1 ;;; -*- Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- ;;;;
2 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3 ;;; The data in this file contains enhancments. ;;;;;
5 ;;; Copyright (c) 1984,1987 by William Schelter,University of Texas ;;;;;
6 ;;; All rights reserved ;;;;;
7 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
11 ;; Plasma Dispersion Function, NZETA(Z).
13 ;; This function is related to the complex error function by
15 ;; NZETA(Z) = %I*SQRT(%PI)*EXP(-Z^2)*(1-ERF(-%I*Z))
17 ;; NZETA(Z) returns the complex value of the Plasma Dispersion Function
20 ;; NZETAR(Z) returns REALPART(NZETA(Z)).
22 ;; NZETAI(Z) returns IMAGPART(NZETA(Z)).
24 (defun z-function (x y
)
25 (let ((xs (if (> 0.0 x
) -
1.0 1.0))
26 (ys (if (> 0.0 y
) -
1.0 1.0))
29 (h 0.0) (h2 0.0) (lamb 0.0) (r1 0.0) (r2 0.0) (s 0.0)
30 (s1 0.0) (s2 0.0) (t1 0.0) (t2 0.0) (c 0.0)
32 (setq x
(abs x
) y
(abs y
))
33 (cond ((and (> 4.29 y
) (> 5.33 x
))
34 (setq s
(* (1+ (* -
0.23310023 y
))
35 (sqrt (1+ (* -
0.035198873 x x
)))))
36 (setq h
(* 1.6 s
) h2
(* 2.0 h
) capn
(+ 6 (floor (* 23.0 s
))))
37 (setq nu
(+ 9 (floor (* 21.0 s
)))))
38 (t (setq h
0.0) (setq capn
0) (setq nu
8)))
39 (when (> h
0.0) (setq lamb
(expt h2 capn
)))
40 (setq bool
(or (zerop h
) (zerop lamb
)))
43 (setq t1
(+ h
(* (float (1+ n
)) r1
) y
))
44 (setq t2
(- x
(* (float (1+ n
)) r2
)))
45 (setq c
(/ 0.5 (+ (* t1 t1
) (* t2 t2
))))
46 (setq r1
(* c t1
) r2
(* c t2
))
47 (cond ((and (> h
0.0) (not (< capn n
)))
48 (setq t1
(+ s1 lamb
) s1
(- (* r1 t1
) (* r2 s2
)))
49 (setq s2
(+ (* r1 s2
) (* r2 t1
)) lamb
(/ lamb h2
)))))
50 (setq im
(if (zerop y
)
51 (* 1.77245384 (exp (- (* x x
))))
52 (* 2.0 (if bool r1 s1
))))
53 (setq re
(* -
2.0 (if bool r2 s2
)))
54 (cond ((> ys
0.0) (setq re
(* re xs
)))
55 (t (setq r1
(* 3.5449077 (exp (- (* y y
) (* x x
)))))
57 (setq re
(* (- re
(* r1
(sin r2
))) xs
))
58 (setq im
(- (* r1
(cos r2
)) im
))))
59 `((mlist simp
) ,re
,im
)))
62 (let ((x ($realpart z
))
64 (if (and (numberp x
) (numberp y
))
65 (let ((w (z-function (float x
) (float y
))))
66 (simplify `((mplus) ,(second w
) ,(simplify `((mtimes) $%i
,(third w
))))))
67 `(($nzeta simp
) ,z
))))
70 (let ((x ($realpart z
))
72 (if (and (numberp x
) (numberp y
))
73 (second (z-function (float x
) (float y
)))
74 `(($nzetar simp
) ,z
))))
77 (let ((x ($realpart z
))
79 (if (and (numberp x
) (numberp y
))
80 (third (z-function (float x
) (float y
)))
81 `(($nzetai simp
) ,z
))))