1 @c -*- mode: texinfo -*-
4 * Introduction to Elliptic Functions and Integrals::
5 * Functions and Variables for Elliptic Functions::
6 * Functions and Variables for Elliptic Integrals::
11 @node Introduction to Elliptic Functions and Integrals, Functions and Variables for Elliptic Functions, , Elliptic Functions
12 @comment node-name, next, previous, up
13 @section Introduction to Elliptic Functions and Integrals
15 Maxima includes support for Jacobian elliptic functions and for
16 complete and incomplete elliptic integrals. This includes symbolic
17 manipulation of these functions and numerical evaluation as well.
18 Definitions of these functions and many of their properties can by
19 found in Abramowitz and Stegun, @urlaands{Chapter 16, 567} and
20 @urlaands{Chapter 17., 587} See also @urldlmf{22.2}. As much as possible,
21 we use the definitions and relationships given in Abramowitz and Stegun.
23 In particular, all elliptic functions and integrals use the parameter
24 @math{m} instead of the modulus @math{k} or the modular angle
25 @math{\alpha}. The following relationships are true:
35 @math{k = sin(alpha)}>>>
38 Note that Abramowitz and Stegun uses the notation
40 sn}(u|m)>>>, <<<sn(u|m)>>>)
43 sn}(u,m)>>>, <<<sn(u,m)>>>)
44 instead. The DLMF uses modulus @math{k}
45 instead of the parameter @math{m}.
47 The elliptic functions and integrals are primarily intended to support
48 symbolic computation. Therefore, most of derivatives of the functions
49 and integrals are known. However, if floating-point values are given,
50 a floating-point result is returned.
52 Support for most of the other properties of elliptic functions and
53 integrals other than derivatives has not yet been written.
55 Some examples of elliptic functions:
60 @c diff (jacobi_sn (u, m), u);
61 @c diff (jacobi_sn (u, m), m);
65 (%i1) jacobi_sn (u, m);
69 (%i2) jacobi_sn (u, 1);
73 (%i3) jacobi_sn (u, 0);
77 (%i4) diff (jacobi_sn (u, m), u);
78 (%o4) jacobi_cn(u, m) jacobi_dn(u, m)
81 (%i5) diff (jacobi_sn (u, m), m);
82 (%o5) (jacobi_cn(u, m) jacobi_dn(u, m)
83 elliptic_e(asin(jacobi_sn(u, m)), m)
84 (u - ------------------------------------))/(2 m)
87 jacobi_cn (u, m) jacobi_sn(u, m)
88 + --------------------------------
93 Some examples of elliptic integrals:
95 @c elliptic_f (phi, m);
96 @c elliptic_f (phi, 0);
97 @c elliptic_f (phi, 1);
98 @c elliptic_e (phi, 1);
99 @c elliptic_e (phi, 0);
100 @c elliptic_kc (1/2);
102 @c diff (elliptic_f (phi, m), phi);
103 @c diff (elliptic_f (phi, m), m);
107 (%i1) elliptic_f (phi, m);
108 (%o1) elliptic_f(phi, m)
111 (%i2) elliptic_f (phi, 0);
115 (%i3) elliptic_f (phi, 1);
117 (%o3) log(tan(--- + ---))
121 (%i4) elliptic_e (phi, 1);
123 (%o4) 2 round(---) - sin(%pi round(---) - phi)
127 (%i5) elliptic_e (phi, 0);
131 (%i6) elliptic_kc (1/2);
149 (%i8) diff (elliptic_f (phi, m), phi);
151 (%o8) ---------------------
153 sqrt(1 - m sin (phi))
156 (%i9) diff (elliptic_f (phi, m), m);
157 elliptic_e(phi, m) - (1 - m) elliptic_f(phi, m)
158 (%o9) (-----------------------------------------------
161 - ---------------------)/(2 (1 - m))
163 sqrt(1 - m sin (phi))
167 Support for elliptic functions and integrals was written by Raymond
168 Toy. It is placed under the terms of the General Public License (GPL)
169 that governs the distribution of Maxima.
