2 * Copyright © 2010 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
24 #include "glsl_symbol_table.h"
26 #include "glsl_types.h"
29 inline unsigned min(unsigned a
, unsigned b
)
31 return (a
< b
) ? a
: b
;
35 convert_component(ir_rvalue
*src
, const glsl_type
*desired_type
);
38 process_parameters(exec_list
*instructions
, exec_list
*actual_parameters
,
39 exec_list
*parameters
,
40 struct _mesa_glsl_parse_state
*state
)
44 foreach_list (n
, parameters
) {
45 ast_node
*const ast
= exec_node_data(ast_node
, n
, link
);
46 ir_rvalue
*result
= ast
->hir(instructions
, state
);
48 ir_constant
*const constant
= result
->constant_expression_value();
52 actual_parameters
->push_tail(result
);
61 * Generate a source prototype for a function signature
63 * \param return_type Return type of the function. May be \c NULL.
64 * \param name Name of the function.
65 * \param parameters Parameter list for the function. This may be either a
66 * formal or actual parameter list. Only the type is used.
69 * A talloced string representing the prototype of the function.
72 prototype_string(const glsl_type
*return_type
, const char *name
,
73 exec_list
*parameters
)
77 if (return_type
!= NULL
)
78 str
= talloc_asprintf(str
, "%s ", return_type
->name
);
80 str
= talloc_asprintf_append(str
, "%s(", name
);
82 const char *comma
= "";
83 foreach_list(node
, parameters
) {
84 const ir_instruction
*const param
= (ir_instruction
*) node
;
86 str
= talloc_asprintf_append(str
, "%s%s", comma
, param
->type
->name
);
90 str
= talloc_strdup_append(str
, ")");
96 process_call(exec_list
*instructions
, ir_function
*f
,
97 YYLTYPE
*loc
, exec_list
*actual_parameters
,
98 struct _mesa_glsl_parse_state
*state
)
102 ir_function_signature
*sig
= f
->matching_signature(actual_parameters
);
104 /* The instructions param will be used when the FINISHMEs below are done */
108 /* Verify that 'out' and 'inout' actual parameters are lvalues. This
109 * isn't done in ir_function::matching_signature because that function
110 * cannot generate the necessary diagnostics.
112 exec_list_iterator actual_iter
= actual_parameters
->iterator();
113 exec_list_iterator formal_iter
= sig
->parameters
.iterator();
115 while (actual_iter
.has_next()) {
116 ir_rvalue
*actual
= (ir_rvalue
*) actual_iter
.get();
117 ir_variable
*formal
= (ir_variable
*) formal_iter
.get();
119 assert(actual
!= NULL
);
120 assert(formal
!= NULL
);
122 if ((formal
->mode
== ir_var_out
)
123 || (formal
->mode
== ir_var_inout
)) {
124 if (! actual
->is_lvalue()) {
125 /* FINISHME: Log a better diagnostic here. There is no way
126 * FINISHME: to tell the user which parameter is invalid.
128 _mesa_glsl_error(loc
, state
, "`%s' parameter is not lvalue",
129 (formal
->mode
== ir_var_out
) ? "out" : "inout");
133 if (formal
->type
->is_numeric() || formal
->type
->is_boolean()) {
134 ir_rvalue
*converted
= convert_component(actual
, formal
->type
);
135 actual
->replace_with(converted
);
142 /* Always insert the call in the instruction stream, and return a deref
143 * of its return val if it returns a value, since we don't know if
144 * the rvalue is going to be assigned to anything or not.
146 ir_call
*call
= new(ctx
) ir_call(sig
, actual_parameters
);
147 if (!sig
->return_type
->is_void()) {
149 ir_dereference_variable
*deref
;
151 var
= new(ctx
) ir_variable(sig
->return_type
,
152 talloc_asprintf(ctx
, "%s_retval",
153 sig
->function_name()),
155 instructions
->push_tail(var
);
157 deref
= new(ctx
) ir_dereference_variable(var
);
158 ir_assignment
*assign
= new(ctx
) ir_assignment(deref
, call
, NULL
);
159 instructions
->push_tail(assign
);
160 if (state
->language_version
>= 120)
161 var
->constant_value
= call
->constant_expression_value();
163 deref
= new(ctx
) ir_dereference_variable(var
);
166 instructions
->push_tail(call
);
170 char *str
= prototype_string(NULL
, f
->name
, actual_parameters
);
172 _mesa_glsl_error(loc
, state
, "no matching function for call to `%s'",
176 const char *prefix
= "candidates are: ";
177 foreach_list (node
, &f
->signatures
) {
178 ir_function_signature
*sig
= (ir_function_signature
*) node
;
180 str
= prototype_string(sig
->return_type
, f
->name
, &sig
->parameters
);
181 _mesa_glsl_error(loc
, state
, "%s%s\n", prefix
, str
);
187 return ir_call::get_error_instruction(ctx
);
193 match_function_by_name(exec_list
*instructions
, const char *name
,
194 YYLTYPE
*loc
, exec_list
*actual_parameters
,
195 struct _mesa_glsl_parse_state
*state
)
198 ir_function
*f
= state
->symbols
->get_function(name
);
201 _mesa_glsl_error(loc
, state
, "function `%s' undeclared", name
);
202 return ir_call::get_error_instruction(ctx
);
205 /* Once we've determined that the function being called might exist, try
206 * to find an overload of the function that matches the parameters.
