/01/25)
233 find_root (2*x = -(log((4 + %e)/(2*%pi)))*(((4 + %e)/(2*%pi))^x), x, -1, 0);
234 -0.03340289826874122;
236 find_root (2*x = cos((%e + %pi)*x), x, 0, 1);
239 /* verify that find_root evaluates its first argument
240 * (problem reported to mailing list 2007/06/07)
242 (expr : x^2 - 5, find_root (expr, x, 0, 10));
245 /* other tests for find_root:
246 * verify that find_root expression is returned for non-numeric expression or bounds
248 (kill (a, b), find_root (x^a - 5, x, 0, 10));
249 find_root (x^a - 5, x, 0.0, 10.0);
251 find_root (x^3 - 5, x, a, b);
252 find_root (x^3 - 5, x, a, b);
254 quad_closeto(qest,qtru,qtol) :=
255 map(lambda([est, tru, tol],
256 block([numer:true, abse],
258 if (abse <= tol) then true else abse)),
260 quad_closeto(qest,qtru,qtol) :=
261 map(lambda([est, tru, tol],
262 block([numer:true, abse],
264 if (abse <= tol) then true else abse)),
267 /* verify that find_root nested inside another function call is OK */
268 quad_closeto(quad_qags (find_root (x^a - 5, x, 0, 10), a, 1, 3),
269 quad_qags (5^(1/a), a, 1, 3),
270 [1d-15, 5d-15, 0, 0]);
271 [true,true,true,true];
273 find_root (find_root (a^2 = x, a, 0, x) = 7, x, 0, 100); /* inner find_root returns sqrt(x) */
276 /* verify that symbolic function name is OK */
277 (foo (a) := 3^a - 5, bar : foo, find_root (bar, 0, 10));
280 /* example from mailing list 2006/12/01 */
281 (expr : t = (297 * exp ((1000000 * t) / 33) - 330) / 10000000, find_root (expr, t, 1e-9, 0.003));
282 1.7549783076857198E-5;
284 /* example from mailing list 2007/06/07 */
285 (expr : 6096 * tan((2 * atan(c/(2 * fl))) / r) / (tan((1/60) * (%pi/180))),
286 ev (find_root (expr=6096, fl, 1, 10), c=7.176, r=3264));
289 /* adapted from mailing list 2007/01/13 */
291 (g (a) := find_root (f (x, a), x, 0, 200),
300 find_root (x^(2 * z) - 5, x, 0.0, 200.0);
302 ''(at (expr, z=0.25));
305 quad_closeto(quad_qags (g (z), z, 1, 3),
306 quad_qags (5^(1/z), z, 1, 3),
307 [1d-15, 5d-15, 0, 0]);
308 [true,true,true,true];
310 /* adapted from the reference manual */
312 (f(x) := sin(x) - x/2, 0);
315 [find_root (sin(x) - x/2, x, 0.1, %pi),
316 find_root (sin(x) = x/2, x, 0.1, %pi),
317 find_root (f(x), x, 0.1, %pi),
318 find_root (f, 0.1, %pi)];
319 [1.895494267033981, 1.895494267033981, 1.895494267033981, 1.895494267033981];
321 [find_root (f, 1/(%pi*%e), 2*%pi*sin(%e)),
322 find_root (f, log(%pi), %e^%pi),
323 find_root (f, exp(1/5), exp(cos(%e + %pi))),
324 find_root (f, cos(exp(2))/10, 10*cos(exp(2)))];
325 [1.895494267033981, 1.895494267033981, 1.895494267033981, 1.895494267033981];
327 /* adapted from the mailing list 2007/06/10
328 * charfun2 copied from the interpol share package
332 charfun2 (z, l1, l2) := charfun (l1 <= z and z < l2),
333 expr : (-.329*x^3+.494*x^2 +.559*x+.117) *charfun2(x,minf,1.0)
334 +(.215*x^3-1.94*x^2 +4.85*x-2.77) *charfun2(x,2.5,inf) +(.0933*x^3-1.02*x^2
335 +2.56*x-.866) *charfun2(x,2.0,2.5) +(.0195*x^3-.581*x^2
336 +1.67*x-.275) *charfun2(x,1.5,2.0) +(.00117*x^3-.498*x^2 +1.55*x -.213)
337 *charfun2(x,1.0,1.5),
338 block ([float_approx_equal_tolerance : 1e-12],
339 float_approx_equal (find_root (expr, x, 0, 4), 3.127271310605426)));
342 /* SF bug report [ 607079 ] solve with repeated variable
344 solve ('[x = 1], '[x, x]);
347 solve ('[u = v], '[u, u, u, u]);
350 /* verify that quadpack functions return partially-evaluated expressions
351 * instead of barfing on non-numeric values in limits or integrand.