171 @opencatbox{Categories:}
172 @category{Elliptic functions}
175 @node Functions and Variables for Elliptic Functions, Functions and Variables for Elliptic Integrals, Introduction to Elliptic Functions and Integrals, Elliptic Functions
176 @comment node-name, next, previous, up
177 @section Functions and Variables for Elliptic Functions
178 See @urlaands{Section 6.12, 569} and @urldlmf{22.2} for more
182 @deffn {Function} jacobi_sn (@var{u}, @var{m})
183 The Jacobian elliptic function
184 m4_mathdot(<<<{\rm sn}(u,m)>>>, <<<sn(u,m)>>>)
187 @opencatbox{Categories:}
188 @category{Elliptic functions}
193 @deffn {Function} jacobi_cn (@var{u}, @var{m})
194 The Jacobian elliptic function
195 m4_mathdot(<<<{\rm cn}(u,m)>>>, <<<cn(u,m)>>>)
197 @opencatbox{Categories:}
198 @category{Elliptic functions}
203 @deffn {Function} jacobi_dn (@var{u}, @var{m})
204 The Jacobian elliptic function
205 m4_mathdot(<<<{\rm dn}(u,m)>>>, <<<dn(u,m)>>>)
207 @opencatbox{Categories:}
208 @category{Elliptic functions}
213 @deffn {Function} jacobi_ns (@var{u}, @var{m})
214 The Jacobian elliptic function
215 m4_mathdot(<<<{\rm ns}(u,m) = 1/{\rm
216 sn}(u,m)>>>, <<<ns(u,m) = 1/sn(u,m)>>>)
218 @opencatbox{Categories:}
219 @category{Elliptic functions}
224 @deffn {Function} jacobi_sc (@var{u}, @var{m})
225 The Jacobian elliptic function
226 m4_mathdot(<<<{\rm sc}(u,m) = {\rm
227 sn}(u,m)/{\rm cn}(u,m)>>>, <<<sc(u,m) = sn(u,m)/cn(u,m)>>>)
229 @opencatbox{Categories:}
230 @category{Elliptic functions}
235 @deffn {Function} jacobi_sd (@var{u}, @var{m})
236 The Jacobian elliptic function
237 m4_mathdot({\rm sd}(u,m) = {\rm
238 sn}(u,m)/{\rm dn}(u,m), <<<sd(u,m) = sn(u,m)/dn(u,m)>>>)
240 @opencatbox{Categories:}
241 @category{Elliptic functions}
246 @deffn {Function} jacobi_nc (@var{u}, @var{m})
247 The Jacobian elliptic function
248 m4_mathdot(<<<{\rm nc}(u,m) = 1/{\rm cn}(u,m)>>>, <<<nc(u,m) = 1/cn(u,m)>>>)
250 @opencatbox{Categories:}
251 @category{Elliptic functions}
256 @deffn {Function} jacobi_cs (@var{u}, @var{m})
257 The Jacobian elliptic function
258 m4_mathdot(<<<{\rm cs}(u,m) = {\rm
259 cn}(u,m)/{\rm sn}(u,m)>>>, <<<cs(u,m) = cn(u,m)/sn(u,m)>>>)
261 @opencatbox{Categories:}
262 @category{Elliptic functions}
267 @deffn {Function} jacobi_cd (@var{u}, @var{m})
268 The Jacobian elliptic function
269 m4_mathdot(<<<{\rm cd}(u,m) = {\rm cn}(u,m)/{\rm dn}(u,m)>>>, <<<cd(u,m) = cn(u,m)/dn(u,m)>>>)
271 @opencatbox{Categories:}
272 @category{Elliptic functions}
277 @deffn {Function} jacobi_nd (@var{u}, @var{m})
278 The Jacobian elliptic function
279 m4_mathdot(<<<{\rm nd}(u,m) = 1/{\rm dn}(u,m)>>>,
280 <<<nd(u,m) = 1/dn(u,m)>>>)
282 @opencatbox{Categories:}
283 @category{Elliptic functions}
288 @deffn {Function} jacobi_ds (@var{u}, @var{m})
289 The Jacobian elliptic function