208 return process_call(instructions
, f
, loc
, actual_parameters
, state
);
213 * Perform automatic type conversion of constructor parameters
215 * This implements the rules in the "Conversion and Scalar Constructors"
216 * section (GLSL 1.10 section 5.4.1), not the "Implicit Conversions" rules.
219 convert_component(ir_rvalue
*src
, const glsl_type
*desired_type
)
221 void *ctx
= talloc_parent(src
);
222 const unsigned a
= desired_type
->base_type
;
223 const unsigned b
= src
->type
->base_type
;
224 ir_expression
*result
= NULL
;
226 if (src
->type
->is_error())
229 assert(a
<= GLSL_TYPE_BOOL
);
230 assert(b
<= GLSL_TYPE_BOOL
);
232 if ((a
== b
) || (src
->type
->is_integer() && desired_type
->is_integer()))
238 if (b
== GLSL_TYPE_FLOAT
)
239 result
= new(ctx
) ir_expression(ir_unop_f2i
, desired_type
, src
, NULL
);
241 assert(b
== GLSL_TYPE_BOOL
);
242 result
= new(ctx
) ir_expression(ir_unop_b2i
, desired_type
, src
, NULL
);
245 case GLSL_TYPE_FLOAT
:
248 result
= new(ctx
) ir_expression(ir_unop_u2f
, desired_type
, src
, NULL
);
251 result
= new(ctx
) ir_expression(ir_unop_i2f
, desired_type
, src
, NULL
);
254 result
= new(ctx
) ir_expression(ir_unop_b2f
, desired_type
, src
, NULL
);
262 result
= new(ctx
) ir_expression(ir_unop_i2b
, desired_type
, src
, NULL
);
264 case GLSL_TYPE_FLOAT
:
265 result
= new(ctx
) ir_expression(ir_unop_f2b
, desired_type
, src
, NULL
);
271 assert(result
!= NULL
);
273 /* Try constant folding; it may fold in the conversion we just added. */
274 ir_constant
*const constant
= result
->constant_expression_value();
275 return (constant
!= NULL
) ? (ir_rvalue
*) constant
: (ir_rvalue
*) result
;
279 * Dereference a specific component from a scalar, vector, or matrix
282 dereference_component(ir_rvalue
*src
, unsigned component
)
284 void *ctx
= talloc_parent(src
);
285 assert(component
< src
->type
->components());
287 /* If the source is a constant, just create a new constant instead of a
288 * dereference of the existing constant.
290 ir_constant
*constant
= src
->as_constant();
292 return new(ctx
) ir_constant(constant
, component
);
294 if (src
->type
->is_scalar()) {
296 } else if (src
->type
->is_vector()) {
297 return new(ctx
) ir_swizzle(src
, component
, 0, 0, 0, 1);
299 assert(src
->type
->is_matrix());
301 /* Dereference a row of the matrix, then call this function again to get
302 * a specific element from that row.
304 const int c
= component
/ src
->type
->column_type()->vector_elements
;
305 const int r
= component
% src
->type
->column_type()->vector_elements
;
306 ir_constant
*const col_index
= new(ctx
) ir_constant(c
);
307 ir_dereference
*const col
= new(ctx
) ir_dereference_array(src
, col_index
);
309 col
->type
= src
->type
->column_type();
311 return dereference_component(col
, r
);
314 assert(!"Should not get here.");
320 process_array_constructor(exec_list
*instructions
,
321 const glsl_type
*constructor_type
,
322 YYLTYPE
*loc
, exec_list
*parameters
,
323 struct _mesa_glsl_parse_state
*state
)
326 /* Array constructors come in two forms: sized and unsized. Sized array
327 * constructors look like 'vec4[2](a, b)', where 'a' and 'b' are vec4
328 * variables. In this case the number of parameters must exactly match the
329 * specified size of the array.
331 * Unsized array constructors look like 'vec4[](a, b)', where 'a' and 'b'
332 * are vec4 variables. In this case the size of the array being constructed
333 * is determined by the number of parameters.
335 * From page 52 (page 58 of the PDF) of the GLSL 1.50 spec:
337 * "There must be exactly the same number of arguments as the size of
338 * the array being constructed. If no size is present in the
339 * constructor, then the array is explicitly sized to the number of
340 * arguments provided. The arguments are assigned in order, starting at
341 * element 0, to the elements of the constructed array. Each argument
342 * must be the same type as the element type of the array, or be a type
343 * that can be converted to the element type of the array according to
344 * Section 4.1.10 "Implicit Conversions.""