354 (kill (foo, u, au, bu, cu, omega, trig, alfa, vita, wfn), 0);
357 e1 : quad_qag (foo (u), u, au, bu, 3);
358 quad_qag (foo (u), u, au, bu, 3, epsrel = 1.0E-8, epsabs = 0.0, limit = 200);
360 e1 : ev (e1, foo(u)=u^3, au=1);
361 quad_qag (u^3, u, 1, bu, 3, epsrel=1e-8, epsabs=0.0, limit=200);
364 [63.75, 7.077671781985375E-13, 31, 0];
366 e2 : quad_qags (foo (u), u, au, bu, epsrel=1e-4, epsabs=1e-4);
367 quad_qags (foo (u), u, au, bu, epsrel=1e-4, epsabs=1e-4, limit=200);
369 e2 : ev (e2, au= -1, bu=1);
370 quad_qags (foo (u), u, -1, 1, epsrel=1e-4, epsabs=1e-4, limit=200);
373 [0.4, 4.440892098500628E-15, 21, 0];
375 e3 : quad_qagi (foo (u), u, minf, au, epsabs=2e-3);
376 quad_qagi (foo (u), u, minf, au, epsrel=1.0E-8, epsabs=2e-3, limit=200);
378 e3 : ev (e3, foo(u)=1/u^3);
379 quad_qagi (1/u^3, u, minf, au, epsrel=1.0E-8, epsabs=2e-3, limit=200);
382 [- 0.5, 5.551115123125784E-15, 15, 0];
384 e4 : quad_qawc (foo (u), u, cu, au, bu, limit=16);
385 quad_qawc (foo (u), u, cu, au, bu, epsrel=1.0E-8, epsabs=0.0, limit=16);
387 e4 : ev (e4, cu=1, au=0, bu=2);
388 quad_qawc (foo (u), u, 1, 0, 2, epsrel=1.0E-8, epsabs=0.0, limit=16);
391 [1.999999999999999, 2.220446049250313E-16, 25, 0];
393 e5 : quad_qawf (foo (u), u, au, omega, sin, limit=32);
394 quad_qawf (foo (u), u, au, omega, sin, epsabs=1e-10, limit=32, maxp1=100, limlst=10);
396 e5 : ev (e5, foo(u)=exp(-u));
397 quad_qawf (exp (- u), u, au, omega, sin, epsabs=1e-10, limit=32, maxp1=100, limlst=10);
399 ev (e5, au=0, omega=2);
400 [.4000000000000001, 2.216570948815925E-11, 175, 0];
402 e6 : quad_qawo (foo (u), u, au, bu, omega, cos, limit=64);
403 quad_qawo (foo (u), u, au, bu, omega, cos, epsrel=1e-8, epsabs=0.0, limit=64, maxp1=100);
405 e6 : ev (e6, au=0, bu=%pi/2);
406 quad_qawo (foo (u), u, 0, %pi/2, omega, cos, epsrel=1e-8, epsabs=0.0, limit=64, maxp1=100);
408 ev (e6, foo(u)=1, omega=1);
409 [1.0, 1.110223024625157E-14, 15, 0];
411 e7 : quad_qaws (foo (u), u, au, bu, alfa, vita, wfn, limit=48);
412 quad_qaws (foo (u), u, au, bu, alfa, vita, wfn, epsrel=1e-8, epsabs=0.0, limit=48);
414 e7 : ev (e7, foo(u)=1/u, au=1, bu=2, wfn=1);
415 quad_qaws (1/u, u, 1, 2, alfa, vita, 1, epsrel=1e-8, epsabs=0.0, limit=48);
417 /* expect [.05296102778655729, 5.551115123125782E-17, 50, 0] */
418 (ev (e7, alfa=2, vita=1),
419 [float_approx_equal (%%[1], .05296102778655729),
