1 takens.mac is from the paper "Determinacy of Degenerate Equilibria
2 with Linear Part x'=y, y'=0 Using MACSYMA", R.H.Rand, W.L.Keith
3 Applied Mathematics and Computation 21:1-19 (1987)
4 (http://tam.cornell.edu/Rand.html)
6 The program implements Taken's method of proving the determinacy of a
7 flow in the neighbourhood of a equilibrium point by successive blowup
10 The appendix in the paper is reproduced with maxima-5.9.0-cvs. Some
11 of the inputs are case sensitive - when I entered the equations in
12 lower case the answers differed.
14 (C1) load("takens.mac");
17 ENTER THE RHS'S TO BE STUDIED
18 USE VARIABLES X,Y, THEY WILL BE CONVERTED TO X1,Y1
28 F1 = A4 X1 Y1 + A3 X1 Y1 + X1 Y1 + B3 X1 + B2 X1
30 G1 = - Y1 - B3 X1 Y1 - B2 X1 Y1 + A4 X1 + A3 X1
32 TRUNCATE F AND G TO HOMOGENEOUS POLYNOMIALS
34 [Y1 X1 + . . ., - Y1 + . . .]
36 TOTAL NO. OF ROOTS = 1
41 P1 = A4 R1 COS (S1) SIN(S1) + A3 R1 COS (S1) SIN(S1) + R1 COS(S1) SIN(S1)
44 + B3 R1 COS (S1) + B2 R1 COS (S1)
46 Q1 = - SIN (S1) - B3 R1 COS (S1) SIN(S1) - B2 R1 COS (S1) SIN(S1)
49 + A4 R1 COS (S1) + A3 R1 COS (S1)
53 NOTE: PREVIOUS SHOULD BE ZERO!
57 SOLVE is using arc-trig functions to get a solution.
58 Some solutions will be lost.
61 PICK A ROOT NO., OR 0 TO ENTER ONE
64 KEEP TERMS OF WHAT POWER?
68 Y2 X2 + B2 X2 + B3 X2 + . . .
71 - Y2 - B2 Y2 X2 + A3 X2 + (A4 X2 - B3 Y2 X2 ) + . . .
73 F2 = - Y2 - B3 X2 Y2 - B2 X2 Y2 + A4 X2 Y2 + A3 X2 Y2 + X2 Y2 + B3 X2
78 G2 = - 2 X2 Y2 - 2 B3 X2 Y2 - 2 B2 X2 Y2 + A4 X2 + A3 X2
80 TRUNCATE F AND G TO HOMOGENEOUS POLYNOMIALS
82 [- Y2 - B2 Y2 X2 + (A3 + 1) Y2 X2 + B2 X2 + . . .,
85 - 2 Y2 X2 - 2 B2 Y2 X2 + A3 X2 + . . .]
87 TOTAL NO. OF ROOTS = 5
89 SQRT(B2 + 2 A3) Y2 - B2 Y2
90 X2 = - ---------------------------
93 SQRT(B2 + 2 A3) Y2 + B2 Y2
94 X2 = ---------------------------
98 SQRT(B2 + 2 A3) X2 + B2 X2
99 Y2 = - ---------------------------
102 SQRT(B2 + 2 A3) X2 - B2 X2
103 Y2 = ---------------------------