346 exec_list actual_parameters
;
347 const unsigned parameter_count
=
348 process_parameters(instructions
, &actual_parameters
, parameters
, state
);
350 if ((parameter_count
== 0)
351 || ((constructor_type
->length
!= 0)
352 && (constructor_type
->length
!= parameter_count
))) {
353 const unsigned min_param
= (constructor_type
->length
== 0)
354 ? 1 : constructor_type
->length
;
356 _mesa_glsl_error(loc
, state
, "array constructor must have %s %u "
358 (constructor_type
->length
!= 0) ? "at least" : "exactly",
359 min_param
, (min_param
<= 1) ? "" : "s");
360 return ir_call::get_error_instruction(ctx
);
363 if (constructor_type
->length
== 0) {
365 glsl_type::get_array_instance(constructor_type
->element_type(),
367 assert(constructor_type
!= NULL
);
368 assert(constructor_type
->length
== parameter_count
);
371 bool all_parameters_are_constant
= true;
373 /* Type cast each parameter and, if possible, fold constants. */
374 foreach_list_safe(n
, &actual_parameters
) {
375 ir_rvalue
*ir
= (ir_rvalue
*) n
;
376 ir_rvalue
*result
= ir
;
378 /* Apply implicit conversions (not the scalar constructor rules!) */
379 if (constructor_type
->element_type()->is_float()) {
380 const glsl_type
*desired_type
=
381 glsl_type::get_instance(GLSL_TYPE_FLOAT
,
382 ir
->type
->vector_elements
,
383 ir
->type
->matrix_columns
);
384 result
= convert_component(ir
, desired_type
);
387 if (result
->type
!= constructor_type
->element_type()) {
388 _mesa_glsl_error(loc
, state
, "type error in array constructor: "
389 "expected: %s, found %s",
390 constructor_type
->element_type()->name
,
394 /* Attempt to convert the parameter to a constant valued expression.
395 * After doing so, track whether or not all the parameters to the
396 * constructor are trivially constant valued expressions.
398 ir_rvalue
*const constant
= result
->constant_expression_value();
400 if (constant
!= NULL
)
403 all_parameters_are_constant
= false;
405 ir
->replace_with(result
);
408 if (all_parameters_are_constant
)
409 return new(ctx
) ir_constant(constructor_type
, &actual_parameters
);
411 ir_variable
*var
= new(ctx
) ir_variable(constructor_type
, "array_ctor",
413 instructions
->push_tail(var
);
416 foreach_list(node
, &actual_parameters
) {
417 ir_rvalue
*rhs
= (ir_rvalue
*) node
;
418 ir_rvalue
*lhs
= new(ctx
) ir_dereference_array(var
,
419 new(ctx
) ir_constant(i
));
421 ir_instruction
*assignment
= new(ctx
) ir_assignment(lhs
, rhs
, NULL
);
422 instructions
->push_tail(assignment
);
427 return new(ctx
) ir_dereference_variable(var
);
432 * Try to convert a record constructor to a constant expression
435 constant_record_constructor(const glsl_type
*constructor_type
,
436 YYLTYPE
*loc
, exec_list
*parameters
,
437 struct _mesa_glsl_parse_state
*state
)
440 bool all_parameters_are_constant
= true;
442 exec_node
*node
= parameters
->head
;
443 for (unsigned i
= 0; i
< constructor_type
->length
; i
++) {
444 ir_instruction
*ir
= (ir_instruction
*) node
;
446 if (node
->is_tail_sentinel()) {
447 _mesa_glsl_error(loc
, state
,
448 "insufficient parameters to constructor for `%s'",
449 constructor_type
->name
);
453 if (ir
->type
!= constructor_type
->fields
.structure
[i
].type
) {
454 _mesa_glsl_error(loc
, state
,
455 "parameter type mismatch in constructor for `%s' "
457 constructor_type
->name
,
459 constructor_type
->fields
.structure
[i
].type
->name
);
463 if (ir
->as_constant() == NULL
)
464 all_parameters_are_constant
= false;
469 if (!all_parameters_are_constant
)
472 return new(ctx
) ir_constant(constructor_type
, parameters
);
477 * Generate data for a constant matrix constructor w/a single scalar parameter
479 * Matrix constructors in GLSL can be passed a single scalar of the
480 * approriate type. In these cases, the resulting matrix is the identity
481 * matrix multipled by the specified scalar. This function generates data for
484 * \param type Type of the desired matrix.
485 * \param initializer Scalar value used to initialize the matrix diagonal.
486 * \param data Location to store the resulting matrix.
489 generate_constructor_matrix(const glsl_type
*type
, ir_constant
*initializer
,
490 ir_constant_data
*data
)
492 switch (type
->base_type
) {
495 for (unsigned i
= 0; i
< type
->components(); i
++)
498 for (unsigned i
= 0; i
< type
->matrix_columns
; i
++) {
499 /* The array offset of the ith row and column of the matrix.
501 const unsigned idx
= (i
* type
->vector_elements
) + i
;
503 data
->u
[idx
] = initializer
->value
.u
[0];
507 case GLSL_TYPE_FLOAT
:
508 for (unsigned i
= 0; i
< type
->components(); i
++)
511 for (unsigned i
= 0; i
< type
->matrix_columns
; i
++) {
512 /* The array offset of the ith row and column of the matrix.