420 /* checking relative error is problematic when expected value is close to zero; check absolute error instead */
421 is (abs (%%[2] - 5.551115123125782E-17) < float_approx_equal_tolerance),
424 [true, true, true, true];
426 /* Tests for bfallroots. Same as the allroots tests above */
430 bfallroots (17*x = 0);
433 bfallroots (19*x^4 = 0);
434 [x = 0b0, x = 0b0, x = 0b0, x = 0b0];
436 bfallroots (x^3 * (x^4 - 1) = 0);
437 [x = 0b0, x = 0b0, x = 0b0,
438 x = 1b0, x = - 1b0, x = 1b0*%i, x = - 1b0*%i];
440 bfallroots (%i*x^5 = 0); /* this one goes through CPOLY-SL */
441 [x = 0b0, x = 0b0, x = 0b0, x = 0b0, x = 0b0];
443 /* additional tests for bfallroots */
448 bfallroots (8*u = 1);
451 bfallroots (u^2 - 2*u = 35);
454 (float_approx_equal_tolerance : 1e-12, 0);
457 /* (u - 5/4)*(u - 7/4)*(u + 1/4)*(u^2 - 2*u + 5/4) which has roots
458 * 5/4, 7/4, -1/4, and 1 + %i/2, 1 - %i/2.
460 complex_float_approx_equal
461 (bfallroots (u^5 + 131*u^3/16 + 45*u/64 + 175/256 = 19*u^4/4 + 369*u^2/64),
462 [u = -0.25, u = 0.5*%i + 1, u = 1 - 0.5*%i, u = 1.25, u = 1.75]);
465 /* (v - 5/4)*(v - 7/4*%i)*(v + 1/4*%i)*(v^2 - 2*v + 5/4) which has roots
466 * 5/4, 7/4*%i, -1/4*%i, and 1 + %i/2, 1 - %i/2.
468 complex_float_approx_equal
469 (bfallroots (expand ((v - 5/4)*(v - 7/4*%i)*(v + 1/4*%i)*(v^2 - 2*v + 5/4))),
477 /* [ 940835 ] rectform fails with float/numer flags */
478 rectform(log(-%i)),float;
481 /* verify that exp(foo) evaluates to a number
482 * probably should try several variations on this
483 * adapted from sage mailing list
486 first (quad_qags (sin (%pi * exp (x / 2)), x, 0, 2));
487 - 0.4373454748252497;
489 /* verify that nested numerical integral is handled correctly
490 * adapted from sage mailing list
493 quad_qags (w^2 * quad_qags (1/(s - w), s, 1, 5) [1], w, -5, -1) [1];
496 /* find_root example from sage mailing list */
498 find_root (.05^(x + 1) = (x + 1)*10^(-10), x, 5, 100);
501 /* another nested example, collected from mma user forum */
503 (f : diff (1/(1 + (1 + (a - b)^2)), a),
504 g : quad_qags (f*b*(1 - b)^2, b, 0, 1) [1],
505 find_root (g = 0, a, 0, 1));
508 /* a variation -- not sure what g:=... means in mma */
510 (f : diff (1/(1 + (1 + (a - b)^2)), a),
511 g : 'quad_qags (f*b*(1 - b)^2, b, 0, 1) [1],
512 find_root (g = 0, a, 0, 1));
515 /* from mailing list 2009-02-18
516 * "Re: [Maxima] I want to tell maxima (-1)^0.33333333333333=-1, what should i do?"