290 m4_mathdot(<<<{\rm ds}(u,m) =
291 {\rm dn}(u,m)/{\rm sn}(u,m)>>>, <<<ds(u,m) = dn(u,m)/sn(u,m)>>>)
293 @opencatbox{Categories:}
294 @category{Elliptic functions}
299 @deffn {Function} jacobi_dc (@var{u}, @var{m})
300 The Jacobian elliptic function
301 m4_mathdot(<<<{\rm dc}(u,m) =
302 {\rm dn}(u,m)/{\rm cn}(u,m)>>>, <<<dc(u,m) = dn(u,m)/cn(u,m)>>>)
304 @opencatbox{Categories:}
305 @category{Elliptic functions}
310 @deffn {Function} jacobi_am (@var{u}, @var{m})
311 The Jacobi amplitude function, @code{jacobi_am}, is defined implicitly by (see
312 @url{http://functions.wolfram.com/09.24.02.0001.01})
313 m4_math(<<<z = {\rm am}(w, m)>>>,<<<z = am(w, m)>>>)
314 where @math{w = F(z,m)} where @math{F(z,m)} is the incomplete elliptic
315 integral of the first kind (@pxref{elliptic_f}). It is defined for
316 all real and complex values of @math{z} and @math{m}. In particular
317 for real @math{z} and @math{m} with @math{|m|<1},
318 m4_math(<<<{\rm am}(z,m)>>>,<<<am(z,m)>>>)
319 maps the entire real line to the entire real line. For other values
320 of @math{z} and @math{m}, the following relationship is used:
321 m4_mathdot(<<<{\rm am}(z,m) = \sin^{-1}({\rm jacobi\_sn}(z, m))>>>,
322 <<<am(z,m) = asin(jacobi_sn(z,m))>>>)
329 @c jacobi_am(100, .5);
330 @c jacobi_am(0.5, 1.5);
331 @c jacobi_am(1.5b0, 1.5b0+%i);
335 (%i1) jacobi_am(z,0);
339 (%i2) jacobi_am(z,1);
341 (%o2) 2 atan(%e ) - ---
345 (%i3) jacobi_am(0,m);
349 (%i4) jacobi_am(100, .5);
350 (%o4) 84.70311272411382
353 (%i5) jacobi_am(0.5, 1.5);
354 (%o5) 0.4707197897046991
357 (%i6) jacobi_am(1.5b0, 1.5b0+%i);
358 (%o6) 9.340542168700782b-1 - 3.723960452146071b-1 %i
363 @c plot2d([jacobi_am(x,.4),jacobi_am(x,.7),jacobi_am(x,.99),jacobi_am(x,.999999)],[x,0,10*%pi]);
367 (%i1) plot2d([jacobi_am(x,.4),jacobi_am(x,.7),jacobi_am(x,.99),jacobi_am(x,.999999)],[x,0,10*%pi]);
373 Compare this plot with the plot from @urldlmf{22.16.iv}:
375 @image{figures/jacobi_am}
378 @opencatbox{Categories:}
379 @category{Elliptic functions}
383 @anchor{inverse_jacobi_dn}
384 @deffn {Function} inverse_jacobi_dn (@var{u}, @var{m})
385 The inverse of the Jacobian elliptic function
387 dn}(u,m)>>>, <<<dn(u,m)>>>)
389 m4_mathcomma(\sqrt{1-m}\le u \le 1,
391 it can also be written (@urldlmf{22.15.E14}):
393 {\rm inverse\_jacobi\_dn}(u, m) = \int_u^1 {dt\over \sqrt{(1-t^2)(t^2-(1-m))}},
398 inverse_jacobi_dn(u, m) = I --------------------------- dt
400 / sqrt((1 - t ) (t + m - 1))
406 @opencatbox{Categories:}
407 @category{Elliptic functions}
411 @anchor{inverse_jacobi_ns}
412 @deffn {Function} inverse_jacobi_ns (@var{u}, @var{m})
413 The inverse of the Jacobian elliptic function
415 ns}(u,m)>>>, <<<ns(u,m)>>>)
417 m4_mathcomma(1 \le u, 1 <= u)
418 it can also be written (@urldlmf{22.15.E121}):