514 const unsigned idx
= (i
* type
->vector_elements
) + i
;
516 data
->f
[idx
] = initializer
->value
.f
[0];
522 assert(!"Should not get here.");
529 * Generate data for a constant vector constructor w/a single scalar parameter
531 * Vector constructors in GLSL can be passed a single scalar of the
532 * approriate type. In these cases, the resulting vector contains the specified
533 * value in all components. This function generates data for that vector.
535 * \param type Type of the desired vector.
536 * \param initializer Scalar value used to initialize the vector.
537 * \param data Location to store the resulting vector data.
540 generate_constructor_vector(const glsl_type
*type
, ir_constant
*initializer
,
541 ir_constant_data
*data
)
543 switch (type
->base_type
) {
546 for (unsigned i
= 0; i
< type
->components(); i
++)
547 data
->u
[i
] = initializer
->value
.u
[0];
551 case GLSL_TYPE_FLOAT
:
552 for (unsigned i
= 0; i
< type
->components(); i
++)
553 data
->f
[i
] = initializer
->value
.f
[0];
558 for (unsigned i
= 0; i
< type
->components(); i
++)
559 data
->b
[i
] = initializer
->value
.b
[0];
564 assert(!"Should not get here.");
571 * Determine if a list consists of a single scalar r-value
574 single_scalar_parameter(exec_list
*parameters
)
576 const ir_rvalue
*const p
= (ir_rvalue
*) parameters
->head
;
577 assert(((ir_rvalue
*)p
)->as_rvalue() != NULL
);
579 return (p
->type
->is_scalar() && p
->next
->is_tail_sentinel());
584 * Generate inline code for a vector constructor
586 * The generated constructor code will consist of a temporary variable
587 * declaration of the same type as the constructor. A sequence of assignments
588 * from constructor parameters to the temporary will follow.
591 * An \c ir_dereference_variable of the temprorary generated in the constructor
595 emit_inline_vector_constructor(const glsl_type
*type
,
596 exec_list
*instructions
,
597 exec_list
*parameters
,
600 assert(!parameters
->is_empty());
602 ir_variable
*var
= new(ctx
) ir_variable(type
, "vec_ctor", ir_var_temporary
);
603 instructions
->push_tail(var
);
605 /* There are two kinds of vector constructors.
607 * - Construct a vector from a single scalar by replicating that scalar to
608 * all components of the vector.
610 * - Construct a vector from an arbirary combination of vectors and
611 * scalars. The components of the constructor parameters are assigned
612 * to the vector in order until the vector is full.
614 const unsigned lhs_components
= type
->components();
615 if (single_scalar_parameter(parameters
)) {
616 ir_rvalue
*first_param
= (ir_rvalue
*)parameters
->head
;
617 ir_rvalue
*rhs
= new(ctx
) ir_swizzle(first_param
, 0, 0, 0, 0,
619 ir_dereference_variable
*lhs
= new(ctx
) ir_dereference_variable(var
);
620 const unsigned mask
= (1U << lhs_components
) - 1;
622 assert(rhs
->type
== lhs
->type
);
624 ir_instruction
*inst
= new(ctx
) ir_assignment(lhs
, rhs
, NULL
, mask
);
625 instructions
->push_tail(inst
);
627 unsigned base_component
= 0;
628 foreach_list(node
, parameters
) {
629 ir_rvalue
*param
= (ir_rvalue
*) node
;
630 unsigned rhs_components
= param
->type
->components();
632 /* Do not try to assign more components to the vector than it has!
634 if ((rhs_components
+ base_component
) > lhs_components
) {
635 rhs_components
= lhs_components
- base_component
;
638 /* Generate a swizzle that puts the first element of the source at
639 * the location of the first element of the destination.
641 unsigned swiz
[4] = { 0, 0, 0, 0 };
642 for (unsigned i
= 0; i
< rhs_components
; i
++)
643 swiz
[i
+ base_component
] = i
;
645 /* Mask of fields to be written in the assignment.
647 const unsigned write_mask
= ((1U << rhs_components
) - 1)
650 ir_dereference
*lhs
= new(ctx
) ir_dereference_variable(var
);
651 ir_rvalue
*rhs
= new(ctx
) ir_swizzle(param
, swiz
, lhs_components
);
653 ir_instruction
*inst
=
654 new(ctx
) ir_assignment(lhs
, rhs
, NULL
, write_mask
);
655 instructions
->push_tail(inst
);
657 /* Advance the component index by the number of components that were
660 base_component
+= rhs_components
;
663 return new(ctx
) ir_dereference_variable(var
);
668 * Generate assignment of a portion of a vector to a portion of a matrix column
670 * \param src_base First component of the source to be used in assignment
671 * \param column Column of destination to be assiged
672 * \param row_base First component of the destination column to be assigned
673 * \param count Number of components to be assigned
676 * \c src_base + \c count must be less than or equal to the number of components
677 * in the source vector.
