3 * Extract-and-Expand Key Derivation Function (HKDF). A cryptographicly
4 * secure key expansion function based on RFC 5869.
6 * This relies on the secrecy of $wgSecretKey (by default), or $wgHKDFSecret.
7 * By default, sha256 is used as the underlying hashing algorithm, but any other
8 * algorithm can be used. Finding the secret key from the output would require
9 * an attacker to discover the input key (the PRK) to the hmac that generated
10 * the output, and discover the particular data, hmac'ed with an evolving key
11 * (salt), to produce the PRK. Even with md5, no publicly known attacks make
12 * this currently feasible.
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or
17 * (at your option) any later version.
19 * This program is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU General Public License for more details.
24 * You should have received a copy of the GNU General Public License along
25 * with this program; if not, write to the Free Software Foundation, Inc.,
26 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
27 * http://www.gnu.org/copyleft/gpl.html
29 * @author Chris Steipp
36 * Singleton instance for public use
38 protected static $singleton = null;
41 * The persistant cache
43 protected $cache = null;
46 * Cache key we'll use for our salt
48 protected $cacheKey = null;
51 * The hash algorithm being used
53 protected $algorithm = null;
56 * binary string, the salt for the HKDF
61 * The pseudorandom key
66 * The secret key material. This must be kept secret to preserve
67 * the security properties of this RNG.
72 * The last block (K(i)) of the most recent expanded key
77 * a "context information" string CTXinfo (which may be null)
78 * See http://eprint.iacr.org/2010/264.pdf Section 4.1
80 protected $context = array();
83 * Round count is computed based on the hash'es output length,
84 * which neither php nor openssl seem to provide easily.
86 public static $hashLength = array(
102 * @param string $hash Name of hashing algorithm
103 * @param BagOStuff $cache
104 * @param string|array $context Context to mix into HKDF context
106 public function __construct( $secretKeyMaterial, $algorithm, $cache, $context ) {
107 if ( strlen( $secretKeyMaterial ) < 16 ) {
108 throw new MWException( "MWCryptHKDF secret was too short." );
110 $this->skm
= $secretKeyMaterial;
111 $this->algorithm
= $algorithm;
112 $this->cache
= $cache;
113 $this->salt
= ''; // Initialize a blank salt, see getSaltUsingCache()
115 $this->context
= is_array( $context ) ?
$context : array( $context );
117 // To prevent every call from hitting the same memcache server, pick
118 // from a set of keys to use. mt_rand is only use to pick a random
119 // server, and does not affect the security of the process.
120 $this->cacheKey
= wfMemcKey( 'HKDF', mt_rand( 0, 16 ) );
124 * Save the last block generated, so the next user will compute a different PRK
125 * from the same SKM. This should keep things unpredictable even if an attacker
126 * is able to influence CTXinfo.
128 function __destruct() {
129 if ( $this->lastK
) {
130 $this->cache
->set( $this->cacheKey
, $this->lastK
);
135 * MW specific salt, cached from last run
136 * @return string Binary string
138 protected function getSaltUsingCache() {
139 if ( $this->salt
== '' ) {
140 $lastSalt = $this->cache
->get( $this->cacheKey
);
141 if ( $lastSalt === false ) {
142 // If we don't have a previous value to use as our salt, we use
143 // 16 bytes from MWCryptRand, which will use a small amount of
144 // entropy from our pool. Note, "XTR may be deterministic or keyed
145 // via an optional “salt value” (i.e., a non-secret random
146 // value)..." - http://eprint.iacr.org/2010/264.pdf. However, we
147 // use a strongly random value since we can.
148 $lastSalt = MWCryptRand
::generate( 16 );
150 // Get a binary string that is hashLen long
151 $this->salt
= hash( $this->algorithm
, $lastSalt, true );
157 * Return a singleton instance, based on the global configs.
160 protected static function singleton() {
161 global $wgHKDFAlgorithm, $wgHKDFSecret, $wgSecretKey;
163 $secret = $wgHKDFSecret ?
: $wgSecretKey;
165 throw new MWException( "Cannot use MWCryptHKDF without a secret." );
168 // In HKDF, the context can be known to the attacker, but this will
169 // keep simultaneous runs from producing the same output.
171 $context[] = microtime();
172 $context[] = getmypid();
173 $context[] = gethostname();
175 // Setup salt cache. Use APC, or fallback to the main cache if it isn't setup
177 $cache = ObjectCache
::newAccelerator( array() );
178 } catch ( Exception
$e ) {
179 $cache = wfGetMainCache();
182 if ( is_null( self
::$singleton ) ) {
183 self
::$singleton = new self( $secret, $wgHKDFAlgorithm, $cache, $context );
186 return self
::$singleton;
190 * Produce $bytes of secure random data. As a side-effect,
191 * $this->lastK is set to the last hashLen block of key material.