517 * see also tests/rtest_plot
520 (foo17(x):=(sqrt(-16*x^4-16*x^3+20*x^2+12*x+23)/(6*sqrt(3))+(16*x^3-12*x^2-6*x-25)/54)^(1/3),
521 float_approx_equal_tolerance : 1e-12,
525 first (quad_qags (foo17 (u), u, -1, 0));
528 first (quad_qags (foo17, u, -1, 0));
531 find_root (foo17 (u) = -0.2, u, -1, 0);
534 (bar17 (u) := foo17 (u) + 0.2, find_root (bar17, u, -1, 0));
537 (compile (foo17), first (quad_qags (foo17, u, -1, 0)));
540 find_root (bar17, u, -1, 0);
543 /* SF bug # 2937837 "find_root_error documentation incorrect"
546 (find_root_error : true,
547 errcatch (find_root (1 + x^2, x, 0, 1)));
550 (find_root_error : "FOO",
551 errcatch (find_root (1 + x^2, x, 0, 1)));
554 reset (float_approx_equal_tolerance, find_root_error);
555 [float_approx_equal_tolerance, find_root_error];
557 /* Here are some tests of bf_find_root, based on the find_root tests above.
558 Use larger precision to catch any strangeness.
563 bf_find_root (2*x = -(log((4 + %e)/(2*%pi)))*(((4 + %e)/(2*%pi))^x), x, -1, 0);
564 -3.3402898268741287760799570603459b-2;
566 bf_find_root (2*x = cos((%e + %pi)*x), x, 0, 1);
567 1.9842105056568722553872075784746b-1;
569 /* verify that bf_find_root evaluates its first argument
570 * (problem reported to mailing list 2007/06/07)
572 (expr : x^2 - 5, bf_find_root (expr, x, 0, 10));
575 /* other tests for bf_find_root:
576 * verify that bf_find_root expression is returned for non-numeric expression or bounds
578 (kill (a, b), bf_find_root (x^a - 5, x, 0, 10));
579 bf_find_root (x^a - 5, x, 0b0, 10b0);
581 bf_find_root (x^3 - 5, x, a, b);
582 bf_find_root (x^3 - 5, x, a, b);
584 /* verify that bf_find_root nested inside another function call is OK */
585 quad_closeto(quad_qags (bf_find_root (x^a - 5, x, 0, 10), a, 1, 3),
586 quad_qags (5^(1/a), a, 1, 3),
587 [1d-15, 5d-15, 0, 0]);
588 [true,true,true,true];
590 bf_find_root (bf_find_root (a^2 = x, a, 0, x) = 7, x, 0, 100); /* inner bf_find_root returns sqrt(x) */
593 /* verify that symbolic function name is OK */
594 (foo (a) := 3^a - 5, bar : foo, bf_find_root (bar, 0, 10));
597 /* example from mailing list 2006/12/01 */
598 (expr : t = (297 * exp ((1000000 * t) / 33) - 330) / 10000000, bf_find_root (expr, t, 1e-9, 0.003));
599 1.7549783076857196664805799825747b-5;
601 /* example from mailing list 2007/06/07 */
602 (expr : 6096 * tan((2 * atan(c/(2 * fl))) / r) / (tan((1/60) * (%pi/180))),
603 ev (bf_find_root (expr=6096, fl, 1, 10), c=7.176, r=3264));
604 6.9814929328248795062474005396418b0;
606 /* adapted from mailing list 2007/01/13 */
608 (g (a) := bf_find_root (f (x, a), x, 0, 200),
617 bf_find_root (x^(2 * z) - 5, x, 0b0, 200b0);
619 ''(at (expr, z=0.25));
622 quad_closeto(quad_qags (g (z), z, 1, 3),
623 quad_qags (5^(1/z), z, 1, 3),
624 [1d-15, 5d-15, 0, 0]);
625 [true,true,true,true];