680 assign_to_matrix_column(ir_variable
*var
, unsigned column
, unsigned row_base
,
681 ir_rvalue
*src
, unsigned src_base
, unsigned count
,
684 ir_constant
*col_idx
= new(mem_ctx
) ir_constant(column
);
685 ir_dereference
*column_ref
= new(mem_ctx
) ir_dereference_array(var
, col_idx
);
687 assert(column_ref
->type
->components() >= (row_base
+ count
));
688 assert(src
->type
->components() >= (src_base
+ count
));
690 /* Generate a swizzle that puts the first element of the source at the
691 * location of the first element of the destination.
693 unsigned swiz
[4] = { src_base
, src_base
, src_base
, src_base
};
694 for (unsigned i
= 0; i
< count
; i
++)
695 swiz
[i
+ row_base
] = src_base
+ i
;
697 ir_rvalue
*const rhs
=
698 new(mem_ctx
) ir_swizzle(src
, swiz
, column_ref
->type
->components());
700 /* Mask of fields to be written in the assignment.
702 const unsigned write_mask
= ((1U << count
) - 1) << row_base
;
704 return new(mem_ctx
) ir_assignment(column_ref
, rhs
, NULL
, write_mask
);
709 * Generate inline code for a matrix constructor
711 * The generated constructor code will consist of a temporary variable
712 * declaration of the same type as the constructor. A sequence of assignments
713 * from constructor parameters to the temporary will follow.
716 * An \c ir_dereference_variable of the temprorary generated in the constructor
720 emit_inline_matrix_constructor(const glsl_type
*type
,
721 exec_list
*instructions
,
722 exec_list
*parameters
,
725 assert(!parameters
->is_empty());
727 ir_variable
*var
= new(ctx
) ir_variable(type
, "mat_ctor", ir_var_temporary
);
728 instructions
->push_tail(var
);
730 /* There are three kinds of matrix constructors.
732 * - Construct a matrix from a single scalar by replicating that scalar to
733 * along the diagonal of the matrix and setting all other components to
736 * - Construct a matrix from an arbirary combination of vectors and
737 * scalars. The components of the constructor parameters are assigned
738 * to the matrix in colum-major order until the matrix is full.
740 * - Construct a matrix from a single matrix. The source matrix is copied
741 * to the upper left portion of the constructed matrix, and the remaining
742 * elements take values from the identity matrix.
744 ir_rvalue
*const first_param
= (ir_rvalue
*) parameters
->head
;
745 if (single_scalar_parameter(parameters
)) {
746 /* Assign the scalar to the X component of a vec4, and fill the remaining
747 * components with zero.
749 ir_variable
*rhs_var
=
750 new(ctx
) ir_variable(glsl_type::vec4_type
, "mat_ctor_vec",
752 instructions
->push_tail(rhs_var
);
754 ir_constant_data zero
;
760 ir_instruction
*inst
=
761 new(ctx
) ir_assignment(new(ctx
) ir_dereference_variable(rhs_var
),
762 new(ctx
) ir_constant(rhs_var
->type
, &zero
),
764 instructions
->push_tail(inst
);
766 ir_dereference
*const rhs_ref
= new(ctx
) ir_dereference_variable(rhs_var
);
768 inst
= new(ctx
) ir_assignment(rhs_ref
, first_param
, NULL
, 0x01);
769 instructions
->push_tail(inst
);
771 /* Assign the temporary vector to each column of the destination matrix
772 * with a swizzle that puts the X component on the diagonal of the
773 * matrix. In some cases this may mean that the X component does not
774 * get assigned into the column at all (i.e., when the matrix has more
775 * columns than rows).
777 static const unsigned rhs_swiz
[4][4] = {
784 const unsigned cols_to_init
= min(type
->matrix_columns
,
785 type
->vector_elements
);
786 for (unsigned i
= 0; i
< cols_to_init
; i
++) {
787 ir_constant
*const col_idx
= new(ctx
) ir_constant(i
);
788 ir_rvalue
*const col_ref
= new(ctx
) ir_dereference_array(var
, col_idx
);
790 ir_rvalue
*const rhs_ref
= new(ctx
) ir_dereference_variable(rhs_var
);
791 ir_rvalue
*const rhs
= new(ctx
) ir_swizzle(rhs_ref
, rhs_swiz
[i
],
792 type
->vector_elements
);
794 inst
= new(ctx
) ir_assignment(col_ref
, rhs
, NULL
);
795 instructions
->push_tail(inst
);
798 for (unsigned i
= cols_to_init
; i
< type
->matrix_columns
; i
++) {
799 ir_constant
*const col_idx
= new(ctx
) ir_constant(i
);
800 ir_rvalue
*const col_ref
= new(ctx
) ir_dereference_array(var
, col_idx
);
802 ir_rvalue
*const rhs_ref
= new(ctx
) ir_dereference_variable(rhs_var
);
803 ir_rvalue
*const rhs
= new(ctx
) ir_swizzle(rhs_ref
, 1, 1, 1, 1,
804 type
->vector_elements
);
806 inst
= new(ctx
) ir_assignment(col_ref
, rhs
, NULL
);
807 instructions
->push_tail(inst
);
809 } else if (first_param
->type
->is_matrix()) {
810 /* From page 50 (56 of the PDF) of the GLSL 1.50 spec:
812 * "If a matrix is constructed from a matrix, then each component
813 * (column i, row j) in the result that has a corresponding
814 * component (column i, row j) in the argument will be initialized
815 * from there. All other components will be initialized to the
816 * identity matrix. If a matrix argument is given to a matrix
817 * constructor, it is an error to have any other arguments."