192 * @param int $bytes Number of bytes of data
193 * @param string $context Context to mix into CTXinfo
194 * @return string Binary string of length $bytes
196 protected function realGenerate( $bytes, $context = '' ) {
198 if ( $this->prk
=== '' ) {
199 $salt = $this->getSaltUsingCache();
200 $this->prk
= self
::HKDFExtract(
207 $CTXinfo = implode( ':', array_merge( $this->context
, array( $context ) ) );
209 return self
::HKDFExpand(
220 * RFC5869 defines HKDF in 2 steps, extraction and expansion.
221 * From http://eprint.iacr.org/2010/264.pdf:
223 * The scheme HKDF is specifed as:
224 * HKDF(XTS, SKM, CTXinfo, L) = K(1) || K(2) || ... || K(t)
225 * where the values K(i) are defined as follows:
226 * PRK = HMAC(XTS, SKM)
227 * K(1) = HMAC(PRK, CTXinfo || 0);
228 * K(i+1) = HMAC(PRK, K(i) || CTXinfo || i), 1 <= i < t;
229 * where t = [L/k] and the value K(t) is truncated to its first d = L mod k bits;
230 * the counter i is non-wrapping and of a given fixed size, e.g., a single byte.
231 * Note that the length of the HMAC output is the same as its key length and therefore
232 * the scheme is well defined.
234 * XTS is the "extractor salt"
235 * SKM is the "secret keying material"
237 * N.B. http://eprint.iacr.org/2010/264.pdf seems to differ from RFC 5869 in that the test
238 * vectors from RFC 5869 only work if K(0) = '' and K(1) = HMAC(PRK, K(0) || CTXinfo || 1)
240 * @param string $hash The hashing function to use (e.g., sha256)
241 * @param string $ikm The input keying material
242 * @param string $salt The salt to add to the ikm, to get the prk
243 * @param string $info Optional context (change the output without affecting
244 * the randomness properties of the output)
245 * @param int $L Number of bytes to return
246 * @return string Cryptographically secure pseudorandom binary string
248 public static function HKDF( $hash, $ikm, $salt, $info, $L ) {
249 $prk = self
::HKDFExtract( $hash, $salt, $ikm );
250 $okm = self
::HKDFExpand( $hash, $prk, $info, $L );
255 * Extract the PRK, PRK = HMAC(XTS, SKM)
256 * Note that the hmac is keyed with XTS (the salt),
257 * and the SKM (source key material) is the "data".
259 * @param string $hash The hashing function to use (e.g., sha256)
260 * @param string $ikm The input keying material
261 * @param string $salt The salt to add to the ikm, to get the prk
262 * @return string Binary string (pseudorandm key) used as input to HKDFExpand
264 private static function HKDFExtract( $hash, $salt, $ikm ) {
265 return hash_hmac( $hash, $ikm, $salt, true );
269 * Expand the key with the given context
271 * @param string $hash Hashing Algorithm
272 * @param string $prk A pseudorandom key of at least HashLen octets
273 * (usually, the output from the extract step)
274 * @param string $info Optional context and application specific information
275 * (can be a zero-length string)
276 * @param int $bytes Length of output keying material in bytes
278 * @param string &$lastK Set by this function to the last block of the expansion.
279 * In MediaWiki, this is used to seed future Extractions.
280 * @return string Cryptographically secure random string $bytes long
282 private static function HKDFExpand( $hash, $prk, $info, $bytes, &$lastK = '' ) {
283 $hashLen = MWCryptHKDF
::$hashLength[$hash];
284 $rounds = ceil( $bytes / $hashLen );
287 if ( $bytes > 255 * $hashLen ) {
288 throw new MWException( "Too many bytes requested from HDKFExpand" );
291 // K(1) = HMAC(PRK, CTXinfo || 1);
292 // K(i) = HMAC(PRK, K(i-1) || CTXinfo || i); 1 < i <= t;
293 for ( $counter = 1; $counter <= $rounds; ++
$counter ) {
296 $lastK . $info . chr( $counter ),
303 return substr( $output, 0, $bytes );
307 * Generate cryptographically random data and return it in raw binary form.
309 * @param int $bytes The number of bytes of random data to generate
310 * @param string $context String to mix into HMAC context
311 * @return string Binary string of length $bytes
313 public static function generate( $bytes, $context ) {
314 return self
::singleton()->realGenerate( $bytes, $context );
318 * Generate cryptographically random data and return it in hexadecimal string format.
319 * See MWCryptRand::realGenerateHex for details of the char-to-byte conversion logic.
321 * @param int $chars The number of hex chars of random data to generate
322 * @param string $context String to mix into HMAC context
323 * @return string Random hex characters, $chars long
325 public static function generateHex( $chars, $context = '' ) {
326 $bytes = ceil( $chars / 2 );
327 $hex = bin2hex( self
::singleton()->realGenerate( $bytes, $context ) );
328 return substr( $hex, 0, $chars );