420 {\rm inverse\_jacobi\_ns}(u, m) = \int_u^{\infty} {dt\over \sqrt{(1-t^2)(t^2-m)}},
425 inverse_jacobi_ns(u, m) = I ----------------------- dt
427 / sqrt((1 - t ) (t - m))
432 @opencatbox{Categories:}
433 @category{Elliptic functions}
437 @anchor{inverse_jacobi_sc}
438 @deffn {Function} inverse_jacobi_sc (@var{u}, @var{m})
439 The inverse of the Jacobian elliptic function
441 sc}(u,m)>>>, <<<sc(u,m)>>>)
442 For all @math{u} it can also be written (@urldlmf{22.15.E20}):
444 {\rm inverse\_jacobi\_sc}(u, m) = \int_0^u {dt\over \sqrt{(1+t^2)(1+(1-m)t^2)}},
449 inverse_jacobi_sc(u, m) = I ------------------------------- dt
451 / sqrt((1 - t ) (1 - (1 - m) t ))
456 @opencatbox{Categories:}
457 @category{Elliptic functions}
461 @anchor{inverse_jacobi_sd}
462 @deffn {Function} inverse_jacobi_sd (@var{u}, @var{m})
463 The inverse of the Jacobian elliptic function
465 sd}(u,m)>>>, <<<sd(u,m)>>>)
467 m4_mathcomma(-1/\sqrt{1-m}\le u \le
468 1/\sqrt{1-m}, -1/sqrt(1-m) <= 1/sqrt(1-m))
469 it can also be written (@urldlmf{22.15.E16}):
471 {\rm inverse\_jacobi\_sd}(u, m) = \int_0^u {dt\over \sqrt{(1-(1-m)t^2)(1+mt^2)}},
476 inverse_jacobi_sd(u, m) = I --------------------------------- dt
478 / sqrt((1 - (1 - m) t ) (m t + 1))
483 @opencatbox{Categories:}
484 @category{Elliptic functions}
488 @anchor{inverse_jacobi_nc}
489 @deffn {Function} inverse_jacobi_nc (@var{u}, @var{m})
490 The inverse of the Jacobian elliptic function
492 nc}(u,m)>>>, <<<nc(u,m)>>>)
494 m4_mathcomma(1\le u, 1 <= u)
495 it can also be written (@urldlmf{22.15.E19}):
497 {\rm inverse\_jacobi\_nc}(u, m) = \int_1^u {dt\over \sqrt{(t^2-1)(m+(1-m)t^2)}},
502 inverse_jacobi_nc(u, m) = - I ------------------------------- dt
504 / sqrt((t - 1) ((1 - m) t + m))
509 @opencatbox{Categories:}
510 @category{Elliptic functions}
514 @anchor{inverse_jacobi_cs}
515 @deffn {Function} inverse_jacobi_cs (@var{u}, @var{m})
516 The inverse of the Jacobian elliptic function
518 cs}(u,m)>>>, <<<cs(u,m)>>>)
519 For all @math{u} it can also be written (@urldlmf{22.15.E23}):
521 {\rm inverse\_jacobi\_cs}(u, m) = \int_u^{\infty} {dt\over \sqrt{(1+t^2)(t^2+(1-m))}},
526 inverse_jacobi_cs(u, m) = I ----------------------------- dt
528 / sqrt(t + 1) sqrt(t - m + 1)
534 @opencatbox{Categories:}
535 @category{Elliptic functions}
539 @anchor{inverse_jacobi_cd}
540 @deffn {Function} inverse_jacobi_cd (@var{u}, @var{m})
541 The inverse of the Jacobian elliptic function
543 cd}(u,m)>>>, <<<cd(u,m)>>>)
545 m4_mathcomma(-1\le u \le 1, -1 <= u <=
547 it can also be written (@urldlmf{22.15.E15}):
549 {\rm inverse\_jacobi\_cd}(u, m) = \int_u^1 {dt\over \sqrt{(1-t^2)(1-mt^2)}},
554 inverse_jacobi_cd(u, m) = I ------------------------- dt
556 / sqrt((1 - t ) (1 - m t ))
562 @opencatbox{Categories:}
563 @category{Elliptic functions}
567 @anchor{inverse_jacobi_nd}