819 assert(first_param
->next
->is_tail_sentinel());
820 ir_rvalue
*const src_matrix
= first_param
;
822 /* If the source matrix is smaller, pre-initialize the relavent parts of
823 * the destination matrix to the identity matrix.
825 if ((src_matrix
->type
->matrix_columns
< var
->type
->matrix_columns
)
826 || (src_matrix
->type
->vector_elements
< var
->type
->vector_elements
)) {
828 /* If the source matrix has fewer rows, every column of the destination
829 * must be initialized. Otherwise only the columns in the destination
830 * that do not exist in the source must be initialized.
833 (src_matrix
->type
->vector_elements
< var
->type
->vector_elements
)
834 ? 0 : src_matrix
->type
->matrix_columns
;
836 const glsl_type
*const col_type
= var
->type
->column_type();
837 for (/* empty */; col
< var
->type
->matrix_columns
; col
++) {
838 ir_constant_data ident
;
847 ir_rvalue
*const rhs
= new(ctx
) ir_constant(col_type
, &ident
);
849 ir_rvalue
*const lhs
=
850 new(ctx
) ir_dereference_array(var
, new(ctx
) ir_constant(col
));
852 ir_instruction
*inst
= new(ctx
) ir_assignment(lhs
, rhs
, NULL
);
853 instructions
->push_tail(inst
);
857 /* Assign columns from the source matrix to the destination matrix.
859 * Since the parameter will be used in the RHS of multiple assignments,
860 * generate a temporary and copy the paramter there.
862 ir_variable
*const rhs_var
=
863 new(ctx
) ir_variable(first_param
->type
, "mat_ctor_mat",
865 instructions
->push_tail(rhs_var
);
867 ir_dereference
*const rhs_var_ref
=
868 new(ctx
) ir_dereference_variable(rhs_var
);
869 ir_instruction
*const inst
=
870 new(ctx
) ir_assignment(rhs_var_ref
, first_param
, NULL
);
871 instructions
->push_tail(inst
);
874 unsigned swiz
[4] = { 0, 0, 0, 0 };
875 for (unsigned i
= 1; i
< src_matrix
->type
->vector_elements
; i
++)
878 const unsigned last_col
= min(src_matrix
->type
->matrix_columns
,
879 var
->type
->matrix_columns
);
880 const unsigned write_mask
= (1U << var
->type
->vector_elements
) - 1;
882 for (unsigned i
= 0; i
< last_col
; i
++) {
883 ir_dereference
*const lhs
=
884 new(ctx
) ir_dereference_array(var
, new(ctx
) ir_constant(i
));
885 ir_rvalue
*const rhs_col
=
886 new(ctx
) ir_dereference_array(rhs_var
, new(ctx
) ir_constant(i
));
888 /* If one matrix has columns that are smaller than the columns of the
889 * other matrix, wrap the column access of the larger with a swizzle
890 * so that the LHS and RHS of the assignment have the same size (and
891 * therefore have the same type).
893 * It would be perfectly valid to unconditionally generate the
894 * swizzles, this this will typically result in a more compact IR tree.
897 if (lhs
->type
->vector_elements
!= rhs_col
->type
->vector_elements
) {
898 rhs
= new(ctx
) ir_swizzle(rhs_col
, swiz
,
899 lhs
->type
->vector_elements
);
904 assert(lhs
->type
== rhs
->type
);
906 ir_instruction
*inst
=
907 new(ctx
) ir_assignment(lhs
, rhs
, NULL
, write_mask
);
908 instructions
->push_tail(inst
);
911 const unsigned rows
= type
->matrix_columns
;
912 const unsigned cols
= type
->vector_elements
;
913 unsigned col_idx
= 0;
914 unsigned row_idx
= 0;
916 foreach_list (node
, parameters
) {
917 ir_rvalue
*const rhs
= (ir_rvalue
*) node
;
918 const unsigned components_remaining_this_column
= rows
- row_idx
;
919 unsigned rhs_components
= rhs
->type
->components();
920 unsigned rhs_base
= 0;
922 /* Since the parameter might be used in the RHS of two assignments,
923 * generate a temporary and copy the paramter there.
925 ir_variable
*rhs_var
=
926 new(ctx
) ir_variable(rhs
->type
, "mat_ctor_vec", ir_var_temporary
);
927 instructions
->push_tail(rhs_var
);
929 ir_dereference
*rhs_var_ref
=
930 new(ctx
) ir_dereference_variable(rhs_var
);
931 ir_instruction
*inst
= new(ctx
) ir_assignment(rhs_var_ref
, rhs
, NULL
);
932 instructions
->push_tail(inst
);
934 /* Assign the current parameter to as many components of the matrix
937 * NOTE: A single vector parameter can span two matrix columns. A
938 * single vec4, for example, can completely fill a mat2.