628 /* adapted from the reference manual */
630 (kill(f), f(x) := sin(x) - x/2, 0);
633 [bf_find_root (sin(x) - x/2, x, 0.1, %pi),
634 bf_find_root (sin(x) = x/2, x, 0.1, %pi),
635 bf_find_root (f(x), x, 0.1, %pi),
636 bf_find_root (f, 0.1, %pi)];
637 [1.8954942670339809471440357380936b0,
638 1.8954942670339809471440357380936b0,
639 1.8954942670339809471440357380936b0,
640 1.8954942670339809471440357380936b0];
642 [bf_find_root (f, 1/(%pi*%e), 2*%pi*sin(%e)),
643 bf_find_root (f, log(%pi), %e^%pi),
644 bf_find_root (f, exp(1/5), exp(cos(%e + %pi))),
645 bf_find_root (f, cos(exp(2))/10, 10*cos(exp(2)))];
646 [1.8954942670339809471440357380936b0,
647 1.8954942670339809471440357380936b0,
648 1.8954942670339809471440357380936b0,
649 1.8954942670339809471440357380936b0];
650 /* adapted from the mailing list 2007/06/10
651 * charfun2 copied from the interpol share package
655 charfun2 (z, l1, l2) := charfun (l1 <= z and z < l2),
656 expr : (-.329*x^3+.494*x^2 +.559*x+.117) *charfun2(x,minf,1.0)
657 +(.215*x^3-1.94*x^2 +4.85*x-2.77) *charfun2(x,2.5,inf) +(.0933*x^3-1.02*x^2
658 +2.56*x-.866) *charfun2(x,2.0,2.5) +(.0195*x^3-.581*x^2
659 +1.67*x-.275) *charfun2(x,1.5,2.0) +(.00117*x^3-.498*x^2 +1.55*x -.213)
660 *charfun2(x,1.0,1.5),
661 block ([tru : 3.12727131060542283643481895355b0,
662 est : bf_find_root (expr, x, 0, 4),
665 if is(err < 2*10b0^(-fpprec)) then true else err));
668 /* bf_find_root example from sage mailing list */
670 bf_find_root (.05^(x + 1) = (x + 1)*10^(-10), x, 5, 100);
671 6.0349925729832129297929340832397b0;
673 (find_root_error : true,
674 errcatch (bf_find_root (1 + x^2, x, 0, 1)));
677 (find_root_error : "FOO",
678 errcatch (bf_find_root (1 + x^2, x, 0, 1)));
681 /* From bug 3010567. Just checking that we don't get
682 overflows when using bf_find_root */
684 F(x,y):=(log(x)/log(y))^x-x^(log(x)/log(y)),
685 bf_find_root(F(400,z),z,2,1000));
686 3.6541530643502285043078342270912b2;
688 reset (find_root_error);
691 /* verify that SF bug #2564 "Regression in solve?" remains fixed */
694 foo : [[x = 3,y = 2,z = 1],
695 [x = .2768050783899193-2.987202528885064*%i,y = 1.478017834441328-1.347391287293138*%i,z = -0.526432162877356*%i-.8502171357296144],
696 [x = -2.885476929518458*%i-.8209889702162483,y = 1.596034454560479*%i-1.205269272758513,z = .9957341762950345*%i+.09226835946330206],
697 [x = 1.337215067329613-2.685489874065195*%i,y = 1.052864325754712*%i-1.700434271459228,z = .9324722294043555-.3612416661871523*%i],
698 [x = -2.394051681840712*%i-1.807903909137758,y = .8914767115530776-1.790326582710134*%i,z = .7390089172206591-.6736956436465571*%i],
699 [x = 2.217026751662001-2.021086930939692*%i,y = 1.864944458808694-.7224833323742995*%i,z = .9618256431728189*%i-.2736629900720828],
