1 /* Filename vandpol.mac
3 ***************************************************************
6 * <functionality description> *
8 * from: Computer Algebra in Applied Math. *
9 * by Rand (Pitman,1984) *
10 * Programmed by Richard Rand *
11 * These files are released to the public domain *
13 ***************************************************************
18 (d12) This program computes a perturbation solution for the
21 limit cycle in Van der Pol's equation. Call it by typing:
27 where N is the order of truncation.
30 vanderpol(n):=(setup1(n),setup2(n),
32 block(step1(i),step2(i),if i > 1 then output1(i),
33 if i = n then go(end),step3(i),step4(i),step5(i),end),
35 setup1(n):=(w:1,for i thru n do w:w+k[i]*e^i,x:2*cos(t),
36 for i thru n do x:x+y[i](t)*e^i)$
37 setup2(n):=(temp1:diff(x,t,2)+x/w^2-e*(1-x^2)*diff(x,t)/w,
38 temp1:taylor(temp1,e,0,n),for i thru n do eq[i]:coeff(temp1,e,i))$
40 :expand(trigreduce(expand(ev(eq[i],makelist([e[j],f[j]],j,1,i-1),
43 if i = 1 then f[i]:solve(coeff(temp1,cos(t)),k[i])
44 else f[i]:solve([coeff(temp1,cos(t)),coeff(temp1,sin(t))],
45 [k[i],b[i-1]]),temp1:ev(temp1,f[i]))$
46 step3(i):=(temp1:ode2(temp1,y[i](t),t),
47 temp1:subst(a[i],%k1,temp1),temp1:subst(b[i],%k2,temp1))$
48 step4(i):=(temp2:rhs(temp1),temp2:diff(temp2,t),
49 temp2:solve(ev(temp2,t:0),a[i]))$
50 step5(i):=e[i]:ev(temp1,temp2)$
51 output1(i):=(print(expand(ev(e[i-1],f[i]))),print(" "))$
52 output2(n):=(print("w=",ev(w,makelist([f[j]],j,1,n))),print(" "))$