940 if (rhs_components
>= components_remaining_this_column
) {
941 const unsigned count
= min(rhs_components
,
942 components_remaining_this_column
);
944 rhs_var_ref
= new(ctx
) ir_dereference_variable(rhs_var
);
946 ir_instruction
*inst
= assign_to_matrix_column(var
, col_idx
,
950 instructions
->push_tail(inst
);
958 /* If there is data left in the parameter and components left to be
959 * set in the destination, emit another assignment. It is possible
960 * that the assignment could be of a vec4 to the last element of the
961 * matrix. In this case col_idx==cols, but there is still data
962 * left in the source parameter. Obviously, don't emit an assignment
963 * to data outside the destination matrix.
965 if ((col_idx
< cols
) && (rhs_base
< rhs_components
)) {
966 const unsigned count
= rhs_components
- rhs_base
;
968 rhs_var_ref
= new(ctx
) ir_dereference_variable(rhs_var
);
970 ir_instruction
*inst
= assign_to_matrix_column(var
, col_idx
,
975 instructions
->push_tail(inst
);
982 return new(ctx
) ir_dereference_variable(var
);
987 ast_function_expression::hir(exec_list
*instructions
,
988 struct _mesa_glsl_parse_state
*state
)
991 /* There are three sorts of function calls.
993 * 1. constructors - The first subexpression is an ast_type_specifier.
994 * 2. methods - Only the .length() method of array types.
995 * 3. functions - Calls to regular old functions.
997 * Method calls are actually detected when the ast_field_selection
998 * expression is handled.
1000 if (is_constructor()) {
1001 const ast_type_specifier
*type
= (ast_type_specifier
*) subexpressions
[0];
1002 YYLTYPE loc
= type
->get_location();
1005 const glsl_type
*const constructor_type
= type
->glsl_type(& name
, state
);
1008 /* Constructors for samplers are illegal.
1010 if (constructor_type
->is_sampler()) {
1011 _mesa_glsl_error(& loc
, state
, "cannot construct sampler type `%s'",
1012 constructor_type
->name
);
1013 return ir_call::get_error_instruction(ctx
);
1016 if (constructor_type
->is_array()) {
1017 if (state
->language_version
<= 110) {
1018 _mesa_glsl_error(& loc
, state
,
1019 "array constructors forbidden in GLSL 1.10");
1020 return ir_call::get_error_instruction(ctx
);
1023 return process_array_constructor(instructions
, constructor_type
,
1024 & loc
, &this->expressions
, state
);
1027 /* There are two kinds of constructor call. Constructors for built-in
1028 * language types, such as mat4 and vec2, are free form. The only
1029 * requirement is that the parameters must provide enough values of the
1030 * correct scalar type. Constructors for arrays and structures must
1031 * have the exact number of parameters with matching types in the
1032 * correct order. These constructors follow essentially the same type
1033 * matching rules as functions.
1035 if (!constructor_type
->is_numeric() && !constructor_type
->is_boolean())
1036 return ir_call::get_error_instruction(ctx
);
1038 /* Total number of components of the type being constructed. */
1039 const unsigned type_components
= constructor_type
->components();
1041 /* Number of components from parameters that have actually been
1042 * consumed. This is used to perform several kinds of error checking.
1044 unsigned components_used
= 0;
1046 unsigned matrix_parameters
= 0;
1047 unsigned nonmatrix_parameters
= 0;
1048 exec_list actual_parameters
;
1050 foreach_list (n
, &this->expressions
) {
1051 ast_node
*ast
= exec_node_data(ast_node
, n
, link
);
1052 ir_rvalue
*result
= ast
->hir(instructions
, state
)->as_rvalue();
1054 /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
1056 * "It is an error to provide extra arguments beyond this
1057 * last used argument."
1059 if (components_used
>= type_components
) {
1060 _mesa_glsl_error(& loc
, state
, "too many parameters to `%s' "
1062 constructor_type
->name
);
1063 return ir_call::get_error_instruction(ctx
);
1066 if (!result
->type
->is_numeric() && !result
->type
->is_boolean()) {
1067 _mesa_glsl_error(& loc
, state
, "cannot construct `%s' from a "
1068 "non-numeric data type",
1069 constructor_type
->name
);
1070 return ir_call::get_error_instruction(ctx
);
1073 /* Count the number of matrix and nonmatrix parameters. This
1074 * is used below to enforce some of the constructor rules.
1076 if (result
->type
->is_matrix())
1077 matrix_parameters
++;
1079 nonmatrix_parameters
++;
1081 actual_parameters
.push_tail(result
);
1082 components_used
+= result
->type
->components();
1085 /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
1087 * "It is an error to construct matrices from other matrices. This
1088 * is reserved for future use."
1090 if ((state
->language_version
<= 110) && (matrix_parameters
> 0)
1091 && constructor_type
->is_matrix()) {
1092 _mesa_glsl_error(& loc
, state
, "cannot construct `%s' from a "
1093 "matrix in GLSL 1.10",
1094 constructor_type
->name
);
1095 return ir_call::get_error_instruction(ctx
);
1098 /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
1100 * "If a matrix argument is given to a matrix constructor, it is
1101 * an error to have any other arguments."
