Print a warning when translating subscripted functions
[maxima.git] / share / contrib / cgrind.lisp
blobfae62f1dbc5d0626fca60c6bfcfd50ac7def9fa8
1 (in-package :maxima)
3 (macsyma-module cgrind)
5 ;; This is heavily lifted from grind.lisp and fortra.lisp, and should have the
6 ;; same features as the fortran command. In order to work it needs to be compiled and
7 ;; then loaded, as in (for the case of cmucl):
8 ;; :lisp (compile-file "cgrind.lisp"), copy cgrind.sse2f to ~/.maxima
9 ;; load(cgrind)
10 ;; Then one can run cgrind(expression) or cgrind(matrix).
11 ;; M. Talon (2011)
14 (declare-top (special $loadprint)) ;If NIL, no load message gets printed.
16 ;; This function is called from Macsyma toplevel. First the arguments is
17 ;; checked to be a single expression. Then if the argument is a
18 ;; symbol, and the symbol is bound to a matrix, the matrix is printed
19 ;; using an array assignment notation.
21 (defmspec $cgrind (l)
22 (setq l (fexprcheck l))
23 (let ((value (strmeval l)))
24 (cond ((msetqp l) (setq value `((mequal) ,(cadr l) ,(meval l)))))
25 (cond ((and (symbolp l) ($matrixp value))
26 ($cgrindmx l value))
27 ((and (not (atom value)) (eq (caar value) 'mequal)
28 (symbolp (cadr value)) ($matrixp (caddr value)))
29 ($cgrindmx (cadr value) (caddr value)))
30 (t (c-print value)))))
32 (defun c-print (x &optional (stream *standard-output*))
33 ;; Restructure the expression for displaying.
34 ;; Mainly sanitizes exponentials, notably exp(2/3) becomes
35 ;; exp(2.0/3.0)
37 (setq x (scanforc x))
39 ;; Protects the modifications to mexpt from creeping out.
41 (unwind-protect
43 (progn
44 (defprop mexpt msz-cmexpt grind)
46 ;; This means basic printing for atoms, grind does fancy things.
47 (setq *fortran-print* t)
49 ;; Prints using the usual grind mechanisms
50 (mgrind x stream)(write-char #\; stream)(write-char #\Newline stream))
52 ;; Restore usual mexpt property etc. before exiting this frame.
53 (defprop mexpt msz-mexpt grind)
54 (setq *fortran-print* nil))
55 '$done)
58 ;; The only modification to grind, converts a^b to pow(a,b), but taking
59 ;; care of appropriate bracketing. The argument l to the left of (MEXPT)
60 ;; has to be composed backwards. Finally a^-b has special treatment.
62 (defun msz-cmexpt (x l r)
63 (setq l (msize (cadr x) (revappend '(#\p #\o #\w #\() l) (list #\,) 'mparen 'mparen)
64 r (if (mmminusp (setq x (nformat (caddr x))))
65 (msize (cadr x) (list #\-) (cons #\) r) 'mexpt rop)
66 (msize x nil (cons #\) r ) 'mparen 'mparen)))
67 (list (+ (car l) (car r)) l r))
73 ;; Takes a name and a matrix and prints a sequence of C assignment
74 ;; statements of the form
75 ;; NAME[I][J] = <corresponding matrix element>
76 ;; This requires some formatting work unnecessary for the fortran case.
78 (defmfun $cgrindmx (name mat &optional (stream *standard-output*) &aux ($loadprint nil))
79 (cond ((not (symbolp name))
80 (merror (intl:gettext "cgrindmx: first argument must be a symbol; found: ~M") name))
81 ((not ($matrixp mat))
82 (merror (intl:gettext "cgrindmx: second argument must be a matrix; found: ~M") mat)))
83 (do ((mat (cdr mat) (cdr mat)) (i 1 (1+ i)))
84 ((null mat))
85 (do ((m (cdar mat) (cdr m)) (j 1 (1+ j)))
86 ((null m))
87 (format stream "~a[~a][~a] = " (string-left-trim "$" name) (1- i) (1- j) )
88 (c-print (car m) stream)))
89 '$done)
95 ;; This C scanning function is similar to fortscan. Prepare an expression
96 ;; for printing by converting x^(1/2) to sqrt(x), etc. Since C has no
97 ;; support for complex numbers, contrary to Fortran, ban them.
99 (defun scanforc (e)
100 (cond ((atom e) (cond ((eq e '$%i) ;; ban complex numbers
101 (merror (intl:gettext "Take real and imaginary parts")))
102 (t e)))
103 ;; %e^a -> exp(a)
104 ((and (eq (caar e) 'mexpt) (eq (cadr e) '$%e))
105 (list '(%exp simp) (scanforc (caddr e))))
106 ;; a^1/2 -> sqrt(a) 1//2 is defined as ((rat simp) 1 2)
107 ((and (eq (caar e) 'mexpt) (alike1 (caddr e) 1//2))
108 (list '(%sqrt simp) (scanforc (cadr e))))
109 ;; a^-1/2 -> 1/sqrt(a)
110 ((and (eq (caar e) 'mexpt) (alike1 (caddr e) -1//2))
111 (list '(mquotient simp) 1 (list '(%sqrt simp) (scanforc (cadr e)))))
112 ;; (1/3)*b -> b/3.0 and (-1/3)*b -> -b/3.0
113 ((and (eq (caar e) 'mtimes) (ratnump (cadr e))
114 (member (cadadr e) '(1 -1) :test #'equal))
115 (cond ((equal (cadadr e) 1) (scanforc-mtimes e))
116 (t (list '(mminus simp) (scanforc-mtimes e)))))
117 ;; 1/3 -> 1.0/3.0
118 ((eq (caar e) 'rat)
119 (list '(mquotient simp) (float (cadr e)) (float (caddr e))))
120 ;; rat(a/b) -> a/b via ratdisrep
121 ((eq (caar e) 'mrat) (scanforc (ratdisrep e)))
122 ;; ban complex numbers
123 ((and (member (caar e) '(mtimes mplus) :test #'eq)
124 (let ((a (simplify ($bothcoef e '$%i))))
125 (and (numberp (cadr a))
126 (numberp (caddr a))
127 (not (zerop1 (cadr a)))
128 (merror (intl:gettext "Take real and imaginary parts"))))))
129 ;; in general do nothing, recurse
130 (t (cons (car e) (mapcar 'scanforc (cdr e))))))
132 ;; This is used above 1/3*b*c -> b*c/3.0
133 (defun scanforc-mtimes (e)
134 (list '(mquotient simp)
135 (cond ((null (cdddr e)) (scanforc (caddr e)))
136 (t (cons (car e) (mapcar 'scanforc (cddr e)))))
137 (float (caddr (cadr e)))))