700 [x = -1.579296488632072*%i-2.550651407188846,y = 1.923651286345638*%i-.5473259801441661,z = -.1837495178165701*%i-.9829730996839015],
701 [x = 2.797416688213066-1.08372499856146*%i,y = .3674990356331407*%i-1.965946199367804,z = -.7980172272802396*%i-.6026346363792563],
702 [x = -.5512485534497117*%i-2.948919299051704,y = 0.184536718926604-1.991468352590069*%i,z = .8951632913550623*%i+.4457383557765383],
703 [x = .5512485534497115*%i-2.948919299051704,y = 1.991468352590069*%i+0.184536718926604,z = .4457383557765383-.8951632913550623*%i],
704 [x = 1.083724998561459*%i+2.797416688213064,y = -.3674990356331408*%i-1.965946199367804,z = .7980172272802396*%i-.6026346363792563],
705 [x = 1.57929648863207*%i-2.550651407188845,y = -1.923651286345638*%i-.5473259801441662,z = .1837495178165701*%i-.9829730996839015],
706 [x = 2.021086930939673*%i+2.217026751661979,y = 0.722483332374306*%i+1.864944458808712,z = -.9618256431728189*%i-.2736629900720828],
707 [x = 2.394051681840719*%i-1.80790390913777,y = 1.790326582710125*%i+.8914767115530766,z = .6736956436465571*%i+.7390089172206591],
708 [x = 2.685489874065194*%i+1.337215067329613,y = -1.052864325754712*%i-1.700434271459228,z = .3612416661871523*%i+.9324722294043555],
709 [x = 2.885476929518458*%i-0.820988970216246,y = -1.59603445456048*%i-1.205269272758512,z = .09226835946330206-.9957341762950345*%i],
710 [x = 2.9872025288851*%i+.2768050783899063,y = 1.347391287293114*%i+1.478017834441318,z = 0.526432162877356*%i-.8502171357296144]],
711 bar : sort (solve([x^2*y*z = 18,x*y^3*z = 24,x*y*z^4 = 6],[x,y,z])),
712 /* some gyrations to round small floats to zero */
713 matchdeclare (xx, lambda ([x], floatnump (x) and abs (x) < 1e-14)),
714 defrule (rfoo, xx, 0),
715 apply1 (abs (foo - bar), rfoo),
716 apply ("and", map (is, flatten (%))));
719 /* SF bug #3102: "find_root(x,x,-1e300,1e300) => overflow" */
721 find_root(x,x,-1e300,1e300);
724 /* SF bug #3145: "solve sometimes gives wrong solution when using ratvars" */
729 is (solve([x^3+x+c],[x]) = ev(solve([x^3+x+c],[x]), ratvars:[XXX]));
732 is (solve([x^4+x+c],[x]) = ev(solve([x^4+x+c],[x]), ratvars:[XXX]));
735 (kill(a0, a1, a2, a3, x1, x2),
736 eq:(-x^3*a3)+x^2*a2-x*a1+a0,
738 map (lambda ([e], radcan (subst (e, eq))), solve (eq, x)));
741 (eq:(-x^3*a3)+x^2*a2-x*a1+a0,
744 [x = ((-1)/2-(sqrt(3)*%i)/2)*(sqrt(27*a0^2*a3^2+(4*a1^3-18*a0*a1*a2)*a3
745 +4*a0*a2^3-a1^2*a2^2)
747 +((3*a0)/a3-(a1*a2)/a3^2)/6+a2^3/(27*a3^3))
749 -(((sqrt(3)*%i)/2+(-1)/2)*(a1/(3*a3)+((-1)*a2^2)/(9*a3^2)))
750 /(sqrt(27*a0^2*a3^2+(4*a1^3-18*a0*a1*a2)*a3+4*a0*a2^3-a1^2*a2^2)
752 +((3*a0)/a3-(a1*a2)/a3^2)/6+a2^3/(27*a3^3))
754 x = ((sqrt(3)*%i)/2+(-1)/2)*(sqrt(27*a0^2*a3^2+(4*a1^3-18*a0*a1*a2)*a3
755 +4*a0*a2^3-a1^2*a2^2)
757 +((3*a0)/a3-(a1*a2)/a3^2)/6+a2^3/(27*a3^3))
759 -(((-1)/2-(sqrt(3)*%i)/2)*(a1/(3*a3)+((-1)*a2^2)/(9*a3^2)))