568 @deffn {Function} inverse_jacobi_nd (@var{u}, @var{m})
569 The inverse of the Jacobian elliptic function
571 nd}(u,m)>>>, <<<nd(u,m)>>>)
573 m4_mathcomma(1\le u \le 1/\sqrt{1-m},
574 1 <= u <= 1/sqrt(1-m))
575 it can also be written (@urldlmf{22.15.E17}):
577 {\rm inverse\_jacobi\_nd}(u, m) = \int_1^u {dt\over \sqrt{(t^2-1)(1-(1-m)t^2)}},
582 inverse_jacobi_nd(u, m) = - I ------------------------------- dt
584 / sqrt((t - 1) (1 - (1 - m) t ))
590 @opencatbox{Categories:}
591 @category{Elliptic functions}
595 @anchor{inverse_jacobi_ds}
596 @deffn {Function} inverse_jacobi_ds (@var{u}, @var{m})
597 The inverse of the Jacobian elliptic function
599 ds}(u,m)>>>, <<<ds(u,m)>>>)
601 m4_mathcomma(\sqrt{1-m}\le u,
603 it can also be written (@urldlmf{22.15.E22}):
605 {\rm inverse\_jacobi\_ds}(u, m) = \int_u^{\infty} {dt\over \sqrt{(t^2+m)(t^2-(1-m))}},
610 inverse_jacobi_ds(u, m) = I --------------------------- dt
612 / sqrt((t + m - 1) (t + m))
618 @opencatbox{Categories:}
619 @category{Elliptic functions}
623 @anchor{inverse_jacobi_dc}
624 @deffn {Function} inverse_jacobi_dc (@var{u}, @var{m})
625 The inverse of the Jacobian elliptic function
627 dc}(u,m)>>>, <<<dc(u,m)>>>)
629 m4_mathcomma(1 \le u, 1 <= u)
630 it can also be written (@urldlmf{22.15.E18}):
632 {\rm inverse\_jacobi\_dc}(u, m) = \int_1^u {dt\over \sqrt{(t^2-1)(t^2-m)}},
637 inverse_jacobi_dc(u, m) = I ----------------------- dt
639 / sqrt((t - 1) (t - m))
645 @opencatbox{Categories:}
646 @category{Elliptic functions}
651 @node Functions and Variables for Elliptic Integrals, , Functions and Variables for Elliptic Functions, Elliptic Functions
652 @comment node-name, next, previous, up
653 @section Functions and Variables for Elliptic Integrals
656 @deffn {Function} elliptic_f (@var{phi}, @var{m})
657 The incomplete elliptic integral of the first kind, defined as
660 <<<\int_0^{\phi} {\frac{d\theta}{\sqrt{1-m\sin^2\theta}}}>>>
662 <<<@math{integrate(1/sqrt(1 - m*sin(x)^2), x, 0, phi)}>>>
665 See also @ref{elliptic_e} and @ref{elliptic_kc}.
667 @opencatbox{Categories:}
668 @category{Elliptic integrals}
673 @deffn {Function} elliptic_e (@var{phi}, @var{m})
674 The incomplete elliptic integral of the second kind, defined as
677 <<<\int_0^\phi {\sqrt{1 - m\sin^2\theta}}\, d\theta>>>
679 <<<@math{elliptic_e(phi, m) = integrate(sqrt(1 - m*sin(x)^2), x, 0, phi)}>>>
682 See also @ref{elliptic_f} and @ref{elliptic_ec}.
684 @opencatbox{Categories:}
685 @category{Elliptic integrals}
690 @deffn {Function} elliptic_eu (@var{u}, @var{m})
691 The incomplete elliptic integral of the second kind, defined as
694 <<<E(u, m) = \int_0^u {\rm dn}(v, m)\, dv = \int_0^\tau \sqrt{\frac{1-m t^2}{1-t^2}}\, dt>>>
696 <<<@math{elliptic_eu(u, m) = integrate(dn(v,m)^2,v,0,u) = integrate(sqrt(1-m*t^2)/sqrt(1-t^2), t, 0, tau)}>>>