1103 if ((matrix_parameters
> 0)
1104 && ((matrix_parameters
+ nonmatrix_parameters
) > 1)
1105 && constructor_type
->is_matrix()) {
1106 _mesa_glsl_error(& loc
, state
, "for matrix `%s' constructor, "
1107 "matrix must be only parameter",
1108 constructor_type
->name
);
1109 return ir_call::get_error_instruction(ctx
);
1112 /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
1114 * "In these cases, there must be enough components provided in the
1115 * arguments to provide an initializer for every component in the
1116 * constructed value."
1118 if ((components_used
< type_components
) && (components_used
!= 1)) {
1119 _mesa_glsl_error(& loc
, state
, "too few components to construct "
1121 constructor_type
->name
);
1122 return ir_call::get_error_instruction(ctx
);
1125 /* Later, we cast each parameter to the same base type as the
1126 * constructor. Since there are no non-floating point matrices, we
1127 * need to break them up into a series of column vectors.
1129 if (constructor_type
->base_type
!= GLSL_TYPE_FLOAT
) {
1130 foreach_list_safe(n
, &actual_parameters
) {
1131 ir_rvalue
*matrix
= (ir_rvalue
*) n
;
1133 if (!matrix
->type
->is_matrix())
1136 /* Create a temporary containing the matrix. */
1137 ir_variable
*var
= new(ctx
) ir_variable(matrix
->type
, "matrix_tmp",
1139 instructions
->push_tail(var
);
1140 instructions
->push_tail(new(ctx
) ir_assignment(new(ctx
)
1141 ir_dereference_variable(var
), matrix
, NULL
));
1142 var
->constant_value
= matrix
->constant_expression_value();
1144 /* Replace the matrix with dereferences of its columns. */
1145 for (int i
= 0; i
< matrix
->type
->matrix_columns
; i
++) {
1146 matrix
->insert_before(new (ctx
) ir_dereference_array(var
,
1147 new(ctx
) ir_constant(i
)));
1153 bool all_parameters_are_constant
= true;
1155 /* Type cast each parameter and, if possible, fold constants.*/
1156 foreach_list_safe(n
, &actual_parameters
) {
1157 ir_rvalue
*ir
= (ir_rvalue
*) n
;
1159 const glsl_type
*desired_type
=
1160 glsl_type::get_instance(constructor_type
->base_type
,
1161 ir
->type
->vector_elements
,
1162 ir
->type
->matrix_columns
);
1163 ir_rvalue
*result
= convert_component(ir
, desired_type
);
1165 /* Attempt to convert the parameter to a constant valued expression.
1166 * After doing so, track whether or not all the parameters to the
1167 * constructor are trivially constant valued expressions.
1169 ir_rvalue
*const constant
= result
->constant_expression_value();
1171 if (constant
!= NULL
)
1174 all_parameters_are_constant
= false;
1177 ir
->replace_with(result
);
1181 /* If all of the parameters are trivially constant, create a
1182 * constant representing the complete collection of parameters.
1184 if (all_parameters_are_constant
) {
1185 if (components_used
>= type_components
)
1186 return new(ctx
) ir_constant(constructor_type
,
1187 & actual_parameters
);
1189 /* The above case must handle all scalar constructors.
1191 assert(constructor_type
->is_vector()
1192 || constructor_type
->is_matrix());
1194 /* Constructors with exactly one component are special for
1195 * vectors and matrices. For vectors it causes all elements of
1196 * the vector to be filled with the value. For matrices it
1197 * causes the matrix to be filled with 0 and the diagonal to be
1198 * filled with the value.
1200 ir_constant_data data
;
1201 ir_constant
*const initializer
=
1202 (ir_constant
*) actual_parameters
.head
;
1203 if (constructor_type
->is_matrix())
1204 generate_constructor_matrix(constructor_type
, initializer
,
1207 generate_constructor_vector(constructor_type
, initializer
,
1210 return new(ctx
) ir_constant(constructor_type
, &data
);
1211 } else if (constructor_type
->is_scalar()) {
1212 return dereference_component((ir_rvalue
*) actual_parameters
.head
,
1214 } else if (constructor_type
->is_vector()) {
1215 return emit_inline_vector_constructor(constructor_type
,
1220 assert(constructor_type
->is_matrix());
1221 return emit_inline_matrix_constructor(constructor_type
,
1227 const ast_expression
*id
= subexpressions
[0];
1228 YYLTYPE loc
= id
->get_location();
1229 exec_list actual_parameters
;
1231 process_parameters(instructions
, &actual_parameters
, &this->expressions
,
1234 const glsl_type
*const type
=
1235 state
->symbols
->get_type(id
->primary_expression
.identifier
);
1237 if ((type
!= NULL
) && type
->is_record()) {
1238 ir_constant
*constant
=
1239 constant_record_constructor(type
, &loc
, &actual_parameters
, state
);
1241 if (constant
!= NULL
)
1245 return match_function_by_name(instructions
,
1246 id
->primary_expression
.identifier
, & loc
,
1247 &actual_parameters
, state
);
1250 return ir_call::get_error_instruction(ctx
);