760 /(sqrt(27*a0^2*a3^2+(4*a1^3-18*a0*a1*a2)*a3+4*a0*a2^3-a1^2*a2^2)
762 +((3*a0)/a3-(a1*a2)/a3^2)/6+a2^3/(27*a3^3))
764 x = (sqrt(27*a0^2*a3^2+(4*a1^3-18*a0*a1*a2)*a3+4*a0*a2^3-a1^2*a2^2)
766 +((3*a0)/a3-(a1*a2)/a3^2)/6+a2^3/(27*a3^3))
768 -(a1/(3*a3)+((-1)*a2^2)/(9*a3^2))/(sqrt(
769 27*a0^2*a3^2+(4*a1^3-18*a0*a1*a2)*a3
770 +4*a0*a2^3-a1^2*a2^2)
772 +((3*a0)/a3-(a1*a2)/a3^2)/6
776 /* SF bug #3434: "kill(ratvars) should give an error" */
787 errcatch (ratvars: 23);
802 /* SF bug #3158: "triangularize gives incorrect result on a matrix containing %i" */
804 triangularize (matrix([%i,-1,0,0,1,0,0,0],
807 [0,1,1,%i,0,0,0,1]));
808 matrix([%i,-1,0,0,1,0,0,0],
809 [0,1,-1,-%i,-1,0,%i,0],
810 [0,0,2,2*%i,1,0,-%i,1],
811 [0,0,0,0,2*%i,2,0,0]);
813 /* in this next example, one would hope that ev(..., algebraic) isn't necessary,
814 * however, it is necessary due to ALGPCHK at line 468, src/rat3e.lisp, namely:
816 ((not $algebraic) nil)
818 * That line can't be removed because there are a couple of calls to ALGPGET
819 * in src/nalgfa.lisp which appear to have potentially different behavior
820 * if that line is removed.
825 ev (triangularize (subst (%i=foo, matrix([%i,-1,0,0,1,0,0,0],
828 [0,1,1,%i,0,0,0,1]))), algebraic));
829 matrix([foo,-1,0,0,1,0,0,0],
830 [0,1,-1,-foo,-1,0,foo,0],
831 [0,0,2,2*foo,1,0,-foo,1],
832 [0,0,0,0,2*foo,2,0,0]);
834 /* mailing list 2017-02-27: "Small diff bug?" */
843 float (diff (f(x, y), x, 1, y, 2)));
844 'diff (f(x, y), x, 1, y, 2);
846 float (diff (f(x + 3/2, %pi*y), x, 1, y, 2));
847 'diff (f(x + 1.5, 3.141592653589793*y), x, 1, y, 2);
849 /* mailing list 2018-03-22: "bug in quad_qag" */
851 errcatch (quad_qag(r, r, 1/2, 1, 'epsrel=5d-8));
854 errcatch (quad_qag(r, r, 1/2, 1, 3, 'epsrel=5d-8));
855 [[0.3750000000000001, 4.163336342344338e-15, 31, 0]];
857 /* attempt to verify that float_approx_equal works as advertised
858 * some discussion on maxima-discuss 2019-01-14: "float_approx_equal too stringent by factor of 1/2?"
861 (reset (float_approx_equal_tolerance),
862 set_random_state (make_random_state (1234)));
865 /* following tests assume that foo + something*float_approx_equal_tolerance
866 * is not equal to foo -- test that assumption
869 block ([a: 1.0, b: 1.0 + 0.75*float_approx_equal_tolerance], [is(b = a), is(b - a > 0.0)]);
872 block ([a: 1.0, b: 1.0 + 1.25*float_approx_equal_tolerance], [is(b = a), is(b - a > 0.0)]);
875 sublist (makelist (block ([u: random(0.5) + 0.5, u1],
876 u1: u + 0.75*float_approx_equal_tolerance,
877 if not float_approx_equal (u, u1)
878 then failed_float_approx_equal (u, u1)
881 lambda ([e], e # true));
884 sublist (makelist (block ([u: random(0.5) + 0.5, u2],
885 u2: u + 1.25*float_approx_equal_tolerance,
886 if float_approx_equal (u, u2)
887 then failed_not_float_approx_equal (u, u2)
890 lambda ([e], e # false));