701 <<<\tau = {\rm sn}(u,m)>>>
707 This is related to @code{elliptic_e} by
710 <<<E(u,m) = E(\sin^{-1} {\rm sn}(u, m), m)>>>
712 <<<@math{elliptic_eu(u, m) = elliptic_e(asin(sn(u,m)),m)}>>>
715 See also @ref{elliptic_e}.
716 @opencatbox{Categories:}
717 @category{Elliptic integrals}
722 @deffn {Function} elliptic_pi (@var{n}, @var{phi}, @var{m})
723 The incomplete elliptic integral of the third kind, defined as
726 <<<\int_0^\phi {{d\theta}\over{(1-n\sin^2 \theta)\sqrt{1 - m\sin^2\theta}}}>>>
728 <<<@math{integrate(1/(1-n*sin(x)^2)/sqrt(1 - m*sin(x)^2), x, 0, phi)}>>>
731 @opencatbox{Categories:}
732 @category{Elliptic integrals}
737 @deffn {Function} elliptic_kc (@var{m})
738 The complete elliptic integral of the first kind, defined as
741 <<<\int_0^{\frac{\pi}{2}} {{d\theta}\over{\sqrt{1 - m\sin^2\theta}}}>>>
743 <<<@math{integrate(1/sqrt(1 - m*sin(x)^2), x, 0, pi/2)}>>>
746 For certain values of @math{m}, the value of the integral is known in
747 terms of @math{Gamma} functions. Use @mref{makegamma} to evaluate them.
749 @opencatbox{Categories:}
750 @category{Elliptic integrals}
755 @deffn {Function} elliptic_ec (@var{m})
756 The complete elliptic integral of the second kind, defined as
759 <<<\int_0^{\frac{\pi}{2}} \sqrt{1 - m\sin^2\theta}\, d\theta>>>
761 <<<@math{integrate(sqrt(1 - m*sin(x)^2), x, 0, pi/2)}>>>
764 For certain values of @math{m}, the value of the integral is known in
765 terms of @math{Gamma} functions. Use @mref{makegamma} to evaluate them.
767 @opencatbox{Categories:}
768 @category{Elliptic integrals}
773 @deffn {Function} carlson_rc (@var{x}, @var{y})
774 Carlson's RC integral is defined by
777 <<<R_C(x, y) = \frac{1}{2} \int_0^{\infty} \frac{1}{\sqrt{t+x}(t+y)}\, dt>>>
779 <<<@math{integrate(1/2*(t+x)^(-1/2)/(t+y), t, 0, inf)}>>>
782 This integral is related to many elementary functions in the following
787 \log x &= (x-1) R_C\left(\left({\frac{1+x}{2}}\right)^2, x\right), \quad x > 0 \cr
788 \sin^{-1} x &= x R_C(1-x^2, 1), \quad |x| \le 1 \cr
789 \cos^{-1} x &= \sqrt{1-x^2} R_C(x^2,1), \quad 0 \le x \le 1 \cr
790 \tan^{-1} x &= x R_C(1,1+x^2) \cr
791 \sinh^{-1} x &= x R_C(1+x^2,1) \cr
792 \cosh^{-1} x &= \sqrt{x^2-1} R_C(x^2,1), \quad x \ge 1 \cr
793 \tanh^{-1}(x) &= x R_C(1,1-x^2), \quad |x| \le 1
796 <<<@math{log(x) = (x-1)*rc(((1+x)/2)^2, x), x > 0}
798 @math{asin(x) = x * rc(1-x^2, 1), |x|<= 1}
800 @math{acos(x) = sqrt(1-x^2)*rc(x^2,1), 0 <= x <=1}
802 @math{atan(x) = x * rc(1,1+x^2)}
804 @math{asinh(x) = x * rc(1+x^2,1)}
806 @math{acosh(x) = sqrt(x^2-1) * rc(x^2,1), x >= 1}
808 @math{atanh(x) = x * rc(1,1-x^2), |x|<=1}>>>
811 Also, we have the relationship
814 <<<R_C(x,y) = R_F(x,y,y)>>>
816 @math{R_C(x,y) = R_F(x,y,y)}
821 <<<\eqalign{R_C(0, 1) &= \frac{\pi}{2} \cr
822 R_C(0, 1/4) &= \pi \cr
823 R_C(2,1) &= \log(\sqrt{2} + 1) \cr
824 R_C(i,i+1) &= \frac{\pi}{4} + \frac{i}{2} \log(\sqrt{2}-1) \cr
825 R_C(0,i) &= (1-i)\frac{\pi}{2\sqrt{2}} \cr
828 @math{R_C(0,1) = pi/2}
830 @math{R_C(0,1/4) = pi}
832 @math{R_C(2,1) = log(sqrt(2)+1)}
834 @math{R_C(i, i+1) = pi/4 + i/2*log(sqrt(2)+1)}
836 @math{R_C(0, i) = (1-i)*pi/(2*sqrt(2))}
840 @opencatbox{Categories:}
841 @category{Elliptic integrals}
846 @deffn {Function} carlson_rd (@var{x}, @var{y}, @var{z})
847 Carlson's RD integral is defined by
850 <<<R_D(x,y,z) = \frac{3}{2} \int_0^{\infty} \frac{1}{\sqrt{t+x}\sqrt{t+y}\sqrt{t+z}\,(t+z)}\, dt>>>
852 <<<@math{R_D(x,y,z) = 3/2*integrate(1/(sqrt(t+x)*sqrt(t+y)*sqrt(t+z)*(t+z)), t, 0, inf)}>>>
855 We also have the special values
859 R_D(x,x,x) &= x^{-\frac{3}{2}} \cr
860 R_D(0,y,y) &= \frac{3}{4} \pi y^{-\frac{3}{2}} \cr
861 R_D(0,2,1) &= 3 \sqrt{\pi} \frac{\Gamma(\frac{3}{4})}{\Gamma(\frac{1}{4})}
864 <<<@math{R_D(x,x,x) = x^(-3/2)}
866 @math{R_D(0,y,y) = 3/4*pi*y^(-3/2)}
868 @math{R_D(0,2,1) = 3 sqrt(pi) gamma(3/4)/gamma(1/4)}>>>
872 It is also related to the complete elliptic E function as follows
875 <<<E(m) = R_F(0, 1 - m, 1) - \frac{m}{3} R_D(0, 1 - m, 1)>>>
877 <<<@math{E(m) = R_F(0, 1 - m, 1) - (m/3)* R_D(0, 1 - m, 1)}>>>
880 @opencatbox{Categories:}
881 @category{Elliptic integrals}
886 @deffn {Function} carlson_rf (@var{x}, @var{y}, @var{z})
887 Carlson's RF integral is defined by
890 <<<R_F(x,y,z) = \frac{1}{2} \int_0^{\infty} \frac{1}{\sqrt{t+x}\sqrt{t+y}\sqrt{t+z}}\, dt>>>
892 <<<@math{R_F(x,y,z) = 1/2*integrate(1/(sqrt(t+x)*sqrt(t+y)*sqrt(t+z)), t, 0, inf)}>>>
895 We also have the special values
899 R_F(0,1,2) &= \frac{\Gamma({\frac{1}{4}})^2}{4\sqrt{2\pi}} \cr
900 R_F(i,-i,0) &= \frac{\Gamma({\frac{1}{4}})^2}{4\sqrt{\pi}}
904 @math{R_F(0,1,2) = gamma(1/4)^2/(4*sqrt(2*pi))}
906 @math{R_F(i,-i,0) = gamma(1/4)^2/(4*sqrt(pi))}
910 It is also related to the complete elliptic E function as follows
913 <<<E(m) = R_F(0, 1 - m, 1) - \frac{m}{3} R_D(0, 1 - m, 1)>>>
915 <<<@math{E(m) = R_F(0, 1 - m, 1) - (m/3)* R_D(0, 1 - m, 1)}>>>
918 @opencatbox{Categories:}
919 @category{Elliptic integrals}
924 @deffn {Function} carlson_rj (@var{x}, @var{y}, @var{z}, @var{p})
925 Carlson's RJ integral is defined by
928 <<<R_J(x,y,z) = \frac{1}{2} \int_0^{\infty} \frac{1}{\sqrt{t+x}\sqrt{t+y}\sqrt{t+z}\,(t+p)}\, dt>>>
931 @math{R_J(x,y,z) = 1/2*integrate(1/(sqrt(t+x)*sqrt(t+y)*sqrt(t+z)*(t+p)), t, 0, inf)}
934 @opencatbox{Categories:}
935 @category{Elliptic integrals}